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1. Introduction

In quantum scattering theory, only a few results that are completely model-independent. The simplest one is certainly
that the strong limit s-limt→±∞K e−it H Pac(H) vanishes whenever H is a self-adjoint operator in a Hilbert space H, Pac(H)

the projection onto the subspace of absolute continuity of H and K a compact operator in H. Another famous result of
this type is RAGE Theorem which establishes propagation estimates for the states in the continuous subspace of H. At the
same level of abstraction, one could also mention the role of H-smooth operators B which lead to estimates of the form∫

R
dt ‖Be−it Hϕ‖2 < ∞ for ϕ ∈ H.
Our aim in this paper is to add a new general result to this list. Originally, this result was presented as the existence of

global time delay defined in terms of sojourn times and its identity with Eisenbud–Wigner time delay [10,31]. This identity
was proved in different settings by various authors (see [2–5,8,11–14,16–18,23,24,27,29,30] and references therein), but
a general and abstract statement has never been proposed. Furthermore, it had not been realised until very recently that its
proof mainly relies on a general formula relating localisation operators to time operators [21]. Using this formula, we shall
prove here that the existence and the identity of the two time delays is in fact a common feature of quantum scattering
theory. On the way we shall need to consider a symmetrization procedure [3,6,11,15,17,26–29] which broadly extends the
applicability of the theory but which also has the drawback of reducing the physical interpretation of the result.

Quantum scattering theory is mainly a theory of comparison: One fundamental question is whether, given a self-adjoint
operator H in a Hilbert space H and a suitable state ψ ∈ H, one can provide a rather simple description of the t-dependent
state e−it Hψ of H as t → ±∞? For that purpose, a possible approach is to look for a triple (H0, H0, J ), with H0 a self-
adjoint operator in an auxiliary Hilbert space H0 and J a bounded operator from H0 to H, such that the following strong
limits exist

W± := s-limt→±∞eit H J e−it H0 Pac(H0).
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In that case, for any ψ in the range of W± there exist ϕ± ∈ Pac(H0)H0 such that the difference e−it Hψ − J e−it H0ϕ± tends
to zero in norm as t → ±∞. If the operator H0 is simpler than H (in a sense which highly depends on the context), then
the wave operators W± provide, as expected, a simpler asymptotic description of the states e−it Hψ . Furthermore, if the
ranges of both operators W± are equal to Pac(H)H, then the study of the scattering operator S := W ∗+W− leads to further
results on the scattering process. We recall that since S commutes with H0, S decomposes into a family {S(λ)}λ∈σ(H0) in
the spectral representation

∫ ⊕
σ(H0)

dλ H(λ) of H0, with S(λ) a unitary operator in H(λ) for almost every λ in the spectrum
σ(H0) of H0.

An important additional ingredient when dealing with time delay is a family of position-type operators which permits to
define sojourn times, namely, a family of mutually commuting self-adjoint operators Φ ≡ (Φ1, . . . ,Φd) in H0 satisfying two
appropriate commutation assumptions with respect to H0. Roughly speaking, the first one requires that for some z ∈ C \ R

the map

R
d 	 x 
→ e−ix·Φ(H0 − z)−1eix·Φ ∈ B(H0)

is three times strongly differentiable. The second one requires that all the operators e−ix·Φ H0eix·Φ , x ∈ R
d , mutually com-

mute. Let also f be any non-negative Schwartz function on R
d with f = 1 in a neighbourhood of 0 and f (−x) = f (x) for

each x ∈ R
d . Then, to define the time delay in terms of sojourn times one has to consider for any r > 0 the expectation

values of the localisation operator f (Φ/r) on the freely evolving state e−it H0ϕ as well as on the corresponding fully evolv-
ing state e−it H W−ϕ . However one immediately faces the problem that the evolution group {e−it H }t∈R acts in H whereas
f (Φ/r) is an operator in H0. As explained in Section 4, a general solution for this problem consists in introducing a fam-
ily L(t) of (identification) operators from H to H0 which satisfies some natural requirements (in many examples, one can
simply take L(t) = J∗ for all t ∈ R). The sojourn time for the evolution group {e−it H }t∈R is then obtained by considering the
expectation value of f (Φ/r) on the state L(t)e−it H W−ϕ . An additional sojourn time naturally appears in this general two-
Hilbert spaces setting: the time spent by the scattering state e−it H W−ϕ inside the time-dependent subset (1 − L(t)∗L(t))H
of H. Apparently, this sojourn time has never been discussed before in the literature. Finally, the total time delay is defined
for fixed r as the integral over the time t of the expectations values involving the fully evolving state L(t)e−it H W−ϕ minus
the symmetrized sum of the expectations values involving the freely evolving state e−it H0ϕ (see Eq. (4.4) for a precise defi-
nition). Our main result, properly stated in Theorem 4.3, is the existence of the limit as r → ∞ of the total time delay and
its identity with the Eisenbud–Wigner time delay (see (1.1) below) which we now define in this abstract setting.

Under the mentioned assumptions on Φ and H0 it is shown in [21] how a time operator for H0 can be defined: With
the Schwartz function f introduced above, one defines a new function R f ∈ C∞(Rd \ {0}) and expresses the time operator
in the (oversimplified) form

T f := −1

2

(
Φ · R ′

f

(
H ′

0

) + R ′
f

(
H ′

0

) · Φ)
,

with R ′
f := ∇R f and H ′

0 := (i[H0,Φ1], . . . , i[H0,Φd]) (see Section 3 for details). In suitable situations and in an appropriate

sense, the operator T f acts as i d
dλ

in the spectral representation of H0 (for instance, when H0 = −� in L2(Rd), this is
verified with Φ the usual family of position operators, see [21, Section 7] for details and other examples). Accordingly, it is
natural to define in this abstract framework the Eisenbud–Wigner time delay as the expectation value

−〈
ϕ, S∗[T f , S]ϕ〉

(1.1)

for suitable ϕ ∈ H0.
The interest of the equality between both definitions of time delay is threefold. It generalises and unifies various results

on time delay scattered in the literature. It provides a precise recipe for future investigations on the subject (for instance,
for new models in two-Hilbert spaces scattering). And finally, it establishes a relation between the two formulations of scat-
tering theory: Eisenbud–Wigner time delay is a product of the stationary formulation while expressions involving sojourn
times are defined using the time dependent formulation. An equality relating these two formulations is always welcome.

