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Abstract. We prove new formulae for the wave operators for a Friedrichs
scattering system with a rank one perturbation, and we derive a topo-
logical version of Levinson’s theorem for this model.
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1. Introduction and main results

Let us consider the Hilbert space H := L2(R) with norm ‖ · ‖ and scalar
product 〈·, ·〉, and let H0 ≡ X be the self-adjoint operator of multiplication
by the variable, i.e. (H0f)(x) = xf(x) for any f ∈ D(H0) ≡ L2

(
R, (1+x2)dx

)
.

For u ∈ H, we also consider the rank one perturbation of H0 defined by

Huf := H0f + 〈u, f〉u, f ∈ D(H0).

It is well known that the wave operators Ω± := s- limt→±∞ eiHut e−iH0t ex-
ist and are asymptotically complete, and that the scattering operator S :=
Ω∗+Ω− is a unitary operator in H. In fact, S ≡ S(X) is simply an operator of
multiplication by a function S : R → T, with T the set of complex numbers
of modulus 1.

A rather explicit formula for the wave operators for this model was
proposed in [8]. Its expression involves singular integrals that have to be
manipulated with some care. In this Note, we propose a simpler formula for
the wave operators, and put into light a straightforward consequence of it.
However, we stress that contrary to [8], our formula and its corollary hold
only if some additional (but weak) hypotheses on u are imposed.

To state our results, and in particular to have an explicit formula of the
Hilbert transform in terms of the generator of dilations (see Equation (2.3)
below), we need to introduce the even / odd representation of H. Given any
function m on R, we write me and mo for the even part and the odd part of
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m. We also set H := L2(R+; C2) and introduce the unitary map U : H → H

given on any f ∈ H,
( f1

f2

) ∈ H , x ∈ R by

U f :=
√

2
(

fe

fo

)
and

[
U ∗

(
f1

f2

)]
(x) :=

1√
2

[f1(|x|) + sgn(x)f2(|x|)] .

Now, observe that if m is a function on R and A the generator of dilations
in H, then we have

U m(X)U ∗ =
(

me(X+) mo(X+)
mo(X+) me(X+)

)
and U AU ∗ =

(
A+ 0
0 A+

)
,

where X+ is the operator of multiplication by the variable in L2(R+), and
A+ the generator of dilations in L2(R+), namely (eitA+ f)(x) := et/2 f(et x)
for f ∈ L2(R+), x ∈ R+.

In the sequel we assume that the vector u satisfies the following assump-
tion.

Assumption 1.1. The function u ∈ H is Hölder continuous with exponent
α > 0. Furthermore, if x0 ∈ R satisfies u(x0) = 0 and 1 − ∫

R
dy |u(y)|2(x0 −

y)−1 = 0, then there exists an exponent α′ > 1/2 such that

|u(x) − u(y)| ≤ Const. |x − y|α′

for all x, y near x0.

This assumption implies that u is bounded and satisfies lim|x|→∞ u(x) =
0. Moreover, it is known that under Assumption 1.1, the operator Hu has at
most a finite number of eigenvalues of multiplicity one [1, Sec. 2] (see also
[6, 11]). Clearly, Assumption 1.1 is satisfied if u ∈ H is Hölder continuous
with exponent α > 1/2.

Our main result is the following representation of the wave operator Ω−
in H .

Theorem 1.2. Let u satisfy Assumption 1.1. Then, one has

U Ω−U ∗ =
(

1 0
0 1

)
+ 1

2

(
1 −φ(A+)

−φ(A+) 1

)

×
(

Se(X+) − 1 So(X+)
So(X+) Se(X+) − 1

)
+ K,

(1.1)

where φ(A+) := tanh(πA+) + i[cosh(πA+)]−1 and K is a compact operator
in H .

Let us immediately mention that a similar formula holds for Ω+. Indeed,
by using Ω+ = Ω−S(X) one gets

U Ω+U ∗ =
(

1 0
0 1

)
+ 1

2

(
1 φ(A+)

φ(A+) 1

)

×
(

Se(X+) − 1 So(X+)
So(X+) Se(X+) − 1

)
+ K ′,
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where K ′ is a compact operator in H . We also note that the proof of Theorem
1.2 will make clear why the minimal hypothesis u ∈ H is not sufficient in order
to prove the claim.

