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Abstract For families of magnetic self-adjoint operators on Z
d whose symbols and

magnetic fields depend continuously on a parameter ε, it is shown that the spectrum
of these operators also varies continuously with respect to ε. The proof is based on an
algebraic setting involving twisted crossed product C∗-algebras.
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1 Introduction

The continuity of the spectra for families of self-adjoint operators in aHilbert space has
been considered for several decades, but many natural questions have only received
partial answers yet. In this paper we consider a fairly general family of magnetic
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Schrödinger operators acting on Z
d and exhibit some continuity properties of the

spectra under suitable modifications of the magnetic fields and of the symbols defining
the operators. In rough terms, the continuity we are dealing with corresponds to the
stability of the spectral gaps as well as the stability of the spectral compounds. In a
more precise terminology we shall prove inner and outer continuity for the family of
spectra, as defined below.

In the discrete setting, the Harper operator is certainly the preeminent example and
much efforts have been dedicated to its study and to generalizations of this model.
It is certainly impossible to mention all papers dealing with continuity properties of
families of such operators, but let us cite a few of them which are relevant for our
investigations. First of all, let us mention the seminal paper [4] in which the author
proves the Lipschitz continuity of gap boundaries with respect to the variation of a
constant magnetic field for a family of pseudodifferential operators acting on Z

2. In
[8] (see also [9]) and based on the framework introduced in [15], similar Lipschitz
continuity is proved for self-adjoint operators acting on a crystal lattice, a natural
generalization of Zd . Note that in these references a C∗-algebraic framework is used,
as we shall do it later on. On the other hand, papers [6,11] deal with families of
magnetic pseudodifferential operators on Z2 only but continuity results are shown for
more general symbols and magnetic fields.

Before introducing the precise framework of our investigations, let us still mention
two additional papers which are at the root of our work: [10] in which a general
framework for magnetic systems, involving twisted crossed product C∗-algebras, is
introduced and [2] which contains results similar to ours but in a continuous setting
(see also [7] for related results).

In the Hilbert space H := l2(Zd) and for some fixed parameter ε let us consider
operators of the form

[H εu](x) :=
∑

y∈Zd

hε(x; y − x) eiφε(x,y) u(y) (1.1)

with u ∈ H of finite support, x ∈ Z
d and where hε : Z

d × Z
d → C and φε :

Z
d × Z

d → R satisfy

(i)
∑

x∈Zd supq∈Zd |hε(q; x)| < ∞,

(ii) hε(q + x;−x) = hε(q; x) for any q, x ∈ Z
d ,

(iii) φε(x, y) = −φε(y, x) for all x, y ∈ Z
d .

Such operators are usually called discrete magnetic Schrödinger operators. Note that
condition (i) ensures that H ε extends continuously to a bounded operator inH, while
conditions (ii) and (iii) imply that the corresponding operator is self-adjoint. In the
sequel a map φ : Zd × Z

d → R satisfying φ(x, y) = −φ(y, x) for any x, y ∈ Z
d

will simply be called a magnetic potential.
Let us consider a compact Hausdorff space � and assume that ε ∈ �. A natural

question in this setting is the following: Under which regularity conditions on the
maps ε �→ hε and ε �→ φε can one get some continuity for the spectra of the family
of operators {H ε}ε∈�, and what kind of continuity can one expect on these sets ? As
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already mentioned above, we shall consider the notion of inner and outer continuity,
borrowed from [2] but originally inspired by [4].

Definition 1.1 Let � be a compact Hausdorff space, and let {σε}ε∈� be a family of
closed subsets of R.

1. The family {σε}ε∈� is outer continuous at ε0 ∈ � if for any compact subset K of
R such that K ∩ σε0 = ∅ there exists a neighbourhood N = N (K, ε0) of ε0 in �

such that K ∩ σε = ∅ for any ε ∈ N ,
2. The family {σε}ε∈� is inner continuous at ε0 ∈ � if for any open subset O of R

such that O ∩ σε0 	= ∅ there exists a neighbourhood N = N (O, ε0) of ε0 in �

such that O ∩ σε 	= ∅ for any ε ∈ N .

Let us now present a special case of our main result which will be stated in Theorem
3.3. The following statement is inspired from [11] and a comparison with the existing
literature will be established just afterwards.

Theorem 1.2 For each ε ∈ � := [0, 1] let hε : Zd × Z
d → C satisfy the above

condition (ii). Assume that the family {hε}ε∈� satisfies for any y ∈ Z
d the condition

lim
ε′→ε

sup
q∈Zd

|hε′
(q; y) − hε(q; y)| = 0

and |hε(q; y)| ≤ f (y) for some f ∈ l1(Zd), all q ∈ Z
d and all ε ∈ �. Let also φ be

a magnetic potential which satisfies

∣∣φ(x, y) + φ(y, z) + φ(z, x)
∣∣ ≤ area �(x, y, z),

where �(x, y, z) means the triangle inRd determined by the three points x, y, z ∈ Z
d .