In the last section (Section 5), we present a sufficient condition for the equality of the symmetrized time delay with the
original (unsymmetrized) time delay. The physical interpretation of the latter was, a couple of decades ago, the motivation
for the introduction of these concepts.

As a final remark, let us add a comment about the applicability of our abstract result. As already mentioned, most of the
existing proofs, if not all, of the existence and the identity of both time delays can be recast in our framework. Furthermore,
we are currently working on various new classes of scattering systems for which our approach leads to new results. Among
others, we mention the case of scattering theory on manifolds which has recently attracted a lot of attention. Our framework
is also general enough for a rigorous approach of time delay in the N-body problem (see [6,17,19,26] for earlier attempts in
this direction). However, the verification of our abstract conditions for any non-trivial model always requires some careful
analysis, in particular for the mapping properties of the scattering operator. As a consequence, we prefer to refer to [3,11,
27–29] for various incarnations of our approach and to present in this paper only the abstract framework for the time delay.
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2. Operators H0 and Φ

In this section, we recall the framework of [21] on a self-adjoint operator H0 in a Hilbert space H0 and its relation with
an abstract family Φ ≡ (Φ1, . . . ,Φd) of mutually commuting self-adjoint operators in H0 (we use the term “commute” for
operators commuting in the sense of [20, Section VIII.5]). In comparison with the notations of [21], we add an index 0 to
the space H and to the operators H, H ′ and H ′′; they are now denoted by H0, H0, H ′

0 and H ′′
0 , respectively.

In order to express the regularity of H0 with respect to Φ , we recall from [1] that a self-adjoint operator T with domain
D(T ) ⊂ H0 is said to be of class C1(Φ) if there exists ω ∈ C \ σ(T ) such that the map

R
d 	 x 
→ e−ix·Φ(T − ω)−1eix·Φ ∈ B(H0) (2.1)

is strongly of class C1 in H0. In such a case and for each j ∈ {1, . . . ,d}, the set D(T ) ∩ D(Φ j) is a core for T and the
quadratic form D(T ) ∩ D(Φ j) 	 ϕ 
→ 〈Tϕ,Φ jϕ〉 − 〈Φ jϕ, Tϕ〉 is continuous in the topology of D(T ). This form extends then
uniquely to a continuous quadratic form [T ,Φ j] on D(T ), which can be identified with a continuous operator from D(T )

to its dual D(T )∗ . Finally, the following equality holds:[
Φ j, (T − ω)−1] = (T − ω)−1[T ,Φ j](T − ω)−1.

In the sequel, we shall say that i[T ,Φ j] is essentially self-adjoint on D(T ) if [T ,Φ j]D(T ) ⊂ H0 and if i[T ,Φ j] is essentially
self-adjoint on D(T ) in the usual sense.

Our first main assumption concerns the regularity of H0 with respect to Φ .

Assumption 2.1. The operator H0 is of class C1(Φ), and for each j ∈ {1, . . . ,d}, i[H0,Φ j] is essentially self-adjoint on D(H0),
with its self-adjoint extension denoted by ∂ j H0. The operator ∂ j H0 is of class C1(Φ), and for each k ∈ {1, . . . ,d}, i[∂ j H0,Φk]
is essentially self-adjoint on D(∂ j H0), with its self-adjoint extension denoted by ∂ jk H0. The operator ∂ jk H0 is of class C1(Φ),
and for each 
 ∈ {1, . . . ,d}, i[∂ jk H0,Φ
] is essentially self-adjoint on D(∂ jk H0), with its self-adjoint extension denoted by
∂ jk
H0.

As shown in [21, Section 2], this assumption implies the invariance of D(H0) under the action of the unitary group
{eix·Φ}x∈Rd . As a consequence, we obtain that each self-adjoint operator

H0(x) := e−ix·Φ H0eix·Φ (2.2)

has domain D[H0(x)] = D(H0). Similarly, the domains D(∂ j H0) and D(∂ jk H0) are left invariant by the action of the unitary
group {eix·Φ}x∈Rd , and the operators (∂ j H0)(x) := e−ix·Φ(∂ j H0)eix·Φ and (∂ jk H0)(x) := e−ix·Φ(∂ jk H0)eix·Φ are self-adjoint
operators with domains D(∂ j H0) and D(∂ jk H0) respectively.

Our second main assumption concerns the family of operators H0(x).

Assumption 2.2. The operators H0(x), x ∈ R
d , mutually commute.

This assumption is equivalent to the commutativity of each H0(x) with H0. As shown in [21, Lemma 2.4], Assumptions 2.1
and 2.2 imply that the operators H0(x), (∂ j H0)(y) and (∂k
H0)(z) mutually commute for each j,k, 
 ∈ {1, . . . ,d} and each
x, y, z ∈ R

d . For simplicity, we write H ′
0 for the d-tuple (∂1 H0, . . . , ∂d H0), and define for each measurable function g : R

d →
C the operator g(H ′

0) by using the d-variables functional calculus. Similarly, we consider the family of operators {∂ jk H0} as
the components of a d-dimensional matrix which we denote by H ′′

0 . The symbol E H0(·) denotes the spectral measure of H0,
and we use the notation E H0 (λ; δ) for E H0((λ − δ,λ + δ)).

We now recall the definition of the critical values of H0 and state some basic properties which have been established in
[21, Lemma 2.6].

Definition 2.3. A number λ ∈ R is called a critical value of H0 if

lim
ε↘0

‖(H ′2
0 + ε

)−1
E H0(λ; δ)‖ = +∞ (2.3)

for each δ > 0. We denote by κ(H0) the set of critical values of H0.

