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Abstract
In this paper, Levinson’s theorems for Schrödinger operators in R

n with one-
point interaction at 0 are derived using the concept of winding numbers. These
results are based on new expressions for the associated wave operators.
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1. Introduction

In [5] we proposed to look afresh at Levinson’s theorem by viewing it as an identity between
topological invariants, one associated with the bound state system, the other associated with
the scattering system. Here, we present the complete analysis for a class of solvable models in
quantum mechanics which goes under the name of one-point interaction at the origin (δ and δ′

interactions). For these models, we find novel expressions for the wave operators which allow
us to prove our topological version of Levinson’s theorem and to exhibit our ideas without
recourse to techniques from algebraic topology.

What we prove is the following: let H be a Schrödinger operator describing a δ-interaction
at 0 in R

n for n ∈ {1, 2, 3} or a δ′-interaction at 0 in R
1 as discussed very carefully in

[1, chapter I]. The wave operator �− for the couple (H,−�) can be rewritten in the form

�− − 1 = ϕ(A)η(−�)P

where A is the generator of dilation in R
n, P is an appropriate projection and ϕ, η

are continuous functions which have limits at the infinity points of the spectra σ(A)

and σ(−�), respectively, i.e. limt→±∞ ϕ(t) and limt→0,+∞ η(t) exist. This allows us
to define a continuous function � : B → C

∗, from the boundary B of the square
(σ (−�) ∪ {0, +∞}) × (σ (A) ∪ {−∞, +∞}) by setting

�(ε, a) = ϕ(a)η(ε) + 1, (ε, a) ∈ B.
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Since B is homeomorphic to a circle, � has a winding number w(�) which is defined as the
number of times �(t) wraps (left) around 0 ∈ C when t goes around B. This requires a choice
of orientation for B which we fix as follows: B consists of four sides of the square one of
which is B2 = (σ (−�)∪{0, +∞})×{+∞} ∼= [0, +∞]; we choose on B the orientation which
corresponds on B2 to the natural order on [0, +∞]. Our main result states a relation between
this number and the number of bound states of H which is #σp(H).

Theorem 1 (Levinson’s theorem for δ and δ′ interaction). Let H be a Schrödinger operator
defined by a δ-interaction at 0 in R

n with n ∈ {1, 2, 3} or by a δ′-interaction at 0 in R
1. Then,

with the notation from above

w(�) = −#σp(H).

We prove this result in the next section by explicit verification. It is in fact a special case of
an index theorem [2, 6].

Let us provide a few words of explanation for w(�). Assuming differentiability it can be
calculated by the integral

w(�) = 1

2π i

∫
B

�−1 d�.

To interpret this expression it is convenient to consider the four sides B1 = {0} × (σ (A) ∪
{−∞, +∞}), B2 = (σ (−�) ∪ {0, +∞}) × {+∞}, B3 = {+∞} × (σ (A) ∪ {−∞, +∞}),
B4 = (σ (−�) ∪ {0, +∞}) × {−∞} of the square. Then,

w(�) =
4∑

i=1

wi, wi = 1

2π i

∫
Bi

�−1
i d�i

where �i is the restriction of � to Bi . It can be observed for all the following examples that
�2(−�)P + P ⊥ is equal to the scattering operator S and that �4(−�) = 1. This behaviour is
not a coincidence but must hold in general [6]. In other words, w(�) contains as contribution
the term

w2 = 1

2π i

∫ +∞

0
tr[S∗(ε)S ′(ε)] dε,

where tr is the usual trace on the compact operators of L2(Sn−1). Now w2 is the integral over
the time delay one usually finds in Levinson’s theorem. In dimension n = 2 one even has
�i(−�) = 1 for all i 	= 2 and so there is no other contribution to w(�). But for most of
the other examples, the low and the high energy behaviour of the wave operator is non-trivial
leading to contributions of �1 and �3 to the winding number.