Then for H ε defined on u ∈ H by

[H εu](x) :=
∑

y∈Zd

hε(x; y − x) eiεφ(x,y) u(y)

the family of spectra σ(H ε) forms an outer and an inner continuous family at every
points ε ∈ �.

Observe that the conditions on the family {hε}ε∈� are clearly satisfied in the special
case hε = h for all ε ∈ � with h ∈ l1

(
Z

d; l∞(Zd)
)
and satisfying h(q + x;−x) =

h(q; x) for any q, x ∈ Z
d . In [11] the case d = 2 is considered for a fixed symbol h

satisfying a decay of the form supq∈Zd |h(q; x)| ≤ C e−β|x |, where 0 < β ≤ 1 and |x |
denotes the Euclidean norm in Z

2. In this framework, stronger continuity properties
of the family of spectra are obtained, but these results deeply depend on the parameter
β. On the other hand our results are somewhat weaker but hold for a much more
general class of symbols. In addition, more general ε-dependent magnetic potentials
are considered in our main result.

Let us now emphasize that the framework presented in Sect. 3 does not allow us to
get any quantitative estimate, as emphasized in the recent paper [3]. Indeed, the very
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weak continuity requirement we impose on the ε-dependence on our objets can not
lead to any Lipschitz or Hölder continuity. More stringent assumptions are necessary
for that purpose, and such estimates certainly deserve further investigations.

Our approach relies on the concepts of twisted crossed product C∗-algebras and
on a field of such algebras, mainly borrowed from [14,16]. In the discrete setting,
such algebras have already been used, for example in [4,8,15]. However, instead of
considering a 2-cocycle with scalar values, which is sufficient for the case of a constant
magnetic field, our 2-cocycles take values in the group of unitary elements of l∞(Zd).
This allows us to consider arbitrary magnetic potential on Z

d and to encompass all
the corresponding operators in a single algebra.

Let us finally describe the content of this paper. In Sect. 2 we introduce the frame-
work for a single magnetic system, i.e. for a fixed ε. For that reason, no ε-dependence
is indicated in this section. In Sect. 3 the ε-dependence is introduced and the continu-
ous dependence on this parameter is studied. Our main result is presented in Theorem
3.3. In the last section, we provide the proof of Theorem 1.2.

2 Discrete magnetic systems

This section is divided into three parts. First of all, we motivate the introduction of
the algebraic formalism by showing that any magnetic potential leads naturally to
the notion of a normalized 2-cocycle with one additional property. Based on this
observation, we introduce in the second part of the section a special instance of a
twisted crossed product C∗-algebra. A faithful representation of this algebra in l2(Zd)

is also provided. In the third part, we draw the connections of this abstract construction
with the initial magnetic system.

2.1 From magnetic potentials to 2-cocycles

We start by recalling that a magnetic potential consists in a map φ : Zd × Z
d → R

satisfying for any x, y ∈ Z
d the relation

φ(x, y) = −φ(y, x). (2.1)

Then, given such a magnetic potential φ let us introduce and study a new map

ω : Zd × Z
d × Z

d → T

defined for q, x, y ∈ Z
d by

ω(q; x, y) := exp
{
i
[
φ(q, q + x)+φ(q + x, q + x + y)+φ(q + x + y, q)

]}
. (2.2)

Note that the distinction between the variable q and the variables x and y is done on
purpose. Indeed, for fixed x, y ∈ Z

d we shall also use the notation ω(x, y) for the
map

ω(x, y) : Zd  q �→ [ω(x, y)](q) := ω(q; x, y) ∈ T.
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Since Zd acts on itself by translations, let us introduce the action θ of Zd on any
f ∈ l∞(Zd) by

θx f (y) = f (x + y). (2.3)

In particular, since ω(x, y) ∈ l∞(Zd) we have

[
θzω(x, y)

]
(q) := [ω(x, y)](q + z) = ω(q + z; x, y).

Based on these definitions, the following properties for ω can now be proved:

Lemma 2.1 Let φ be a magnetic potential and let ω defined by (2.2). Then for any
x, y, z ∈ Z

d the following properties hold:

(i) ω(x + y, z) ω(x, y) = θxω(y, z) ω(x, y + z),
(ii) ω(x, 0) = ω(0, x) = 1,
(iii) ω(x,−x) = 1.