Lemma 2.4. Let H0 satisfy Assumptions 2.1 and 2.2. Then the set κ(H0) possesses the following properties:

(a) κ(H0) is closed.
(b) κ(H0) contains the set of eigenvalues of H0 .
(c) The limit limε↘0 ‖(H ′2

0 + ε)−1 E H0 (I)‖ is finite for each compact set I ⊂ R \ κ(H0).

(d) For each compact set I ⊂ R \ κ(H0), there exists a compact set U ⊂ (0,∞) such that E H0 (I) = E |H ′
0|(U )E H0 (I).
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In [21, Section 3] a Mourre estimate is also obtained under Assumptions 2.1 and 2.2. It implies spectral results for H0
and the existence of locally H0-smooth operators. We use the notation 〈x〉 := (1 + x2)1/2 for any x ∈ R

d .

Theorem 2.5. Let H0 satisfy Assumptions 2.1 and 2.2. Then,

(a) the spectrum of H0 in σ(H0) \ κ(H0) is purely absolutely continuous,
(b) each operator B ∈ B(D(〈Φ〉−s), H0), with s > 1/2, is locally H0-smooth on R \ κ(H0).

3. Integral formula for H0

We recall in this section the main result of [21], which is expressed in terms of a function R f appearing naturally when
dealing with quantum scattering theory. The function R f is a renormalised average of a function f of localisation around
the origin 0 ∈ R

d . These functions were already used, in one form or another, in [11,21,28,29]. In these references, part of
the results were obtained under the assumption that f belongs to the Schwartz space S (Rd). So, for simplicity, we shall
assume from the very beginning that f ∈ S (Rd) and also that f is even, i.e. f (x) = f (−x) for all x ∈ R

d . Let us however
mention that some of the following results easily extend to the larger class of functions introduced in [21, Section 4].

Assumption 3.1. The function f ∈ S (Rd) is non-negative, even and equal to 1 on a neighbourhood of 0 ∈ R
d .

It is clear that s-limr→∞ f (Φ/r) = 1 if f satisfies Assumption 3.1. Furthermore, it also follows from this assumption that
the function R f : R

d \ {0} → R given by

R f (x) :=
∞∫

0

dμ

μ

(
f (μx) − χ[0,1](μ)

)

is well defined. The following properties of R f are proved in [29, Section 2]: The function R f belongs to C∞(Rd \ {0}) and
satisfies

R ′
f (x) =

∞∫
0

dμ f ′(μx)

as well as the homogeneity properties x · R ′
f (x) = −1 and t|α|(∂α R f )(tx) = (∂α R f )(x) with x ∈ R

d \ {0}, α ∈ N
d and t > 0.

Furthermore, if f is radial, then R ′
f (x) = −x−2x. We shall also need the function F f : R

d \ {0} → R defined by

F f (x) :=
∫
R

dμ f (μx). (3.1)

The function F f satisfies several properties as R f such as F f (x) = t F f (tx) for each t > 0 and each x ∈ R
d \ {0}.

Now, we know from Lemma 2.4(a) that the set κ(H0) is closed. So we can define for each t � 0 the set

Dt := {
ϕ ∈ D

(〈Φ〉t) ∣∣ ϕ = η(H0)ϕ for some η ∈ C∞
c

(
R \ κ(H0)

)}
.

The set Dt is included in the subspace Hac(H0) of absolute continuity of H0, due to Theorem 2.5(a), and Dt1 ⊂ Dt2 if
t1 � t2. We refer the reader to [21, Section 6] for an account on density properties of the sets Dt .

In the sequel, we sometimes write C−1 for an operator C a priori not invertible. In such a case, the operator C−1

will always be acting on a set where it is well defined. The next statement follows from [21, Proposition 5.2] and [21,
Remark 5.4].

Proposition 3.2. Let H0 satisfy Assumptions 2.1 and 2.2, and let f satisfy Assumption 3.1. Then the map

t f : D1 → C, ϕ 
→ t f (ϕ) := −1

2

∑
j

{〈
Φ jϕ, (∂ j R f )

(
H ′

0

)
ϕ

〉 + 〈
(∂ j R f )

(
H ′

0

)
ϕ,Φ jϕ

〉}
,

is well defined. Moreover, the linear operator T f : D1 → H0 defined by

T f ϕ := −1

2

(
Φ · R ′

f

(
H ′

0

) + R ′
f

(
H ′

0

|H ′
0|

)
· Φ∣∣H ′

0

∣∣−1 + iR ′
f

(
H ′

0

|H ′
0|

)
· (H ′′T

0 H ′
0

)∣∣H ′
0

∣∣−3
)
ϕ (3.2)

satisfies t f (ϕ) = 〈ϕ, T f ϕ〉 for each ϕ ∈ D1 . In particular, T f is a symmetric operator if D1 is dense in H0 .
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Remark 3.3. The r.h.s. of formula (3.2) is a priori rather complicated and one could be tempted to define T f ϕ by the simpler
expression − 1

2 (Φ · R ′
f (H ′

0) + R ′
f (H ′

0) · Φ)ϕ . Unfortunately, a precise meaning of this expression is not available in general,

and one can only justify it in concrete examples. However, when f is radial, then (∂ j R f )(x) = −x−2x j , and T f is equal on
D1 to

T := 1

2

(
Φ · H ′

0

(H ′
0)

2
+ H ′

0

|H ′
0|

· Φ∣∣H ′
0

∣∣−1 + iH ′
0

(H ′
0)

4
· (H ′′T

0 H ′
0

))
. (3.3)

The next theorem is the main result of [21]; it relates the evolution of the localisation operators f (Φ/r) to the opera-
tor T f .

Theorem 3.4. (See [21, Theorem 5.5].) Let H0 satisfy Assumptions 2.1 and 2.2, and let f satisfy Assumption 3.1. Then we have for each
ϕ ∈ D2

lim
r→∞

1

2

∞∫
0

dt
〈
ϕ,

(
e−it H0 f (Φ/r)eit H0 − eit H0 f (Φ/r)e−it H0

)
ϕ

〉 = 〈ϕ, T f ϕ〉. (3.4)

In particular, when the localisation function f is radial, the operator T f in the r.h.s. of (3.4) is equal to the operator T ,
which is independent of f .