Expressions relating w2 to the number of bound states for one-point interactions can be
found in the physics literature, see e.g. [3], usually providing different arguments for the
occurrences of corrections. Here, these corrections appear as the missing parts (w1 and w3)
of a winding number calculation. This not only gives a full and coherent explanation of these
corrections but also makes clear that Levinson’s theorem is of topological nature. In a future
publication [6], we shall show that a similar picture holds for general two-body Schrödinger
operators and that the corrections added in such context can also be fully explained.

The proof the theorem as well as more explanations on the underlying constructions
are given in the following sections. New formulae for the wave operators are introduced
successively for the δ-interaction in R

n for n = 3, 2 and 1, and then for the δ′-interaction in
R

1.
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2. Schrödinger operators with point interaction

A so-called Schrödinger operator with a δ- or a δ′-interaction at the origin can be defined as a
self-adjoint extension of the restriction of the Laplace operator to a suitable subset of L2(Rn).
These operators are discussed in great detail in [1, chapter I].

Common to all the self-adjoint extensions H we look at here is that

σess(H) = σac(H) = [0,∞), σsc(H) = ∅.

The point spectrum of H, however, depends on both the extension and the dimension. The
main feature of these models is that the wave operators defined by

�± := s − lim
t→±∞ eitH e−it (−�)

can be explicitly computed. We recall their explicit form, which depends on the extension and
the dimension, further down. A common property shared by these wave operators is that they
act non-trivially only on a small subspace of L2(Rn). Denoting by P the orthogonal projection
onto that subspace we have the possibility that P = P0, the orthogonal projection onto the
rotation invariant subspace of L2(Rn) or, for n = 1, P = P1, the orthogonal projection P1

onto the antisymmetric functions of L2(R). Recall that the ranges of P0 or P1 are invariant
under the usual Fourier transform in L2(Rn).

The dilation group in R
n and its generator A play an important role. We recall that its

action on ψ ∈ L2(Rn) is given by (U(θ)ψ)(x) = enθ/2ψ(eθx) for all x ∈ R
n and θ ∈ R,

and that its self-adjoint generator A has the form 1
2i (Q · ∇ + ∇ · Q) on C∞

0 (Rn). The group
leaves the range of P0 and P1 invariant. We refer to [4] for more information about this group
and for a detailed description of the Mellin transform which is a unitary transformation
diagonalizing A.

2.1. The dimension n = 3

The operator −� defined on C∞
0 (R3\{0}) has deficiency indices (1, 1) so that all its self-adjoint

extensions Hα can be parametrized by an index α belonging to R ∪ {∞}. This parameter
determines a certain boundary condition at 0 but −4πα also has a physical interpretation as
the inverse of the scattering length. The choice α = ∞ corresponds to the free Laplacian
−�. Hα has a single bound state for α < 0 at energy −(4πα)2 but no point spectrum for
α ∈ [0,∞]. Furthermore, the action of the wave operator �α

− for the couple (Hα,−�) on any
ψ ∈ L2(R3) is given by

[(�α
− − 1)ψ](x) = s − lim

R→∞
(2π)−3/2

∫
k�R

k2 dk

∫
S

2
dω

eik|x|

(4πα − ik)|x| ψ̂(kω),

where ψ̂ is the three-dimensional Fourier transform of ψ .
Now, one first easily observes that �α

− − 1 acts trivially on the orthocomplement of the
range of P0. One may also note that it can be rewritten as a product of three operators, i.e.,
�α

− − 1 = T2T1P0 with

T1 = 2i
√−�

4πα − i
√−�

and

[T2ψ](x) = s − lim
R→∞

(2π)−1/2
∫

k�R

k2 dk
eik|x|

ik|x| ψ̂(k).
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Finally, let us observe that T1 + 1 is simply equal to the scattering operator Sα := (�α
+)∗�α

−
and that T2 is invariant under the action of the dilation group: U(θ)T2U(−θ) = T2. Thus, T2

can be diagonalized in the spectral representation of A. A direct calculation using the Mellin
transform from [4] leads to the following result:

�α
− − 1 =

[
1

2
(1 + tanh(πA) − i(cosh(πA))−1)

] {
2i

√−�

4πα − i
√−�

}
P0.