Proof The proof consists only in simple computations. Indeed by taking (2.1) into
account one gets that for any q, x, y, z ∈ Z

d

[ω(x + y, z)](q) [ω(x, y)](q)

= ω(q; x + y, z) ω(q; x, y)

= exp
{
i
[
φ(q, q+x + y)+φ(q+x + y, q + x + y + z)+φ(q + x + y + z, q)

]}

× exp
{
i
[
φ(q, q + x) + φ(q + x, q + x + y) + φ(q + x + y, q)

]}

= exp
{
i
[
φ(q + x, q + x + y) + φ(q + x + y, q + x + y + z)

+ φ(q + x + y + z, q + x)
]}

× exp
{
i
[
φ(q, q + x) + φ(q + x, q + x + y + z) + φ(q + x + y + z, q)

]}

= ω(q + x; y, z) ω(q; x, y + z)

= [θxω(y, z)](q) [ω(x, y + z)](q)

which proves (i). Similar computations lead to (ii) and (iii) once the equalityφ(x, x) =
0 for any x ∈ Z

d is taken into account. ��
Let us now make some comments about the previous definitions and results. For

fixed x, y the mapω(x, y) : Zd → T can been seen as an element of the unitary group
of the algebra l∞(Zd). For simplicity, we set U (Zd) for this unitary group, i.e.

U (Zd) = { f : Zd → T}.

In addition, property (i) of the previous lemma is usually considered as a 2-cocycle
property while property (ii) corresponds to a normalization of this 2-cocycle. In the
second part of this section, we shall come back to these definitions. For the time being,
let us just mention that this 2-cocycle will be at the root of the definition of a twisted
crossed product C∗-algebra. However, before recalling the details of this construction,
let us still show that ω depends only on equivalent classes of magnetic potentials.
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Lemma 2.2 Let φ be a magnetic potential and let ϕ : Z
d → R. Then the map

φ′ : Zd × Z
d → R defined by

φ′(x, y) = φ(x, y) + ϕ(y) − ϕ(x).

is a magnetic potential. In addition, by formula (2.2) the two magnetic potentials φ

and φ′ define the same 2-cocycle.

Proof Clearly, φ′(x, y) = −φ′(y, x) which means that φ′ is a magnetic potential. If
we denote by ω (resp. ω′) the 2-cocycle defined by (2.2) for the magnetic potential φ
(resp. φ′) we get

ω′(q; x, y) := exp
{
i
[
φ′(q, q + x) + φ′(q + x, q + x + y) + φ′(q + x + y, q)

]}

= exp
{
i
[
φ(q, q + x) + ϕ(q + x) − ϕ(q) + φ(q + x, q + x + y)

+ ϕ(q + x+y)−ϕ(q + x)+φ(q + x+y, q)+ϕ(q)−ϕ(q + x + y)
]}

= exp
{
i
[
φ(q, q + x) + φ(q + x, q + x + y) + φ(q + x + y, q)

]}

= ω(q; x, y).

��
Remark 2.3 One could argue that the 2-cocycle ω depends only on the magnetic field
as introduced in [5], and not on the choice of a magnetic potential. However, this
would lead us too far from our purpose since we would have to consider Zd as a graph
endowed with edges between every pair of vertices.

2.2 Twisted crossed product algebras and their representations

Let us adopt a very pragmatic point of view and recall only the strictly necessary
information on twisted crossed product C∗-algebras. More can be found in the fun-
damental papers [12,13] or in the review paper [10]. Since the group we are dealing
with is simply Zd , most of the necessary information can also be found in [16].

Consider the group Z
d and the algebra l∞(Zd) endowed with the action θ of Zd

by translations, as defined in (2.3). As suggested by the notation, the vector space
l1

(
Z

d; l∞(Zd)
)
is endowed with the following norm

‖ f ‖1,∞ :=
∑

x∈Zd

sup
q∈Zd

| f (q; x)| f ∈ l1
(
Z

d; l∞(Zd)
)
, (2.4)

where x is the variable in the l1-part and q is the variable in the l∞-part. This set also
admits an action of Zd defined for any f ∈ l1

(
Z

d; l∞(Zd)
)
by

[θy f (x)](q) := [ f (· + y; x)](q) = f (q + y; x).

In order to endow l1
(
Z

d; l∞(Zd)
)
with a twisted product, let ω be any normalized

2-cocycle on Z
d with values in the unitary group of l∞(Zd), or in other words let
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ω : Zd × Z
d → U (Zd) satisfy for any x, y, z ∈ Z

d :

ω(x + y, z) ω(x, y) = θxω(y, z) ω(x, y + z) (2.5)

and
ω(x, 0) = ω(0, x) = 1. (2.6)

Because of the point (iii) of Lemma 2.1, we shall also assume that the 2-cocycle ω

satisfies an additional property, namely for any x ∈ Z
d :

ω(x,−x) = 1. (2.7)

We can now define the twisted product and an involution: for any f, g ∈
l1

(
Z

d; l∞(Zd)
)
one sets

[ f � g](x) :=
∑

y∈Zd

f (y) θy g(x − y) ω(y, x − y) (2.8)

and
f �(x) = [θx f (−x)]∗ = f (· + x;−x). (2.9)

Endowed with this multiplication and this involution, l1
(
Z

d; l∞(Zd)
)
is a Banach

∗-algebra.
The enveloping C∗-algebra of l1

(
Z

d; l∞(Zd)
)
, endowed with the above product

and involution, will be denoted by C(ω) ≡ C. Recall that this algebra corresponds
to the completion of l1

(
Z

d; l∞(Zd)
)
with respect to the C∗-norm defined as the

supremum over all the faithful representations of l1
(
Z

d; l∞(Zd)
)
. As a consequence,

l1
(
Z

d; l∞(Zd)
)
is dense in C and the new C∗-norm ‖ · ‖ satisfies ‖ f ‖ ≤ ‖ f ‖1,∞.