4. Symmetrized time delay

In this section we prove the existence of symmetrized time delay for a scattering system (H0, H, J ) with free operator
H0, full operator H , and identification operator J . The operator H0 acts in the Hilbert space H0 and satisfies Assump-
tions 2.1 and 2.2 with respect to the family Φ . The operator H is a self-adjoint operator in a Hilbert space H satisfying
Assumption 4.1 below. The operator J : H0 → H is a bounded operator used to “identify” the Hilbert space H0 with a subset
of H.

The assumption on H concerns the existence, the isometry and the completeness of the generalised wave operators:

Assumption 4.1. The generalised wave operators

W± := s-limt→±∞eit H Je−it H0 Pac(H0)

exist, are partial isometries with initial subspaces H±
0 and final subspaces Hac(H).

Sufficient conditions on J H0 − H J ensuring the existence and the completeness of W± are given in [32, Chapter 5]. The
main consequence of Assumption 4.1 is that the scattering operator

S := W ∗+W− : H−
0 → H+

0

is a well-defined unitary operator commuting with H0.
We now define the sojourn times for the quantum scattering system (H0, H, J ), starting with the sojourn time for the

free evolution e−it H0 . So, let r > 0 and let f be a non-negative element of S (Rd) equal to 1 on a neighbourhood Σ of the
origin 0 ∈ R

d . For ϕ ∈ D0, we set

T 0
r (ϕ) :=

∫
R

dt
〈
e−it H0ϕ, f (Φ/r)e−it H0ϕ

〉
,

where the integral has to be understood as an improper Riemann integral. The operator f (Φ/r) is approximately the pro-
jection onto the subspace EΦ(rΣ)H0 of H0, with rΣ := {x ∈ R

d | x/r ∈ Σ}. Therefore, if ‖ϕ‖ = 1, then T 0
r (ϕ) can be

approximately interpreted as the time spent by the evolving state e−it H0ϕ inside EΦ(rΣ)H0. Furthermore, the expression
T 0

r (ϕ) is finite for each ϕ ∈ D0, since we know from Lemma 2.5(b) that each operator B ∈ B(D(〈Φ〉−s), H0), with s > 1
2 , is

locally H0-smooth on R \ κ(H0).
When defining the sojourn time for the full evolution e−it H , one faces the problem that the localisation operator f (Φ/r)

acts in H0 while the operator e−it H acts in H. The obvious modification would be to consider the operator J f (Φ/r) J∗ ∈
B(H), but the resulting framework could be not general enough (see Remark 4.5 below). Sticking to the basic idea that the
freely evolving state e−it H0ϕ should approximate, as t → ±∞, the corresponding evolving state e−it H W±ϕ , one should look
for operators L(t) : H → H0, t ∈ R, such that

lim
∥∥L(t)e−it H W±ϕ − e−it H0ϕ

∥∥ = 0. (4.1)

t→±∞
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Since we consider vectors ϕ ∈ D0, the operators L(t) can be unbounded as long as L(t)E H (I) are bounded for any bounded
subset I ⊂ R. With such a family of operators L(t), it is natural to define the sojourn time for the full evolution e−it H by
the expression

Tr,1(ϕ) :=
∫
R

dt
〈
L(t)e−it H W−ϕ, f (Φ/r)L(t)e−it H W−ϕ

〉
. (4.2)

Another sojourn time appearing naturally in this context is

T2(ϕ) :=
∫
R

dt
〈
e−it H W−ϕ,

(
1 − L(t)∗L(t)

)
e−it H W−ϕ

〉
H. (4.3)

The finiteness of Tr,1(ϕ) and T2(ϕ) is proved under an additional assumption in Lemma 4.2 below.
The term Tr,1(ϕ) can be approximatively interpreted as the time spent by the scattering state e−it H W−ϕ , injected in

H0 via L(t), inside EΦ(rΣ)H0. The term T2(ϕ) can be seen as the time spent by the scattering state e−it H W−ϕ inside the
time-dependent subset (1 − L(t)∗L(t))H of H. If L(t) is considered as a time-dependent quasi-inverse for the identification
operator J (see [32, Section 2.3.2] for the related time-independent notion of quasi-inverse), then the subset (1−L(t)∗L(t))H
can be seen as an approximate complement of J H0 in H at time t . Note that in concrete examples of two-Hilbert spaces
quantum scattering systems, the necessity of the term T2(ϕ) can easily be illustrated (see for example [22]). Furthermore,
when H0 = H, one usually sets L(t) = J∗ = 1, and then the term T2(ϕ) vanishes. Within this general framework, we say
that

τr(ϕ) := Tr(ϕ) − 1

2

{
T 0

r (ϕ) + T 0
r (Sϕ)

}
, (4.4)

with Tr(ϕ) := Tr,1(ϕ) + T2(ϕ), is the symmetrized time delay of the scattering system (H0, H, J ) with incoming state ϕ .
This symmetrized version of the usual time delay

τ in
r (ϕ) := Tr(ϕ) − T 0

r (ϕ)

is known to be the only time delay having a well-defined limit as r → ∞ for complicated scattering systems (see for
example [3,6,11,15,17,25–27]).

For the next lemma, we need the auxiliary quantity

τ free
r (ϕ) := 1

2

∞∫
0

dt
〈
ϕ, S∗[eit H0 f (Φ/r)e−it H0 − e−it H0 f (Φ/r)eit H0 , S

]
ϕ

〉
, (4.5)

which is finite for all ϕ ∈ H−
0 ∩ D0. We refer the reader to [29, Eq. (4.1)] for a similar definition in the case of dispersive

systems, and to [2, Eq. (3)], [14, Eq. (6.2)] and [16, Eq. (5)] for the original definition.