We now state a corollary of the above theorem which corresponds to a
topological version of Levinson’s Theorem:

Corollary 1.3. Let u satisfy Assumption 1.1. Then S(±∞) = 1 and the fol-
lowing equality holds:

ω(S) = − number of eigenvalues of Hu,

where ω(S) is the winding number of the continuous map S : R → T.

Such a result was already known for more general perturbations but un-
der stronger regularity conditions [2, 4] (see also [6, 14] for general information
on the Friedrichs model). Our result does require neither the differentiability
of the scattering matrix nor the differentiability of u. Nonetheless, if S is
continuously differentiable, then the winding number can also be expressed
in terms of an integral involving the (on-shell) time delay operator, which is
the logarithmic derivative of the scattering matrix [13].

Remark 1.4. The authors emphasize that Corollary 1.3 is a straightforward
consequence of formula (1.1), even if its proof requires the algebraic frame-
work presented in Section 3. They do not doubt that for smooth u this result
can also be obtained via more analytical technics, but one of their motiva-
tions was to show that Levinson’s Theorem can directly be inferred from
the explicit formula (1.1), without any further analysis (see [10] and refer-
ences therein for similar proofs of Levinson’s Theorem for other scattering
systems).

The content of this Note is the following. In Section 2 we prove Formula
(1.1) and derive some auxiliary results. In Section 3 we give a description of
the algebraic framework involved in the proof of the Corollary 1.3, which is
proved at the end of the section.

2. Derivation of the new formula

We start by recalling some notations and results borrowed from [1] and [8].
We shall always suppose that u satisfies Assumption 1.1.

For x ∈ R and ε > 0 we set

Iε
±(x) :=

∫
R

dy
|u(y)|2

x − y ± iε
.

By Privalov’s theorems, the limit I±(x) := limε↘0 Iε
±(x) exists for all x ∈

R. Furthermore, the set of x such that I±(x) = 1 is finite [1, p. 396]. In
consequence the expression [1 − I±(x)]−1 is well defined for almost every
x ∈ R, and the domain D± of [1 − I±(X)]−1 in H is dense.
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Let F denote the Fourier transform in H, namely

(Ff)(x) :=
1√
2π

∫
R

dy e−ixy f(y), f ∈ H ∩ L1(R).

Given a Borel function m on R, we set m(D) := F ∗m(X)F . Finally, χ(−∞,0)

stands for the characteristic function for the half-line (−∞, 0).
We are now in a position to recall the formula [8, eq. (56b)] for Ω−. One

has
Ω− = 1 − 2πiu(X)χ(−∞,0)(D)u(X)[1 − I+(X)]−1

on D+ (note that we use a convention for the sign ± of the wave operators Ω±
which differs from the one of [8]). So, if K := −2πi[u(X), χ(−∞,0)(D)]u(X)[1−
I+(X)]−1, then one gets on D+

Ω− − 1 = −2πiu(X)χ(−∞,0)(D)u(X)[1 − I+(X)]−1

= χ(−∞,0)(D)
{− 2πi|u(X)|2[1 − I+(X)]−1

}
+ K

= χ(−∞,0)(D){S(X) − 1} + K, (2.1)

by using [8, Eq. (66b)] in the last equality.
In the next lemma, we determine the action of χ(−∞,0)(D) in H .

For that purpose, we define φ ∈ C([−∞,∞]; T) by φ(x) := tanh(πx) +
i[cosh(πx)]−1 for all x ∈ R.

Lemma 2.1. One has U χ(−∞,0)(D)U ∗ = Φ(A+), where

Φ(A+) := 1
2

(
1 −φ(A+)

−φ(A+) 1

)
.

Proof. The usual Hilbert transform H on R satisfies sgn(D) = iH. Thus

χ(−∞,0)(D) = 1
2

(
1 − sgn(D)

)
= 1

2 (1 − iH). (2.2)

Using the expression for iH in terms of the generator of dilations in H given
in [10, Lemma 3], one gets

U iHU ∗

=
(

0 tanh(πA+) − i[cosh(πA+)]−1

tanh(πA+) + i[cosh(πA+)]−1 0

)
.

(2.3)

The claim follows then from (2.2) and (2.3). �

We now recall some results on the scattering matrix.