Remark 2.4 In [10] (with R
d replacing Z

d ) an additional ingredient is introduced in
the previous construction, namely an endomorphism τ ofRd . In the continuous setting,
this additional degree of freedom allows one to encompass in a single framework the
formulas for the Weyl quantization and for the Kohn–Nirenberg quantization. The
present work contains only the case corresponding to τ = 0 since the authors are not
aware of any alternative quantization in the discrete setting. The formulas obtained
with this choice correspond to the ones appearing in the literature.

Let us now look at a faithful representation of the algebra C in the Hilbert space
H = l2(Zd). First of all, by [10, Lem. 2.9] there always exists a 1-cochain λ, i.e. a
map λ : Zd → U (Zd), such that

λ(x) θxλ(y) λ(x + y)−1 = ω(x, y). (2.10)

In fact, an example of such a 1-cochain can be defined by the following formula:

λt (q; x) ≡ [λt (x)](q) := ω(0; q, x). (2.11)
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Indeed, it easily follows from the 2-cocycle property (2.5) that

λt (q; x) λt (q + x; y) λt (q; x + y)−1 = ω(0; q, x) ω(0; q + x, y) ω(0; q, x + y)−1

= θqω(0; x, y)

= ω(q; x, y).

Note that in the continuous case this choice corresponds to the transversal gauge for
the magnetic potential, and this is why the index t has been added.

Since the 2-cocycle ω has been chosen normalized and with the additional property
(2.7), the 1-cochains satisfying (2.10) also share some additional properties, namely:

Lemma 2.5 Let λ be a 1-cochain satisfying (2.10) for ω satisfying (2.5)–(2.7). Then,

(i) λ(q; 0) = 1 for any q ∈ Z
d ,

(ii) λ(y; x − y) = λ(x; y − x)−1 for any x, y ∈ Z
d .

Proof One infers from (2.10) for y = 0 and from (2.6) that

λ(q; x) λ(q + x; 0) λ(q; x)−1 = λ(q + x; 0) = ω(q; x, 0) = 1.

Similarly, from (2.10) for y = −x and from (2.7) one gets that

λ(x) θxλ(−x) λ(0) = ω(x,−x) = 1,

from which one deduces that λ(q; x) = λ(q + x;−x)−1. Finally, by replacing q by y
and x by x − y in the previous equality one deduces the statement. ��

Once a 1-cochain satisfying (2.10) has been chosen, a representation of C inH can
be defined, as shown in [10, Sec. 2.4]. More precisely, for any h ∈ l1

(
Z

d; l∞(Zd)
)
,

any u ∈ H and any x ∈ Z
d one sets

[Repλ(h)u](x) :=
∑

y∈Zd

h(x; y − x) λ(x; y − x) u(y).

The main properties of this representation are gathered in the following statement,
which corresponds to [10, Prop. 2.16 and 2.17] adapted to our setting. In (i) the
operator ϕ(X) denotes the operator of multiplication by the function ϕ.

Proposition 2.6 Let λ and λ′ be two 1-cochains satisfying (2.10) for the same ω that
satisfies (2.5)–(2.7). Then,

(i) There exists ϕ : Zd → R such that

λ′(q; x) = eiθx ϕ(q) e−iϕ(q) λ(q; x).

In addition one has for any h ∈ l1
(
Z

d; l∞(Zd)
)

Repλ′
(h) = e−iϕ(X) Repλ(h) eiϕ(X),
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(ii) The representation Repλ is irreducible,
(iii) The representation Repλ is faithful.

Let us end this abstract part with a result about self-adjointness. The following
statement shows that if h ∈ l1

(
Z

d; l∞(Zd)
)
satisfies h� = h, with the involution

defined in (2.9), then the corresponding operator Repλ(h) is self-adjoint.

Lemma 2.7 Let λ be any 1-cochain satisfying (2.10) with ω satisfying (2.5)–(2.7),
and let h ∈ l1

(
Z

d; l∞(Zd)
)
. Then Repλ(h) is self-adjoint if h� = h.

