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Abstract

We propose to interpret Levinson’s theorem as an index theorem. This exhibits
its topological nature. It furthermore leads to a more coherent explanation of
the corrections due to resonances at thresholds.

PACS numbers: 03.65.Nk, 03.65.Db, 02.40.Gh

1. Introduction

Levinson’s theorem is a relation between the number of bound states of a quantum mechanical
system and an expression related to the scattering part of that system. The latter can be written
either in terms of an integral over the time delay, or as an evaluation of the spectral shift
function (see the review papers [3, 7, 11] and references therein). In the simplest situations,
the relation is an equality, but that is not always the case. Depending on the space dimension
and the existence of resonances at thresholds, also called half-bound states, corrections to the
former equality have to be taken into account. Different explanations for these corrections can
be found in the literature, but they often have the flavor of a case-by-case study. It has not been
realized that Levinson’s theorem is a topological theorem, and this includes the corrections.
We propose here a topological explanation by interpreting it as an index theorem. This does
not only shed new light on it, but also provides a more coherent and natural way to take the
corrections into account. It is inspired by Bellissard’s approach to topological phenomena
in solid states physics [2] and was first proposed for systems without resonances in [10].
The proof relies on evaluating the index of the wave operator by the winding number of an
expression involving not only the scattering operator, but also new operators that describe the
system at zero energy and large energy.

The content of this paper is the following: first we recall one of the forms in which
Levinson’s theorem can be commonly found in the literature. Then, we expose our topological
approach and introduce the framework for potential scattering on R”. Finally, we illustrate
our ideas with one dimensional scattering systems.

1751-8113/08/295207+07$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1


http://dx.doi.org/10.1088/1751-8113/41/29/295207
mailto:kellendonk@math.univ-lyon1.fr
mailto:richard@math.univ-lyon1.fr
http://stacks.iop.org/JPhysA/41/295207

J. Phys. A: Math. Theor. 41 (2008) 295207 J Kellendonk and S Richard

2. Levinson’s theorem

We consider a quantum-mechanical system described by a Hamiltonian H in a Hilbert space
‘H. The spectrum of H is composed of a discrete part, the bound state energies and a
continuous part. The projection onto the subspace spanned by the bound states is denoted
by P,. The continuous part of the system is commonly described by scattering theory.
For example, in stationary scattering theory a system of generalized eigenfunctions of H
is constructed by solving the Lippmann—Schwinger equation for outgoing spherical wave
asymptotics [12]. The wave operators €2 can then be defined as the linear operators that map
the generalized eigenfunction of a comparison operator Hy to a certain wave vector to the
generalized eigenfunction of H to the same wave vector. In time-dependent scattering theory,
which seems more adapted to our approach, the wave operators are defined by the strong limits
itH o~itHy

Qi =s— lim e
t—=4o0

and satisfy
QLQy =1, Qi) =1- P, (1)

The scattering operator is given by S = Q*Q_, which can also be written as 2 := Q_ evolved
to time +00: S = s — lim,, o0 €7 Qe M0 Since S commutes with Hp, it is unitarily
equivalent to an operator-valued function A — S(A) where A ranges over all values of the
spectrum o (Hp) of Hy. S(A) is referred to as the S-matrix at energy A and i5*(1)S’(1) as the
time delay operator at energy A. Levinson’s theorem can then be expressed as

L (tr [iIS* (M) S'(M)] — c(1)) dA = Tr(P,) + v. 2)
27 Jo (o)
Here S’ denotes the derivative of § w.r.t. energy, tr; is the trace on the generalized eigenspace
of Hy to energy A and Tr is the trace on K. In particular Tr(P,) is the number of bound states.
The regularizing term c(A) is necessary if the map A + tr, [iS*(1)S’(A)] is not integrable.
The correction term v is related to resonances at thresholds in the spectrum of H.
For example, for Hy = —A, the Laplacian on R", and H = —A + V, a perturbation by
a rapidly vanishing potential, the correction depends on the existence of 0-energy resonances
and on the dimension n. 0-energy resonances are solutions of the equation H¥ = 0 with W
not in L?(R") but in some suitable larger space. If n = 3 and if such a O-energy resonance
exists, the correction v is equal to 1/2. In other dimensions the picture is different.