Lemma 4.2. Let H0 , f and H satisfy Assumptions 2.1, 2.2, 3.1 and 4.1. For each t ∈ R, let L(t) : H → H0 satisfy L(t)E H (I) ∈
B(H, H0) for any bounded subset I ⊂ R. Finally, let ϕ ∈ H−

0 ∩ D0 be such that∥∥(
L(t)W− − 1

)
e−it H0ϕ

∥∥ ∈ L1(R−,dt) and
∥∥(

L(t)W+ − 1
)
e−it H0 Sϕ

∥∥ ∈ L1(R+,dt). (4.6)

Then Tr(ϕ) is finite for each r > 0, and

lim
r→∞

{
τr(ϕ) − τ free

r (ϕ)
} = 0. (4.7)

Proof. Direct computations with ϕ ∈ H−
0 ∩ D0 imply that

Ir(ϕ) := Tr,1(ϕ) − 1

2

{
T 0

r (ϕ) + T 0
r (Sϕ)

} − τ free
r (ϕ)

=
0∫

−∞
dt

{〈
L(t)e−it H W−ϕ, f (Φ/r)L(t)e−it H W−ϕ

〉 − 〈
e−it H0ϕ, f (Φ/r)e−it H0ϕ

〉}

+
∞∫

0

dt
{〈

L(t)e−it H W−ϕ, f (Φ/r)L(t)e−it H W−ϕ
〉 − 〈

e−it H0 Sϕ, f (Φ/r)e−it H0 Sϕ
〉}

.

Using the inequality∣∣‖ϕ‖2 − ‖ψ‖2
∣∣ � ‖ϕ − ψ‖ · (‖ϕ‖ + ‖ψ‖), ϕ,ψ ∈ H0,
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the intertwining property of the wave operators and the identity W− = W+ S , one gets the estimates∣∣〈L(t)e−it H W−ϕ, f (Φ/r)L(t)e−it H W−ϕ
〉 − 〈

e−it H0ϕ, f (Φ/r)e−it H0ϕ
〉∣∣ � Const g−(t),∣∣〈L(t)e−it H W−ϕ, f (Φ/r)L(t)e−it H W−ϕ

〉 − 〈
e−it H0 Sϕ, f (Φ/r)e−it H0 Sϕ

〉∣∣ � Const g+(t),

where

g−(t) := ∥∥(
L(t)W− − 1

)
e−it H0ϕ

∥∥ and g+(t) := ∥∥(
L(t)W+ − 1

)
e−it H0 Sϕ

∥∥.

It follows by (4.6) that |Ir(ϕ)| is bounded by a constant independent of r, and thus Tr,1(ϕ) is finite for each r > 0. Then,
using Lebesgue’s dominated convergence theorem, the fact that s-limr→∞ f (Φ/r) = 1 and the isometry of W− on H−

0 , one
obtains that

lim
r→∞ Ir(ϕ) =

0∫
−∞

dt
{〈

L(t)e−it H W−ϕ, L(t)e−it H W−ϕ
〉 − 〈

e−it H0ϕ,e−it H0ϕ
〉}

+
∞∫

0

dt
{〈

L(t)e−it H W−ϕ, L(t)e−it H W−ϕ
〉 − 〈

e−it H0 Sϕ,e−it H0 Sϕ
〉}

=
∫
R

dt
〈
e−it H W−ϕ,

(
L(t)∗L(t) − 1

)
e−it H W−ϕ

〉
H

≡ −T2(ϕ).

Thus, T2(ϕ) is finite, and the equality (4.7) is verified. Since Tr(ϕ) = Tr,1(ϕ) + T2(ϕ), one also infers that Tr(ϕ) is finite for
each r > 0. �

The next theorem shows the existence of symmetrized time delay. It is a direct consequence of Lemma 4.2, Eq. (4.5) and
Theorem 3.4. The apparently large number of assumptions reflects nothing more but the need of describing the very general
scattering system (H0, H, J ); one needs hypotheses on the relation between H0 and Φ , conditions on the localisation func-
tion f , a compatibility assumption between H0 and H , a (time-dependent) quasi-inverse for the identification operator J ,
and conditions on the state ϕ on which the calculations are performed.

Theorem 4.3. Let H0 , f and H satisfy Assumptions 2.1, 2.2, 3.1 and 4.1. For each t ∈ R, let L(t) : H → H0 satisfy L(t)E H (I) ∈
B(H, H0) for any bounded subset I ⊂ R. Finally, let ϕ ∈ H−

0 ∩ D2 verify Sϕ ∈ D2 and (4.6). Then one has

lim
r→∞τr(ϕ) = −〈

ϕ, S∗[T f , S]ϕ〉
, (4.8)

with T f defined by (3.2).

Remark 4.4. Theorem 4.3 is the main result of the paper. It expresses the identity of the symmetrized time delay (defined
in terms of sojourn times) and the Eisenbud–Wigner time delay for general scattering systems (H0, H, J ). The l.h.s. of (4.8)
is equal to the global symmetrized time delay of the scattering system (H0, H, J ), with incoming state ϕ , in the dilated
regions associated to the localisation operators f (Φ/r). The r.h.s. of (4.8) is the expectation value in ϕ of the generalised
Eisenbud–Wigner time delay operator −S∗[T f , S]. When T f acts in the spectral representation of H0 as the differential
operator i d

dH0
, which occurs in most of the situations of interest (see for example [21, Section 7]), one recovers the usual

Eisenbud–Wigner Formula:

lim
r→∞τr(ϕ) = −

〈
ϕ, i S∗ dS

dH0
ϕ

〉
.