Lemma 2.2. Let u satisfy Assumption 1.1. Then the map S belongs to
C([−∞,∞]; T) and satisfies S(±∞) = 1.

Proof. The continuity of S follows from [1, Thm. 1.(i)]. The equalities
S(±∞) = 1 follow from the formula S(x) − 1 = −2πi|u(x)|2[1 − I+(x)]−1

together with Lemma 1.(a) of [1] and the fact that lim|x|→∞ |u(x)|2 = 0. �

The last lemma deals with the remainder term K of Formula (1.1).
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Lemma 2.3. Let u satisfy Assumption 1.1. Then the operator

[u(X), χ(−∞,0)(D)]u(X)[1 − I+(X)]−1,

defined on D+, extends to a compact operator in H.

Proof. (i) Define for all x ∈ R the function ψ(x) := u(x)[1 − I+(x)]−1. We
know that u is bounded and that lim|x|→∞ u(x) = 0. We also know from [1,
Lemma 1.(a)] that I+ is Hölder continuous and that lim|x|→∞ I+(x) = 0. So,
outside any neighbourhood of the finite set of points where I+ equals 1, the
function ψ is bounded. Furthermore, Assumption 1.1 and [1, Lemma 1.(c)],
imply that ψ is locally square integrable (see also [8, p. 2423]). Therefore,
ψ can be written as ψ = ψ∞ + ψ2, with ψ∞ ∈ L∞(R) and ψ2 ∈ L2(R) with
support in a small neighbourhood of the points where I+ equals 1.

We now show the compacity of the operator [u(X), χ(−∞,0)(D)]ψ∞(X)
and of the operator [u(X), χ(−∞,0)(D)]ψ2(X).

(ii) Choose a function ϕ1 ∈ C∞(R) and a function ϕ2 ∈ L∞(R) with
compact support such that ϕ1 + ϕ2 = χ(−∞,0). Then [u(X), ϕ1(D)] is com-
pact due to [3, Thm. C], and [u(X), ϕ2(D)] is Hilbert-Schmidt due to [12,
Thm. 4.1]. So

[u(X), χ(−∞,0)(D)]ψ∞(X) = [u(X), ϕ1(D)]ψ∞(X) + [u(X), ϕ2(D)]ψ∞(X)

is a compact operator.
(iii) For each f ∈ H and almost every x ∈ R, define the operator

(K0f)(x) :=
i

2π

∫
R

dy
u(x) − u(y)

y − x
ψ2(y)f(y).

From the Assumption 1.1 we know that

|u(y + x) − u(y)| ≤ Const. |x|α′
, α′ > 1/2

for each y ∈ supp(ψ2) and each x ∈ R with |x| small enough. In particular,
there exists δ > 0 such that

4π2

∫
R2

dxdy

∣∣∣∣ i

2π

u(x) − u(y)
y − x

ψ2(y)
∣∣∣∣
2

=
∫

R

dy

∫
R

dx
|u(y + x) − u(y)|2

x2
|ψ2(y)|2

=
∫

R

dy

∫
R\[−δ,δ]

dx
|u(y + x) − u(y)|2

x2
|ψ2(y)|2

+
∫

R

dy

∫ δ

−δ

dx
|u(y + x) − u(y)|2

x2
|ψ2(y)|2

≤
∫

R

dy

∫
R\[−δ,δ]

dx
4‖u‖2

∞
x2

|ψ2(y)|2 + Const.
∫

R

dy

∫ δ

−δ

dx |x|2(α′−1) |ψ2(y)|2

< ∞.
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Thus, K0 is a Hilbert-Schmidt operator. Furthermore, we have for f ∈ D+

and almost every x ∈ R{
[u(X), χ(−∞,0)(D)]ψ2(X)f

}
(x) = − i

2
{
[u(X),H]ψ2(X)f

}
(x)

= − i

2π

∫
R

dy
u(x) − u(y)

x − y
ψ2(y)f(y)

= (K0f)(x).