3. Topological approach

In this section, we show how to rewrite (2) as an index theorem. Our approach is based on
the construction of a norm-closed algebra £ which sits in between the algebra of compact
operators K () and that of bounded operators B(H) on H: K(H) C £ C B(H). K(H) is the
norm-closed algebra generated by operators with finite-dimensional image. It forms an ideal
in B(H). F € B(H) is a Fredholm operator if its kernel and cokernel are finite-dimensional.
This is the case whenever it is invertible modulo a compact operator, that is, its image g (F) in
the quotient algebra B(H)//IC(H) is invertible. The difference of the dimensions of its kernel
and its cokernel is its index. The index is a topological (even homotopy) invariant, namely it
is stable against perturbations of F along continuous paths of Fredholm operators. By (1) the
wave operator €2 is a Fredholm operator of index —Tr(P,).

Suppose F' belongs to £ and that £/K(H) is isomorphic to C(S, K(H'))™, where
C (S, K(H")) is the algebra of continuous functions over the circle with values in K(H’), and
~ means that a unit has been added. Here H’ is some possibly finite-dimensional separable
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Hilbert space. Then, viewing ¢ (F') as such a function we can take pointwise its determinant
(if needed regularized) to obtain a non-vanishing function over the circle. The winding number
of that latter function is another topological invariant of F. We denote it by w(g(F)). The
index theorem of Krein and Gohberg states [6] that these two invariants are equal for a suitable
choice of £. We wish to apply this to F = Q and hence need to make sure that 2 belongs
to £. We will observe that in some cases g (£2) is essentially given by S and this implies that
the correction v in (2) vanishes, but in general ¢ (£2) incorporates besides S other terms. Our
formulation of Levinson’s theorem is therefore

w(q(§2) = =Tr(Pp), 3)

and we shall see below how the winding number w (g (£2)) is related to the time delay.

We note that (3) can be refined: if P is a projection which commutes with €2, then
restricting the analysis to the Hilbert space PH results in w(q(2P)) = —Tr(P,P). For
example, choosing for P a projection on an angular momentum sector leads to a Levinson’s
theorem for that sector.

3.1. Potential scattering on R"

When Hy = —A in H := L*(R"), we construct £ with the help of Hy and with the generator
A= %(V - X + X - V) of dilations. The crucial property is that A and B := %ln(Ho) satisfy
the canonical commutation relation [A, B] = i so that A generates translations in B and vice
versa,

e BAeB = A+, e"*Be ™ = B —s. 4)

The spectrum of Hy is R, and that of A is R.

Let &' be the closure in B(H) of the algebra generated by elements of the form n(A)y (Hy),
where 7 is a continuous function on R which converges at 00, and ¥ is a continuous function
R, which converges at 0 and +oo. Stated differently, n € C (R), where R = [—o0, +00], and
v eC (E) with R, = [0, +o0]. Let 7’ be the norm closed algebra generated by n(A)v (Hp)
with functions n and ¥ for which the above limits vanish. 7’ can be identified with K(L*(R.)).
It is an ideal of £’.

To describe the quotient £'/.7’ we consider the square [J := R, x R whose boundary
o] is the union of four parts: 90 = By U B, U B3 U By, with B; = {0} x R, B, =
R, x {400}, B3 = {+00} x R and B, = R, x {—00}. We can also view C(d[J) as the
subalgebra of C(R) @ C(R,) ® C(R) @ C(R,) given by elements (I';, I's, I'3, ['y) which
coincide at the corresponding end points, that is, for instance, I'j (+00) = I',(0). Then £’/ J’
is isomorphic to C(d0J) and the image ¢’ (n(A)¥ (Hp)) in C(R) & C(R,) ® C(R) ® C(R,)
is given by T'1(A) = n(A)y(0), '2(Ho) = n(+o0)y(Ho), I's(A) = n(A)y(+o0) and
I'4(Hp) = n(—00)y (Ho).

The generalized eigenspaces of Hy can be naturally identified with L2(S"~'), the square-
integrable functions on the sphere in momentum space, and H can be written as the tensor
product L2(R,) ® L*(S"™"). Thus K(H) = J' ® K(L*(S"")). We define £ as the tensor
product of & with K(L?(S"™')), and add a unit. As a result, K(H) is an ideal of £ and
E/K(H) = C (o, K(LA(S"1))~. Thus, & is suitable for the index theorem of Krein and
Gohberg, and in fact £ is the Toeplitz extension of C(S). Let us furthermore observe
that for any F € &, it follows from (4) that [',4 € C [R,, K(L*(S"1)))™ are obtained by
s — lim,_, 100 7B F e 18,

Our basic assumption is that €2 belongs to £. We will verify it below for one-dimensional
systems. From the above observation we get from the intertwining relation and the invariance
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principle that ¢(Q) = (I'y, 'y, '3, Ty) with Ty(Hy) = s — lim,_, .o, "2Qe "8 = § and
similarly I's(Hp) = 1. We will determine below I';(A) and I'3(A).