Proof Let u, v be elements of the Hilbert space l2(Zd) with compact support, let 〈·, ·〉
denote its scalar product and let 〈·, ·〉C denote the scalar product in C. Let us also
observe that with a simple change of variables the equality h� = h is equivalent to
h(y; x − y) = h(x; y − x). Then by taking Lemma 2.5.(ii) into account one gets

〈
v,Repλ(h)u

〉 =
∑

x∈Zd

〈
v(x),

∑

y∈Zd

h(x; y − x) λ(x; y − x) u(y)

〉

C

=
∑

y∈Zd

〈
∑

x∈Zd

h(x; y − x) λ(x; y − x) v(x), u(y)

〉

C

=
∑

x∈Zd

〈
∑

y∈Zd

h(x; y − x) λ(x; y − x) v(y), u(x)

〉

C

= 〈
Repλ(h)v, u

〉
.

��

2.3 Back to magnetic systems

Let us now come back to a magnetic potential φ and to the magnetic 2-cocycle ω

defined by (2.2). By Lemma 2.1, the three conditions (2.5)–(2.7) are satisfied for such
a 2-cocycle, and thus the construction of Sect. 2.2 is at hand. Let us thus list some
relations between this abstract section and some magnetic objects considered before.

First of all, the relation between λt introduced in (2.11) and φ can be explicitly
computed, namely

λt (q; x) = ω(0; q, x)

= exp
{
i
[
φ(0, q) + φ(q, q + x) + φ(q + x, 0)

]}

= exp
{
i
[
φ(q, q + x) + φ(q + x, 0) − φ(q, 0)

]}

= exp
{
i
[
φ(q, q + x) + ϕ(q + x) − ϕ(q)

]}
(2.12)

with ϕ : Zd → R defined by ϕ(x) := φ(x, 0). On the other hand, the obvious choice

λφ(q; x) := eiφ(q,q+x) (2.13)
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is also a 1-cochain satisfying (2.10), as a consequence of (2.2) and φ(x, y) =
−φ(y, x).

At the level of the representations, for the 1-cochain λφ one gets

[Repλφ (h)u](x) =
∑

y∈Zd

h(x; y − x) eiφ(x,y) u(y). (2.14)

Clearly, this expression corresponds to the one provided in (1.1) whichwas the starting
point of our investigations. It is precisely the equality of these two expressions which
makes the algebraic formalism useful for the study of magnetic operators.

On the other hand for the 1-cochain λt and if (2.12) is taken into account one obtains

[Repλt (h)u](x) =
∑

y∈Zd

h(x; y − x) exp{iφ(x, y) + ϕ(y) − ϕ(x)} u(y)

= e−iϕ(x)
∑

y∈Zd

h(x; y − x) eiφ(x,y) eiϕ(y) u(y)

= [
e−iϕ(X) Repλφ (h) eiϕ(X) u

]
(x).

These equalities mean that the representations provided by Repλφ and Repλt are
unitarily equivalent, as it could already be inferred from Proposition 2.6.(i).

In summary, anymagnetic potential defines amagnetic 2-cocycle, and subsequently
a twisted crossed product C∗-algebra which can be represented faithfully in H. This
algebra depends on an equivalence class of magnetic potentials, as emphasized in
Lemma 2.2. Reciprocally, any normalized 2-cocycle on Zd with values inU (Zd) and
which satisfies the additional relation (2.7) comes from amagnetic potential, as shown
in the following lemma.

Lemma 2.8 Let ω : Zd × Z
d → U (Zd) satisfy conditions (2.5)–(2.7). Then there

exists a magnetic potential which satisfies the relation (2.2).

Proof First of all, observe that the equality

ω(x, y) = ω(x + y,−y)−1 (2.15)

is a direct consequence of (2.5)–(2.7) taking z = −y in (2.5).
For any x, y ∈ Z

d with ω(0; x, y − x) 	= −1 let us set φ(x, y) ∈ (−π, π) by

eiφ(x,y) := ω(0; x, y − x).

By (2.15) one infers that

eiφ(y,x) = ω(0; y, x − y) = ω(0; x, y − x)−1 = (
eiφ(x,y)

)−1 = e−iφ(x,y)

which means that φ(x, y) = −φ(y, x). If ω(0; x, y − x) = −1, then one sets
φ(x, y) := −π if x < y (lexicographic order on Z

d ) while φ(x, y) := π if y < x .
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With this convention and by the same argument one obtains that φ(x, y) = −φ(y, x)

which is thus proved for any x, y ∈ Z
d . As a consequence, φ is indeed a magnetic

potential.
In order to show (2.2), it is enough to observe that

exp
{
i
[
φ(q, q + x) + φ(q + x, q + x + y) + φ(q + x + y, q)

]}

= ω(0; q, x) ω(0; q + x, y) ω(0; q + x + y,−x − y)

= ω(0; q, x) ω(0; q + x, y) ω(0; q, x + y)−1

= ω(q; x, y)

where (2.15) has again been used for the second equality, and where the 2-cocycle
property (2.5) has been taken into account for the last equality. ��

3 A continuous field of C∗-algebras

In this section we consider a family of discrete magnetic systems which are parame-
terized by the elements ε of a compact Hausdorff space �. The necessary continuity
relations between the various objects is encoded in the structure of a field of twisted
crossed productC∗-algebras, as introduced in [14] and already used in a similar context
in [2].