Remark 4.5. Eq. (4.1) is equivalent to the existence of the limits

W̃± := s-limt→±∞eit H0 L(t)e−it H Pac(H),

together with the equalities W̃±W± = P±
0 , where P±

0 are the orthogonal projections on the subspaces H±
0 of H0. In simple

situations, namely, when H±
0 = Hac(H0) and L(t) ≡ L is independent of t and bounded, sufficient conditions implying (4.1)

are given in [32, Theorem 2.3.6]. In more complicated situations, namely, when H±
0 �= Hac(H0) or L(t) depends on t and

is unbounded, the proof of (4.1) could be highly non-trivial. This occurs for instance in the case of the N-body systems. In
such a situation, the operators L(t) really depend on t and are unbounded (see for instance [9, Section 6.7]), and the proof
of (4.1) is related to the problem of the asymptotic completeness of the N-body systems.
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5. Usual time delay

We give in this section conditions under which the symmetrized time delay τr(ϕ) and the usual time delay τ in
r (ϕ) are

equal in the limit r → ∞. Heuristically, one cannot expect that this equality holds if the scattering is not elastic or is of
multichannel type. However, for simple scattering systems, the equality of both time delays presents an interest. At the
mathematical level, this equality reduces to giving conditions under which

lim
r→∞

{
T 0

r (Sϕ) − T 0
r (ϕ)

} = 0. (5.1)

Eq. (5.1) means that the freely evolving states e−it H0ϕ and e−it H0 Sϕ tend to spend the same time within the region defined
by the localisation function f (Φ/r) as r → ∞. Formally, the argument goes as follows. Suppose that F f (H ′

0), with F f
defined in (3.1), commutes with the scattering operator S . Then, using the change of variables μ := t/r, ν := 1/r, and the
symmetry of f , one gets

lim
r→∞

{
T 0

r (Sϕ) − T 0
r (ϕ)

} = lim
r→∞

∫
R

dt
〈
ϕ, S∗[eit H0 f (Φ/r)e−it H0 , S

]
ϕ

〉 − 〈
ϕ, S∗[F f

(
H ′

0

)
, S

]
ϕ

〉

= lim
ν↘0

∫
R

dμ

〈
ϕ, S∗

[
1

ν

{
f
(
μH ′

0 + νΦ
) − f

(
μH ′

0

)}
, S

]
ϕ

〉

=
∫
R

dμ
〈
ϕ, S∗[Φ · f ′(μH ′

0

)
, S

]
ϕ

〉 = 0.

A rigorous proof of this argument is given in Theorem 5.3 below. Before this we introduce an assumption on the behavior of
the C0-group {eix·Φ}x∈Rd in D(H0), and then prove a technical lemma. We use the notation G for D(H0) endowed with the
graph topology, and G∗ for its dual space. In the following proofs, we also freely use the notations of [1] for some regularity
classes with respect to the group generated by Φ .

Assumption 5.1. The C0-group {eix·Φ}x∈Rd is of polynomial growth in G , namely there exists r > 0 such that for all x ∈ R
d∥∥eix·Φ∥∥

B(G,G)
� Const〈x〉r .

Lemma 5.2. Let H0 and Φ satisfy Assumptions 2.1, 2.2 and 5.1, and let η ∈ C∞
c (R). Then there exists c, s > 0 such that for all μ ∈ R,

x ∈ R
d and ν ∈ (−1,1) \ {0}∥∥∥∥ 1

ν

{
η
(

H0(νx)
)
ei μ

ν [H0(νx)−H0] − η(H0)eiμx·H ′
0
}∥∥∥∥ � c

(
1 + |μ|)〈x〉s.

Proof. Let us first observe that H0 ∈ C1
u(Φ; G, H0). Indeed, since H0 ∈ B(G, H0), ∂ j H0 ∈ B(D(∂ j H0), H0) ⊂ B(G, H0) and

∂ jk H0 ∈ B(D(∂ jk H0), H0) ⊂ B(D(∂ j H0), H0) ⊂ B(G, H0) for any j,k ∈ {1, . . . ,d}, it follows that H0 ∈ C2(Φ; G, H0). So,
one has in particular that H0 ∈ C1

u(Φ; G, H0). Now, for x ∈ R
d and μ ∈ R, we define the function

gx,μ : (−1,1) \ {0} → B(H0), ν 
→ ei μ
ν [H0(νx)−H0]η(H0)

and observe that gx,μ is continuous in norm with

gx,μ(0) := lim
ν→0

gx,μ(ν) = eiμx·H ′
0η(H0).

On another hand, since η(H0) belongs to C1
u(Φ), one has in B(H0) the equalities

1

ν

{
η
(

H0(νx)
) − η(H0)

} = 1

ν

1∫
0

dt
d

dt
η
(

H0(tνx)
) = i

∑
j

x j

1∫
0

dt e−itνx·Φ[
η(H0),Φ j

]
eitνx·Φ.

So, combining the two equations, one obtains that

1

ν

{
η
(

H0(νx)
)
ei μ

ν [H0(νx)−H0] − η(H0)eiμx·H ′
0
}

= 1

ν

{
η
(

H0(νx)
) − η(H0)

}
ei μ

ν [H0(νx)−H0] + 1

ν

{
gx,μ(ν) − gx,μ(0)

}

= i
∑

j

x j

1∫
dt e−itνx·Φ[

η(H0),Φ j
]
eitνx·Φei μ

ν [H0(νx)−H0] + 1

ν

{
gx,μ(ν) − gx,μ(0)

}
. (5.2)
0
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In order to estimate the difference gx,μ(ν) − gx,μ(0), observe first that one has in B(H0) for any bounded set I ⊂ R

1

ν

[
H0(νx) − H0

]
E H0(I) = 1

ν

1∫
0

dt
d

dt
H0(tνx)E H0(I) =

1∫
0

dt x · H ′
0(tνx)E H0(I).

So, if ε ∈ R is small enough and if the bounded set I ⊂ R is chosen such that η(H0) = E H0(I)η(H0), one obtains in B(H0)

gx,μ(ν + ε) − gx,μ(ν) = {
eiμ

∫ 1
0 dt x·H ′

0(t(ν+ε)x)E H0 (I) − eiμ
∫ 1

0 dt x·H ′
0(tνx)E H0 (I)}η(H0)

= eiμ
∫ 1

0 du x·H ′
0(uνx)E H0 (I){eiμ

∫ 1
0 dt x·[H ′

0(t(ν+ε)x)−H ′
0(tνx)]E H0 (I) − 1

}
η(H0)

= eiμ
∫ 1

0 du x·H ′
0(uνx)E H0 (I){eiμ

∫ 1
0 dt

∫ 1
0 ds tε

∑
j,k x j xk(∂ jk H0)(t(ν+sε)x)E H0 (I) − 1

}
η(H0).