Therefore, the operator [u(X), χ(−∞,0)(D)]ψ2(X) extends to a Hilbert-
Schmidt operator. �

Proof of Theorem 1.2. The operator K extends to a compact operator due
to Lemma 2.3. So Equation (2.1) holds on H, and the claim follows from
Lemma 2.1. �

Remark 2.4. The proof of Corollary 1.3 relies on the fact that the range of
the wave operators is the orthocomplement of the subspace spanned by the
eigenvectors of Hu. Since the wave operators are complete, such a property
holds if and only if Hu has no singularly continuous spectrum. Now, by
using the characterization of the singular spectrum recalled in [5, p. 299]
and by taking into account Lemmas 1 and 2 of [1] (which are valid since
u satisfies Assumption 1.1), one easily gets that the singular spectrum of
Hu only consists of a finite set. So Assumption 1.1 implies the absence of
singularly continuous spectrum for Hu.

3. Algebraic framework

This section is dedicated to the presentation of the algebraic framework lead-
ing to Corollary 1.3. Since a similar construction already appears in [10] for
the proof of Levinson’s theorem in one dimensional potential scattering, we
only sketch the construction and refer to this reference for more details.

We start by giving the definition of the Mellin transform associated
with the generator of dilations A+ in L2(R+) (see [9, Sec. 2] for a general
presentation when the operator acts in L2(Rn)). Let V : L2(R+) → L2(R)
be defined by (V f)(x) := ex/2 f(ex) for x ∈ R, and remark that V is a
unitary map with adjoint V ∗ given by (V ∗g)(x) = x−1/2g(lnx) for x ∈ R+.
Then, the Mellin transform M : L2(R+) → L2(R) is defined by M := FV .
Its main property is that it diagonalizes the generator of dilations, namely,
MA+M ∗ = X. Formally, one also has M ln(X+)M ∗ = −D.

Let us now recall from Remark 2.4 that under the Assumption 1.1 the
wave operators Ω± are isometries with range projection 1 − Pp, where Pp is
the projection onto the subspace spanned by the finite number N of eigen-
vectors of Hu. In particular, Ω− is a Fredholm operator with index(Ω−) =
−Tr(Pp) = −N . Furthermore, we recall that any Fredholm operator F in H
is invertible modulo a compact operator, that is, its image q(F ) in the Calkin
algebra B(H)/K(H) is invertible.
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Now, assume that Ω− belongs to a norm-closed subalgebra E of B(H)
containing K(H). Moreover, assume that E/K(H) is isomorphic to
C
(
S;M2(C)

)
, the algebra of continuous functions over the circle with val-

ues in the 2 × 2 matrices. Then, viewing q(Ω−) as such a function, we can
take pointwise its determinant to obtain a non-vanishing function over the
circle. The winding number of that latter function can be related to the index
of Ω−; this is essentially the content of Corollary 1.3.

The choice of E is suggested by the formula obtained in Theorem 1.2.
Indeed, we consider the closure E in B(H ) of the algebra generated by ele-
ments of the form ϕ(A+)ψ(X+), where ϕ is a continuous function on R with
values in M2(C) which converges at ±∞, and ψ is a continuous function on
R+ with values in M2(C) which converges at 0 and at +∞. Stated differ-
ently, ϕ ∈ C

(
R;M2(C)

)
with R = [−∞,∞], and ψ ∈ C

(
R+;M2(C)

)
with

R+ = [0,∞]. Let J be the norm closed algebra generated by ϕ(A+)ψ(X+)
with functions ϕ and ψ for which the above limits vanish. Then, J is an ideal
in E , and the same algebras are obtained if ψ(X+) is replaced by η(ln(X+))
with η ∈ C

(
R;M2(C)

)
or η ∈ C0

(
R;M2(C)

)
, respectively.

These algebras have already been studied in [7] in a different context.
The authors constructed them in terms of the operators X and D on L2(R, E),
with E an auxiliary Hilbert space, possibly of infinite dimension. In that
situation, ϕ and η are norm continuous functions on R with values in K(E).
The isomorphism between our algebras and the algebras introduced in [7,
Sec. 3.5], with E = C

2, is given by the Mellin transform M , or more precisely
by M ⊗ 1, where 1 is identity operator in M2(C). For that reason, we shall
freely use the results obtained in that reference, and refer to it for the proofs.
For instance, it is proved that J = K(H ), and an explicit description of the
quotient E /J is given, which we specify now in our context.