Our first aim is to recall the notion of a continuous field of 2-cocycles [14, Def. 2.1].
In our framework, with the locally compact group Zd and the algebra l∞(Zd), we get
the following definition.

Definition 3.1 A continuous field over � of 2-cocycles on Z
d is a map

ω : � × Z
d × Z

d → U (Zd)

such that

(i) For any x, y, z ∈ Z
d and ε ∈ � the following relations hold:

ω(ε; x + y, z) ω(ε; x, y) = θxω(ε; y, z) ω(ε; x, y + z) (3.1)

and
ω(ε; x, 0) = ω(ε; 0, x) = 1, (3.2)

(ii) For any fixed (x, y) ∈ Z
d × Z

d the map

�  ε �→ ω(ε; x, y) ∈ U (Zd) (3.3)

is continuous.

Note that in Eq. (3.1) the shift θx acts on ω(ε; x, y) ∈ U (Zd), as in the previous
section. Clearly, for each fixed ε the relation (3.1) corresponds to (2.5) in the abstract
framework or to the statement (i) of Lemma 2.1 in the magnetic case. Similarly, (3.2)
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is a reminiscence of (2.6) or of the normalization property (ii) of Lemma 2.1. On
the other hand, the new assumption (3.3) is the one which provides the necessary
continuity condition.

For the subsequent algebraic construction we shall deal withC
(
�; l∞(Zd)

)
instead

of the algebra l∞(Zd) of the previous section. Note that for any f ∈ C
(
�; l∞(Zd)

)
the

action of Zd by translations is defined by θx f (q, ε) = f (q + x, ε) for any q, x ∈ Z
d

and ε ∈ �. So, let us consider a continuous field ω over � of 2-cocycles on Z
d and

observe that its definition is made such that it can be interpreted as a normalized 2-
cocycle onZd taking values in the unitary group of theAbelian algebraC

(
�; l∞(Zd)

)
.

Indeed, for fixed x, y ∈ Z
d one can set

[ω(x, y)](q, ε) := [ω(ε; x, y)](q) ≡ ω(q, ε; x, y).

Then, by condition (ii) of Definition 3.1 one infers that

ω(x, y) ∈ C
(
�; l∞(Zd)

)
and [ω(x, y)](q, ε) ∈ T.

In addition, (3.2) implies that ω is a normalized 2-cocycle. Note that the additional
property

ω(x,−x) = 1 (3.4)

holds if and only if ω(ε; x,−x) = 1 for every ε ∈ �. Since this property is satisfied
by magnetic 2-cocycles we shall assume it in the sequel.

In summary, starting from a continuous field ω over � of 2-cocycles on Z
d which

satisfies the additional propertyω(ε; x,−x) = 1 for any ε ∈ � and x ∈ Z
d , we end up

with the 2-cocycle ω taking values in the unitary group of the algebra C
(
�; l∞(Zd)

)

and having the additional property (3.4). With this 2-cocycle one defines in analogy
with (2.8) the product for any f , g ∈ l1

(
Z

d; C
(
�; l∞(Zd)

))
by

[[ f � g](x)
]
(q, ε) ≡ [ f � g](q, ε; x)

:=
∑

y∈Zd

[ f (y)](q, ε) [g(x − y)](q + y, ε) [ω(y, x − y)](q, ε)

≡
∑

y∈Zd

f (q, ε; y) g(q + y, ε; x − y) ω(q, ε; y, x − y), ∀ q, x ∈ Z
d , ε ∈ �.

We also endow l1
(
Z

d; C
(
�; l∞(Zd)

))
with the involution

[ f �(x)](q, ε) ≡ f �(q, ε; x) := f (q + x, ε;−x)

and with the norm

‖ f ‖1,∞ :=
∑

x∈Zd

sup
q∈Zd

sup
ε∈�

| f (q, ε; x)| f ∈ l1
(
Z

d; C
(
�; l∞(Zd)

))
,
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making it a unital Banach ∗-algebra. The corresponding C∗-algebra will be denoted
by C�.

Let us now emphasize the main point of all this construction: there exists an eval-
uation map

eε : l1
(
Z

d; C
(
�; l∞(Zd)

)) → l1
(
Z

d; l∞(Zd)
)

defined for any f ∈ l1
(
Z

d; C
(
�; l∞(Zd)

))
by [eε( f )](q; x);= f (q, ε; x) for any

q, x ∈ Z
d and ε ∈ �. This map is clearly norm-decreasing and surjective, and

extends continuously to a norm-decreasing ∗-homomorphism eε : C� → Cε , with
Cε := C(ωε) the C∗-algebra constructed in the previous section with the 2-cocycle
ωε := ω(ε; ·, ·) : Zd × Z

d → U (Zd).
In this framework, the main result borrowed from [14] reads:

Proposition 3.2 Let ω be a continuous field over � of 2-cocycles on Z
d satisfying

ω(ε; x,−x) = 1 for every ε ∈ � and x ∈ Z
d . Then the following properties hold:

(i) The map eε : C� → Cε is surjective,
(ii) For any f ∈ C� one has ‖ f ‖C�

= supε∈� ‖eε( f )‖Cε
,

(iii) For any f ∈ C� the map �  ε �→ ‖eε( f )‖Cε
∈ R+ is continuous.