Note that the property ∂ j H0 ∈ C1
u(Φ; G, H0) (which follows from our assumptions and from an argument similar to the one

presented at the beginning of this proof) has been taken into account for the last equality. Then, multiplying the above
expression by ε−1 and taking the limit ε → 0 in B(H0) leads to

g′
x,μ(ν) = iμeiμ

∫ 1
0 du x·H ′

0(uνx)

1∫
0

dt t
∑

j,k

x jxk(∂ jk H0)(tνx)η(H0). (5.3)

This formula, together with Eq. (5.2) and the mean value theorem, implies that∥∥∥∥ 1

ν

{
η
(

H0(νx)
)
ei μ

ν [H0(νx)−H0] − η(H0)eiμx·H ′
0
}∥∥∥∥ � Const|x| + sup

ξ∈[0,1]
∥∥g′

x,μ(ξν)
∥∥

� Const|x| + Const x2|μ| sup
ξ∈[0,1]

∑
j,k

∥∥(∂ jk H0)(ξνx)η(H0)
∥∥. (5.4)

But one has

(∂ jk H0)(ξνx)η(H0) = e−iξνx·Φ(∂ jk H0)eiξνx·Φη(H0)

with η(H0) ∈ B(H0, G) and (∂ jk H0) ∈ B(G, H0). So, it follows from Assumption 5.1 that there exists r > 0 such that∥∥(∂ jk H0)(ξνx)η(H0)
∥∥ � Const〈ξνx〉r .

Hence, one finally gets from (5.4) that for each ν ∈ (−1,1) \ {0}∥∥∥∥ 1

ν

{
η
(

H0(νx)
)
ei μ

ν [H0(νx)−H0] − η(H0)eiμx·H ′
0
}∥∥∥∥ � Const

(
1 + |μ|)〈x〉r+2,

which proves the claim with s := r + 2. �
In the sequel, the symbol F stands for the Fourier transformation, and the measure dx on R

d is chosen so that F
extends to a unitary operator in L2(Rd).

Theorem 5.3. Let H0, f , H and Φ satisfy Assumptions 2.1, 2.2, 3.1, 4.1 and 5.1, and let ϕ ∈ H−
0 ∩ D2 satisfy Sϕ ∈ D2 and[

F f
(

H ′
0

)
, S

]
ϕ = 0. (5.5)

Then the following equality holds:

lim
r→∞

{
T 0

r (Sϕ) − T 0
r (ϕ)

} = 0.

Note that the l.h.s. of (5.5) is well defined due to the homogeneity property of F f . Indeed, one has

[
F f

(
H ′

0

)
, S

]
ϕ =

[∣∣H ′
0

∣∣−1
η(H0)F f

(
H ′

0

|H ′
0|

)
, S

]
ϕ

for some η ∈ C∞
c (R \ κ(H0)), and thus [F f (H ′

0), S]ϕ ∈ H due to Lemma 2.4(d) and the compacticity of F f (S
d−1).

Proof. Let ϕ ∈ H−
0 ∩ D2 satisfies Sϕ ∈ D2, take a real η ∈ C∞

c (R \ κ(H0)) such that ϕ = η(H0)ϕ , and set ηt(s) := eitsη(s)
for each s, t ∈ R. Using (5.5), the definition of F f and the change of variables μ := t/r, ν := 1/r, one gets
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T 0
1/ν(Sϕ) − T 0

1/ν(ϕ) =
∫
R

dμ

〈
ϕ, S∗

[
1

ν

{
ημ

ν
(H0) f (νΦ)η− μ

ν
(H0) − f

(
μH ′

0

)}
, S

]
ϕ

〉

=
∫
R

dμ

∫
Rd

dx (F f )(x)

〈
ϕ, S∗

[
1

ν

{
eiνx·Φημ

ν

(
H0(νx)

)
η− μ

ν
(H0) − eiμx·H ′

0
}
, S

]
ϕ

〉

=
∫
R

dμ

∫
Rd

dx (F f )(x)

〈
ϕ, S∗

[
1

ν

(
eiνx·Φ − 1

)
η
(

H0(νx)
)
ei μ

ν [H0(νx)−H0], S

]
ϕ

〉

+
∫
R

dμ

∫
Rd

dx (F f )(x)

〈
ϕ, S∗

[
1

ν

{
η
(

H0(νx)
)
ei μ

ν [H0(νx)−H0] − η(H0)eiμx·H ′
0
}
, S

]
ϕ

〉
. (5.6)

To prove the statement, it is sufficient to show that the limit as ν ↘ 0 of each of these two terms is equal to zero. This is
done in points (i) and (ii) below.

(i) For the first term, one can easily adapt the method [21, Theorem 5.5] (points (ii) and (iii) of the proof) in order to
apply Lebesgue’s dominated convergence theorem to (5.6). So, one gets

lim
ν↘0

∫
R

dμ

∫
Rd

dx (F f )(x)

〈
ϕ, S∗

[
1

ν

(
eiνx·Φ − 1

)
η
(

H0(νx)
)
ei μ

ν [H0(νx)−H0], S

]
ϕ

〉

= i

∫
R

dμ

∫
Rd

dx (F f )(x)
{〈

(x · Φ)Sϕ,eiμx·H ′
0 Sϕ

〉 − 〈
(x · Φ)ϕ,eiμx·H ′

0ϕ
〉}

,

and the change of variables μ′ := −μ, x′ := −x, together with the symmetry of f , implies that this expression is equal to
zero.