So let us set

r(ξ) = − tanh(πξ) + i(cosh(πξ))−1.

and

sα(ξ) = 4πα + i
√

ξ

4πα − i
√

ξ
.

As a consequence of the expression for �α
− − 1, the functions �i and their contributions to the

winding number are given by

�1 �2 �3 �4 w1 w2 w3 w4 w(�)

α < 0 1 sα r 1 0 − 1
2 − 1

2 0 −1
α = 0 r −1 r 1 1

2 0 − 1
2 0 0

α > 0 1 sα r 1 0 1
2 − 1

2 0 0
α = ∞ 1 1 1 1 0 0 0 0 0

and we see that w(�) corresponds to minus the number of bound states of Hα .

2.2. The dimension n = 2

The situation for n = 2 parallels that of n = 3 in that the operator −� defined on C∞
0 (R2\{0})

has deficiency indices (1, 1) and that all its self-adjoint extensions Hα can be parametrized
by an index α belonging to R ∪ {∞}. Again α determines a certain boundary condition at 0
and −2πα has a physical interpretation as the inverse of the scattering length. Also here the
choice α = ∞ corresponds to the free Laplacian −�. But in two dimensions Hα has a single
eigenvalue for all α ∈ R. The wave operator �α

− for the couple (Hα,−�) acts on ψ ∈ L2(R2)

as

[(�α
− − 1)ψ](x)= s − lim

R→∞
(2π)−1

∫
k�R

k dk

∫
S

1
dω

iπ/2

2πα − �(1) + ln(k/2i)
H

(1)
0 (k|x|)ψ̂(kω),

where ψ̂ is the two-dimensional Fourier transform of ψ , H
(1)
0 denotes the Hankel function of

the first kind and order zero and � is the digamma function. A similar calculation as above
yields that this wave operator can be rewritten as

�α
− − 1 =

[
1

2
(1 + tanh(πA/2))

] {
iπ

2πα − �(1) + ln(
√−�/2) − i π

2

}
P0.

Thus, we get the following results for the functions �i and their contribution to the winding
number. Let us set

r(ξ) = − tanh(πξ/2)

and

sα(ξ) = 2πα − �(1) + ln(
√

ξ/2) + iπ/2

2πα − �(1) + ln(
√

ξ/2) − iπ/2
.
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Then,

�1 �2 �3 �4 w1 w2 w3 w4 w(�)

α ∈ R 1 sα 1 1 0 −1 0 0 −1
α = ∞ 1 1 1 1 0 0 0 0 0

and we see that w(�) corresponds to minus the number of bound states of Hα .

2.3. The dimension n = 1 with δ-interaction

The classification of self-adjoint extensions defining point interactions is more complicated
in one dimension. Also here one starts with the Laplacian restricted to a subset of
functions which vanish at 0 but there are more possibilities. We refer the reader to [1]
for the details, considering in this section the family of extensions Hα called δ-interactions.
Here, the parameter α ∈ R ∪ {∞} of the extension describes the boundary condition
ψ ′(0+) − ψ ′(0−) = αψ(0) which can be formally interpreted as arising from a potential
V = αδ where δ is the Dirac δ-function at 0. The extension for α = 0 is the free Laplace
operator and the extension α = ∞ the Laplacian (or rather the direct sum of two Laplacians)
with Dirichlet boundary conditions at 0. The extensions Hα have a single eigenvalue if α < 0
and do not have any eigenvalue if α ∈ [0,∞] . Furthermore, the wave operator �α

− for the
couple (Hα,−�) acts on ψ ∈ L2(R) as

[(�α
− − 1)ψ](x) = s − lim

R→∞
(2π)−1/2

∫
k�R

dk

∫
S

0
dω

−iα

2k + iα
eik|x|ψ̂(kω),

where ψ̂ denotes the one-dimensional Fourier transform of ψ . By rewriting this operator in
terms of −� and A one obtains

�α
− − 1 =

[
1

2
(1 + tanh(πA) + i(cosh(πA))−1)

] { −2iα

2
√−� + iα

}
P0.