Proof Before mentioning the precise arguments borrowed from [14], let us stress that
part of the proofs in that reference relies on the existence of an bounded approximate
identity. However, this technical point is automatically satisfied in our framework, as
shown in the seminal paper [16, Sec. 2.28 and 2.29].

Once this preliminary observation is taken into account, statement (i) is a direct
consequence of [14, Prop. 2.3]. For (ii) it is enough to observe that the map f �→
⊕εeε( f ) is injective. The upper semi-continuity of the map mentioned in (iii) follows
from [14, Thm. 2.4] while the lower semi-continuity of the samemap is a consequence
of [14, Thm. 2.5] together with the equality between the twisted crossed product
algebra C� and its reduced version, see [16, Thm. 5.1]. ��

Let us now state and prove our main result:

Theorem 3.3 Let ω be a continuous field over � of 2-cocycles on Z
d satisfying

ω(ε; x,−x) = 1 for any ε ∈ � and x ∈ Z
d , and let ωε be defined by ω(ε; ·, ·).

Consider a family {hε}ε∈� ⊂ l1
(
Z

d ; l∞(Zd)
)

such that the following conditions are
satisfied:

(i) For any y ∈ Z
d , supq∈Zd

∣∣hε(q; y) − hε′
(q; y)

∣∣ → 0 as ε′ → ε in �,
(ii)

∑
y∈Zd supε∈� supq∈Zd |hε(q; y)| < ∞.

(iii) (hε)� = hε .

Then, for any family of 1-cochains λε : Zd → U (Zd) satisfying the usual relation

λε(x) θxλ
ε(y) λε(x + y)−1 = ωε(x, y), the family of spectra

{
σ
(
Repλε

(hε)
)}

ε∈�
forms an outer and an inner continuous family at every point of �.

Let us stress that condition (ii) is satisfied for example if there exists f ∈ l1(Zd)

such that |hε(q; y)| ≤ f (y) for any ε ∈ � and q ∈ Z
d . In the following proof, we use
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the notation C0(R) for the set of continuous functions on R which vanish at infinity.
Recall also that H = l2(Zd).

Proof (a) Let us first observe that the conditions on {hε}ε∈� have been chosen such
that the function h : �×Z

d ×Z
d → C defined by h(ε, q; x) := hε(q; x) satisfies h ∈

l1
(
Z

d; C
(
�; l∞(Zd)

))
. As a consequence, h ∈ C� and the statements of Proposition

3.2 hold for h instead of f . In particular, since eε(h) = hε one infers that the map

�  ε �→ ‖hε‖Cε
∈ R+

is continuous. Furthermore, since h� = h and since the algebra l1
(
Z

d; C
(
�; l∞(Zd)

))

is unital, one infers that for z ∈ C \R the element h− z is invertible in the C∗-algebra
C�, with respect to the product �. Its inverse is simply denoted by (h− z)−1. Since eε

is a ∗-homomorphism, one gets that eε

(
(h−z)−1

) = (hε −z)−1, and as a consequence
the map

�  ε �→ ∥∥(hε − z)−1
∥∥
Cε

∈ R+

is also continuous.
Now, since Repλε

defines a faithful representation of Cε inB(H) it follows that

‖hε‖Cε
= ∥∥Repλε

(hε)
∥∥

where the norm on the r.h.s. corresponds to the usual norm inB(H). If we set H ε :=
Repλε

(hε), which is a self-adjoint element of the C∗-algebra Repλε

(Cε) ⊂ B(H),
one then deduces that the map

�  ε �→ ‖(H ε − z)−1‖ ∈ R+

is continuous for any z ∈ C \ R. Finally, by a density argument of the linear span of
{(· − z)−1}z∈C\R, one infers that for any η ∈ C0(R), the map

�  ε �→ ‖η(H ε)‖ ∈ R+ (3.5)

is continuous, see [1, p. 364].
(b) It remains to show that the continuity (3.5) implies the inner and the outer continuity
for the family of spectra σ(H ε). The following argument is directly borrowed from
the proof of [2, Prop. 2.5] which we present here for the sake of completeness. For the
outer continuity, let ε0 ∈ � and letK be a compact set inR such thatK∩σ(H ε0) = ∅.
By Urysohn’s lemma there exists η ∈ C0(R) with η ≥ 0 such that η|K = 1 and
η|σ(H ε0 ) = 0, and therefore η(H ε0) = 0. By the continuity of (3.5) one can then chose
a neighbourhood N of ε0 in � such that for any ε ∈ N one has ‖η(H ε)‖ ≤ 1/2. By
contradiction, if for some ε ∈ N one would have ν ∈ K∩σ(H ε) then it would follow
that

1 = η(ν) ≤ sup
μ∈σ(H ε )

η(μ) ≤ ‖η(H ε)‖ ≤ 1/2
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which is absurd. Thus, the family {σ(H ε)}ε∈� is outer continuous at every points of
�.