The winding number w(q (£2)) is the sum of four terms, each side of the square contributing
for one. In regular cases, the winding along B; contributes with w; = ﬁ /, B tr[F;1 dry].
Then w, = ﬁ fooo tr, [S*(A)S’(A)] dA and wy = 0. Comparing (2) with (3) we see therefore
that the correction term arises now on the lhs of the equality from the possible contribution of
I'; and I'; to the winding number. If ¢(1) # O the above formulae have to be regularized.

We believe that the above construction is sufficient to describe scattering for perturbations
of —A by a large class of potentials vanishing at infinity. But the algebraic framework is
flexible enough to cover all kinds of situations. In fact, there is a very well-developed index
theory which is based on non-commutative topology and allows for situations in which not
only £ can be an arbitrary Banach algebra but also C(H) can be replaced by any ideal of £.
We expect that these generalizations will lead to new Levinson’s type identities.

4. One-dimensional scattering

We illustrate our approach with one-dimensional systems, first for so-called point interactions,
and second for ordinary potential scattering. In both cases, the decomposition of H = L?(R)
into even and odd functions leads to H' = C? and £/K(H) = C (80, M>(C)). Our aim is to
obtain a formula for £ which shows that it belongs to £, to determine each I'; and to show
how they contribute to w(g(€2)). For this purpose, the following observation taken from [9]
is essential: let g be a smooth rapidly vanishing function on R and 7 be the operator defined
by [Tgl(rw) = \/#27 fooo e g (kw) dic, with r > 0, w € {—1, 1} and g the Fourier transform

of g. Thenone has T = %(1 — R) with
R=r.(A)P,+r,(A)P,

where P, and P, are the projections onto the even (symmetric) and odd functions, respectively,
and

re(x) := —tanh(rx) — i[cosh(x)] ", r, =T,

Clearly, r, and r, belong to C(@).

4.1. One-dimensional point interactions

Here we consider two families of point interactions, the so-called §-interactions at 0 and the
8’-interactions at 0. They can be described by boundary conditions at O for solutions of the
free Schrodinger equation on R\ {0}.

A §-interaction at 0 can formally be interpreted as arising from a potential V = «d
(6-function at 0). The solutions of the Schrodinger equation for a §-interaction of strength
a € R U {oo} at energy A are continuous functions W satisfying —W” = AW on R\{0} and
the boundary condition W' (0,) — W'(0_) = aW(0) (this is to be interpreted as W(0) = O if
o = 00). In particular « = 0 corresponds to the free Laplacian and & = oo to the Laplacian on
R\ {0} with Dirichlet boundary conditions at the origin. There is a single bound state if « < 0

and no bound state if @ € [0, oo]. The scattering operator is given by S = s*(Hy) P, + P, with
s(0) = 2Lie.
24/ Ao
The solutions of the Schrodinger equation for a §’-interaction of scattering length
B!, B € RU {oo} at energy A are functions W with continuous first derivative satisfying
—W” = AW on R\{0} and the boundary condition ¥ (0,) — ¥ (0_) = Y/ (0) (V'(0) = 0 if
B = 00). Now B8 = 0 corresponds to the free Laplacian and 8 = oo to the Laplacian on R\ {0}
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with Neumann boundary conditions at the origin. There is a single bound state if 8 < 0 but no

bound state if 8 € [0, oo]. The scattering operatoris S = P, +sP (Hy) P, with s (1) = 22:’2‘\%

In all cases the wave operator has the form [9]:
Q=1+i1-R(S—1)

so that in particular it belongs to £. We point out that R is universal as it does not depend
on the choice of point interaction, only the S-term depends on it. We shall see later that a
similar form holds for the wave operator in the case of potential scattering. The contributions
to the winding number corresponding to I'; and I'; depend on the different behaviour of the
matrix S(A) at L = 0 or A = +oo. For example if §(0) = 1, then I'y = 1. More interesting
phenomena arise if P,S(0) # P, or P,S(0) # P,, as exhibited in the following situations.
Since 2 commutes with P, and P, we obtain a Levinson’s theorem for each sector
separately. But for é-interactions QP, = P, and hence the odd sector theorem is trivial.
Likewise the even sector theorem is trivial for a §’-interaction. We present the non-trivial results

in the two tables below with the notations €2,/ = 2 Py/e, F;/ “:=T;P,.and w;/ ¢ = w(F;/ ‘).
d-interaction | I'f | 'S | ' | ' | wi | wi | wi | wy | w(g(2,))
a<0 re | [ 1] 1 ]-=2]-3[0]0 -1
a=0 1 1 1|1 0| 0] O 0
a>0 rels* 11|32 ]o0o]o0 0
a =00 re|-1]lr]1|=3]0]3]0 0
&-interaction | I'{ | T'9 | T | T'g | w) | wd | w§ | w] | w(g(,))
B <0 1L [sP 1 JO[—3]-2]0 —1
B=0 1 1 1 1 0] 0 0 0
B >0 1 [ sP [T JO] 2 [-2T]0 0
B =o0 | -1[rn ][ 1 ]3] 0][=3]0 0