Thus, we get the following results for the functions �i and their contribution to the winding
number. Let us set

r(ξ) = −tanh(πξ) − i(cosh(πξ))−1

and

sα(ξ) = 2
√

ξ − iα

2
√

ξ + iα
.

Then,

�1 �2 �3 �4 w1 w2 w3 w4 w(�)

α < 0 r sα 1 1 − 1
2 − 1

2 0 0 −1
α = 0 1 1 1 1 0 0 0 0 0
α > 0 r sα 1 1 − 1

2
1
2 0 0 0

α = ∞ r −1 r 1 − 1
2 0 1

2 0 0

and we see that w(�) corresponds to minus the number of bound states of Hα .
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2.4. The dimension n = 1 with δ′-interaction

Let us finally consider the family of extensions called δ′-interaction. As in [1] we use
β ∈ R ∪ {∞} for the parameter of the self-adjoint extension which describes the boundary
condition ψ(0+) − ψ(0−) = βψ ′(0). This can be formally interpreted as arising from a
potential V = βδ′. The extension for β = 0 is the free Laplace operator and the extension
β = ∞ the Laplacian (or rather the direct sum of two Laplacians) with Neumann boundary
conditions at 0. The operator Hβ possesses a single eigenvalue if β < 0 of value −4β−2 but
no eigenvalue if β ∈ [0,∞]. The wave operator �

β
− for the couple (Hβ,−�) acts on any

ψ ∈ L2(R) as

[(�β
− − 1)ψ](x) = s − lim

R→∞
(2π)−1/2

∫
k�R

dk

∫
S

0
dω

iβkω

2 − iβk
ϑ(x, k)ψ̂(kω),

where ψ̂ denotes the one-dimensional Fourier transform of ψ and with ϑ(x, k) = eikx for
x > 0 and ϑ(x, k) = −e−ikx for x < 0.

It is easily observed that the action of �
β
− − 1 on any symmetric (i.e., even) function is

trivial. Moreover, this operator can be rewritten as

�
β
− − 1 =

[
1

2
(1 + tanh(πA) − i(cosh(πA))−1)

] {
2iβ

√−�

2 − iβ
√−�

}
P1.

We get the following results for the functions �i and their contribution to the winding number.
Let us set

r(ξ) = − tanh(πξ) + i(cosh(πξ))−1

and

sβ(ξ) = 2 + iβ
√

ξ

2 − iβ
√

ξ
.

Then,

�1 �2 �3 �4 w1 w2 w3 w4 w(�)

β < 0 1 sβ r 1 0 − 1
2 − 1

2 0 −1
β = 0 1 1 1 1 0 0 0 0 0
β > 0 1 sβ r 1 0 1

2 − 1
2 0 0

β = ∞ r −1 r 1 1
2 0 − 1

2 0 0

which verifies again the statement of the theorem.

Remark 1. It can be observed that the functions ϕ and η for the operators �α
− − 1 are always

given by 1
2 (1 − r) and sα − 1, respectively. A straightforward calculation shows that the

operators �+ − 1 can also be rewritten in the form ϕ(A)η(−�)P with ϕ = 1
2 (1 + r) and

η = sα − 1.
The explicit formulae obtained for the wave operator allow us to observe a symmetry

among the models in one and three dimensions. We see exactly the same formulae for ϕ and
η in the case of the δ-interaction in n = 3 and the δ′-interaction in n = 1, provided we set
2πα = β−1. From the C∗-algebraic point of view the fact that ϕ and η are the same means that
the wave operators for the models are just two different representations of the same element
of an abstract C∗-algebra.
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