For the inner continuity, letO be an open subset ofR such that there exists ν ∈ O∩
σ(H ε0). By Urysohn’s lemma there exists η ∈ C0(R) with η(ν) = 1 and suppη ⊂ O.
As a consequence, one has ‖η(H ε0)‖ ≥ 1. By contradiction, assume now that for any
neighbourhoodN of ε0 in � there exists ε ∈ N such thatO ∩ σ(H ε) = ∅. It follows
that η(H ε) = 0. However, this clearly contradicts the continuity provided in (3.5). As
a consequence, the family {σ(H ε)}ε∈� is inner continuous at every points of �. ��

4 The scaling example

In this section we provide the proof of Theorem 1.2. On the way we also show that
the setting considered in [11] is covered by our formalism. Note that only d = 2 is
considered in that reference, but that the extension for arbitrary d ∈ N is harmless in
our framework.

Let us now fix � = [0, 1]. In the following statement, �(x, y, z) denotes the
triangle in Rd defined by the three points x, y, z ∈ Z

d .

Proposition 4.1 Let φ be a magnetic potential which satisfies

∣∣φ(x, y) + φ(y, z) + φ(z, x)
∣∣ ≤ area �(x, y, z).

Then the map ω defined for ε ∈ [0, 1] and q, x, y ∈ Z
d by

ω(q, ε; x, y) := exp
{
iε

[
φ(q, q + x)+φ(q + x, q + x + y)+φ(q + x + y, q)

]} ∈ T

(4.1)
is a continuous field over [0, 1] of 2-cocycles on Z

d .

Proof Clearly, for each fixed ε ∈ [0, 1] the map ω(ε; ·, ·) satisfied the normalized 2-
cocycle requirements as mentioned in the point (i) of Definition 3.1. For the condition
(ii) of this definition, let x, y ∈ Z

d be fixed, and let ε, ε′ ∈ [0, 1] and q ∈ Z
d . Then

one has

∣∣ω(q, ε′; x, y) − ω(q, ε; x, y)
∣∣

≤
∣∣∣1 − exp

{
i(ε − ε′)

[
φ(q, q + x) + φ(q + x, q + x + y) + φ(q + x + y, q)

]}∣∣∣

≤
∞∑

n=1

|ε − ε′|n
n!

∣∣∣φ(q, q + x) + φ(q + x, q + x + y) + φ(q + x + y, q)

∣∣∣
n

=
∞∑

n=1

|ε − ε′|n
n!

∣∣ area �(q, q + x, q + x + y)
∣∣n

=
∞∑

n=1

|ε − ε′|n
n!

∣∣ area �(0, x, x + y)
∣∣n

.
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Since the last expression is independent of q one directly infers that

lim
ε′→ε

∥∥ω(ε′; x, y)−ω(ε; x, y)
∥∥
U (Zd )

= lim
ε′→ε

sup
q∈Zd

∣∣ω(q, ε′; x, y) − ω(q, ε; x, y)
∣∣=0

which corresponds to the required continuity property. ��
We can now show that Theorem 1.2 is a special case of Theorem 3.3.

Proof of Theorem 1.2 Let us first observe that the initial conditions (i) and (ii) imposed
on hε are equivalent to hε ∈ l1

(
Z

d; l∞(Zd)
)
and to (hε)� = hε . These two conditions

together with the other two conditions imposed on hε imply that all assumptions on
hε required by Theorem 3.3 are satisfied.

On the other hand, the condition imposed on the magnetic potential φ are precisely
the one already used in Proposition 4.1 for defining the continuous field ω of 2-
cocycles in (4.1). Observe also that the additional condition ω(ε; x,−x) = 1 holds
for any x ∈ Z

d . Thus, we have checked so far that all assumptions of Theorem 3.3 are
satisfied. It only remains to exploit its consequences.

For that purpose let us choose the 1-cochain λε defined as in (2.13) by

λε(q; x) := eiεφ(q,q+x) .

With this choice and as in (2.14) one obtains on any u ∈ H

[Repλε

(hε)u](x) =
∑

y∈Zd

hε(x; y − x) eiεφ(x,y) u(y) ≡ [H εu](x)

or equivalently Repλε

(hε) = H ε . The statement of Theorem 1.2 can now be directly
deduced from Theorem 3.3.
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