To describe the quotient E /J , we consider the square � := R+ × R,
whose boundary ∂� is the union of four parts: ∂� ≡ B1 ∪B2 ∪B3 ∪B4, with
B1 := {0}×R, B2 := R+ ×{∞}, B3 := {∞}×R, and B4 := R+ ×{−∞}. It
is proved in [7, Thm. 3.20] that E /J is isomorphic to C

(
∂�;M2(C)

)
. This

algebra can be seen as the subalgebra of

C
(
R;M2(C)

)⊕ C
(
R+;M2(C)

)⊕ C
(
R;M2(C)

)⊕ C
(
R+;M2(C)

)
(3.1)

given by elements γ ≡ (γ1, γ2, γ3, γ4) which coincide at the corresponding
end points, that is, γ1(∞) = γ2(0), γ2(∞) = γ3(∞), γ3(−∞) = γ4(∞),
and γ4(0) = γ1(−∞). Furthermore, for any ϕ ∈ C

(
R;M2(C)

)
and ψ ∈

C
(
R+;M2(C)

)
, the image of the operator ϕ(A+)ψ(X+) through the quotient

map
q : E → C

(
∂�;M2(C)

)
is given by γ1 = ϕψ(0), γ2 = ϕ(∞)ψ, γ3 = ϕψ(∞)

and γ4 = ϕ(−∞)ψ.
From what precedes we deduce that the subalgebra E of B(H), defined

by E := U ∗E U , contains the ideal of compact operators on H and that
the quotient E/K(H) is isomorphic to C

(
∂�;M2(C)

) ∼= C
(
S;M2(C)

)
. We

are thus in the framework defined above, and the for any invertible element
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γ of C
(
∂�;M2(C)

)
, the winding number of its pointwise determinant is a

well-defined quantity. So we are ready to give the proof of Corollary 1.3.

Proof of Corollary 1.3. We know from Theorem 1.2 and Lemma 2.2 that
U Ω−U ∗ ∈ E , or equivalently that Ω− ∈ E . Due to Formula (1.1), the el-
ement γ belonging to (3.1) and associated with q(Ω−) is given by suitable
restrictions of the function Γ : R+ × R → M2(C), where

Γ(x, y) := 1 + Φ(y)
(

se(x) − 1 so(x)
so(x) se(x) − 1

)

= 1
2

(
se(x) − φ(y)so(x) + 1 so(x) − φ(y)[se(x) − 1]
so(x) − φ(y)[se(x) − 1] se(x) − φ(y)so(x) + 1

)
.

Namely, γ1 = Γ(0, · ), γ2 = Γ( · ,+∞), γ3 = Γ(+∞, · ), and γ4 = Γ( · ,−∞).
The pointwise determinants of these functions are easily calculated by using
the identity φ(±∞) = ±1: one gets det γ1(y) = se(0), det γ2(x) = s(−x),
det γ3(y) = 1 and det γ4(x) = s(x).

The precise relation between the winding number of the map det γ :
∂� → T and the index of Ω− has been described in [10, Prop. 7]. However, the
algebra corresponding to E in that reference was defined in terms of the oper-
ators A+ and B+ = 1

2 ln
(
(D2)+

)
which satisfy the relation [iA+, B+] = −1.

In our case, the algebra E has been constructed with the operators A+ and
ln(X+) which satisfy the relation [iA+, ln(X+)] = 1. Therefore, in order to
apply [10, Prop. 7] in our setting, one previously needs to apply the au-
tomorphism of C

(
R;M2(C)

)
defined by η̃(x) := η(−x) for all x ∈ R, or

equivalently the automorphism of C
(
R+;M2(C)

)
defined by ψ̃(x) := ψ(x−1)

for all x ∈ R+. Therefore the pointwise determinants of the function γ̃j asso-
ciated with q(Ω−) are det γ̃1(y) = 1, det γ̃2(x) = s(−x−1), det γ̃3(y) = se(0)
and det γ̃4(x) = s(x−1).

Now, [10, Prop. 7] reads ω(det γ̃) = index(Ω−) = −N , where N is
the number of eigenvalues of Hu. The convention used in that reference for
the calculation of the winding number implies that the contribution of x �→
det γ̃2(x) is from x = 0 to x = +∞ and the contribution of x �→ det γ̃4(x) is
from x = +∞ to x = 0. This corresponds to the calculation of the winding
number of x �→ det

(
S(x)

)
, from x = −∞ to x = +∞. Since the contributions

of det γ̃1 and det γ̃3 are null because these terms are constant, the claim is
proved. �
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