We thus see that both w; and w3 contribute to the correction term v in (2).

4.2. One-dimensional potential scattering

In this section, we consider H = —A + V with a sufficiently regular potential V given by a
multiplication operator. The wave operator 2 can be expressed with the help of the solutions
W, of the Lippmann—Schwinger equation for all wave vectors k € R:

[Q2g](x) = Wi (x)g (k) dk,

7
2m Jr
with g as above. They have asymptotic behaviour

W) R e I £ (2 o ), 5)
where f is the scattering amplitude, x = rwy, k = |k|w; with w,, w; € {—1, 1}. Consider the
integral operator

[Qgl(x) = WK £ (2, o, wy) @ (k) dk

1
5l
1Y FE o w08 k) | di

wp==1

1 / ik
= — e
V2 JR,
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e* (S — DEl(kw,) di

1

B V2 JR,
1

= [5(1 - R)(S — l)g} (x).

Then, it follows that
Q=1+11-R(S—-D+K

with [Kg](x) = i fR p(k, x)g(k)dk where p(k, x) is the difference between the lhs and
the rhs in (5). In particular €2 belongs to £ provided that the map A — S(X) is continuous and
has limits at 0 and +o0o, and K is a compact operator. Both conditions require assumptions
on the potential, which go beyond the ones implicitly assumed for the validity of the above
approach. Without aiming at the most general case here, we can say that p is square integrable
and hence K compact provided |V (x)| < C(1 + |)c|)‘%_E for some € > 0 and C > 0. This
condition is sufficient to conclude that €2 belongs to £.

We finally explain how the correction term v of (2) arises in our approach. For this

purpose we use a basis for M,(C) in which R = (’0 ro) It corresponds to the decomposition

of L%(R) into even and odd sectors. The form of S(0) falls into two cases, characterized by
the value of det(S(0)). One finds accordingly [1]

(-1 0 1 2y 1 —y?
S(O)_(o 1) o m<y2—l 2y ©

with y € R\{0}. The first case occurs if H does not admit a resonance at energy zero, it is
referred to as the generic case (g.c.). The second, so-called exceptional case (e.c.), occurs when
such a zero energy resonance exists. The contribution to the winding number coming from
I'; can be determined: w(I';) = —% in the generic case, and w(I'}) = 0 in the exceptional
one. Thus, taking into account that I'; = I'y = 1 (the former because S(co) = 1) one obtains
from (3)

1
L[ s S O] da = {N T2 & 7)
2w Jg, N, e.c.

where N = Tr(P,) is the number of bound states of H. In particular, the correction term v
corresponds to w;. This result is in accordance with the literature [4, 5, 8, 13].

If the potential is symmetric, a Levinson’s theorem holds for each sector. In that situation,
the exceptional case y = 1 in (6) corresponds to an even zero energy resonance, and y = —1
corresponds to an odd zero energy resonance. The results for the even and odd sectors are
summarized in the following two tables.

Evensector | I'{ | I'S | S.(0) | w{ w; w(g($2.))
g.c. re | S| -1 [—3]-WNe—1% —N,
e.c. 1| S, 1 —N, —N,

Odd sector | I'Y | T'9 | S,(0) | wy wy w(q(£2,)
g.c. 1 S, 1 0 —N, —N,

e.c. o | S| -1 [ T 1-Wo+H [ -N,

Summing up the results of both sectors one obtains (7) as there is never an even and an odd
zero energy resonance at the same time.
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5. Conclusion

Levinson’s theorem is an index theorem. We have elaborated the general framework supporting
this statement, and corroborated it with one-dimensional scattering systems with point
interaction or rapidly vanishing potentials. Our formulation reveals its topological nature
and explains the corrections in a coherent and natural way. The proof is based on a new
formula for the wave operator involving up to a compact operator the scattering operator and a
universal function of the dilation operator. This formula is of independent interest and might
be of use in other contexts as well.
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