(ii) For the second term, it is sufficient to prove that

lim
ν↘0

∫
R

dμ

∫
Rd

dx (F f )(x)

〈
ψ,

1

ν

{
η
(

H0(νx)
)
ei μ

ν [H0(νx)−H0] − η(H0)eiμx·H ′
0
}
ψ

〉
(5.7)

is equal to zero for any ψ ∈ D2 satisfying η(H0)ψ = ψ . For the moment, let us assume that we can interchange the limit
and the integrals in (5.7) by invoking Lebesgue’s dominated convergence theorem. Then, taking Eqs. (5.2) and (5.3) into
account, one obtains

lim
ν↘0

∫
R

dμ

∫
Rd

dx (F f )(x)

〈
ψ,

1

ν

{
η
(

H0(νx)
)
ei μ

ν [H0(νx)−H0] − η(H0)eiμx·H ′
0
}
ψ

〉

=
∫
R

dμ

∫
Rd

dx (F f )(x)

〈
ψ,

{
i
[
η(H0), x · Φ]

eiμx·H ′
0 + iμ

2
eiμx·H ′

0
∑

j,k

x jxk(∂ jk H0)η(H0)

}
ψ

〉
,

and the change of variables μ′ := −μ, x′ := −x, together with the symmetry of f , implies that this expression is equal
to zero. So, it only remains to show that one can really apply Lebesgue’s dominated convergence theorem in order to
interchange the limit and the integrals in (5.7). For this, let us set for ν ∈ (−1,1) \ {0} and μ ∈ R

L(ν,μ) :=
∫
Rd

dx (F f )(x)

〈
ψ,

1

ν

{
η
(

H0(νx)
)
ei μ

ν [H0(νx)−H0] − η(H0)eiμx·H ′
0
}
ψ

〉
.

By using Lemma 5.2 and the fact that F f ∈ S (Rd), one gets that |L(ν,μ)| � Const(1 + |μ|) with a constant independent
of ν . Therefore |L(ν,μ)| is bounded uniformly in ν ∈ (−1,1) \ {0} by a function in L1([−1,1],dμ).

For the case |μ| > 1, we first remark that there exists a compact set I ⊂ R \ κ(H0) such that η(H0) = E H0 (I)η(H0). Due
to Lemma 2.4(d), there also exists ζ ∈ C∞

c ((0,∞)) such that

η
(

H0(νx)
) = η

(
H0(νx)

)
ζ
(

H ′
0(νx)2)

for all x ∈ R
d and ν ∈ R. So, using the notations

AI
ν,μ(x) := ei μ

ν [H0(νx)−H0]E H0(I) ≡ ei μ
ν [H0(νx)−H0]E H0 (I)E H0(I)

and

B I
μ(x) := eiμx·H ′

0 E H0(I) ≡ eiμx·H ′
0 E H0 (I)E H0(I),
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one can rewrite L(ν,μ) as

L(ν,μ) =
∫
Rd

dx (F f )(x)

〈
ψ,

1

ν

{
η
(

H0(νx)
)
ζ
(

H ′
0(νx)2)AI

ν,μ(x) − η(H0)ζ
(

H ′2
0

)
B I

μ(x)
}
ψ

〉
.

Now, using the same technics as in the proof of Lemma 5.2, one shows that the maps AI
ν,μ : R

d → B(H0) and B I
μ : R

d →
B(H0) are differentiable, with derivatives(

∂ j A I
ν,μ

)
(x) = iμ(∂ j H0)(νx)AI

ν,μ(x) and
(
∂ j B I

μ

)
(x) = iμ(∂ j H0)B I

μ(x).

Thus, setting

C j := (
H ′

0

)−2
ζ
(

H ′2
0

)
(∂ j H0)η(H0) ∈ B(H0) and V x := e−ix·Φ,

one can even rewrite L(ν,μ) as

L(ν,μ) = (iμ)−1
∑

j

∫
Rd

dx (F f )(x)

〈
ψ,

1

ν

{
VνxC j V ∗

νx

(
∂ j A I

ν,μ

)
(x) − C j

(
∂ j B I

μ

)
(x)

}
ψ

〉
.

We shall now use repeatedly the following argument: Let g ∈ S (Rn) and let X := (X1, . . . , Xn) be a family of self-adjoint
and mutually commuting operators in H0. If all X j are of class C2(Φ), then the operator g(X) belongs to C2(Φ), and
[[g(X),Φ j],Φk] ∈ B(H0) for all j,k. Such a statement has been proved in [21, Proposition 5.1] in a greater generality. Here,
the operator C j is of the type g(X), since all the operators H0, ∂ j H0, . . . , ∂d H0 are of class C2(Φ). Thus, we can perform a
first integration by parts (with vanishing boundary contributions) with respect to x j to obtain

L(ν,μ) = −(iμ)−1
∑

j

∫
Rd

dx
[
∂ j(F f )

]
(x)

〈
ψ,

1

ν

{
VνxC j V ∗

νx AI
ν,μ(x) − C j B I

μ(x)
}
ψ

〉

− μ−1
∑

j

∫
Rd

dx (F f )(x)
〈
ψ, Vνx[C j,Φ j]V ∗

νx AI
ν,μ(x)ψ

〉
.

Now, the scalar product in the first term can be written as

(iμ)−1
〈
ψ,

1

ν

{
Vνx D V ∗

νx

(
∂ j A I

ν,μ

)
(x) − D

(
∂ j B I

μ

)
(x)

}
ψ

〉

with D := (H ′
0)

−2ζ(H ′2
0 )η(H0) ∈ B(H0). Thus, a further integration by parts leads to

L(ν,μ) = −μ−2
∑

j

∫
Rd

dx
[
∂2

j (F f )
]
(x)

〈
ψ,

1

ν

{
Vνx D V ∗

νx AI
ν,μ(x) − D B I

μ(x)
}
ψ

〉
(5.8)

− iμ−2
∑

j

∫
Rd

dx
[
∂ j(F f )

]
(x)

〈
ψ, Vνx[D,Φ j]V ∗

νx AI
ν,μ(x)ψ

〉
(5.9)

− μ−1
∑

j

∫
Rd

dx (F f )(x)
〈
ψ, Vνx[C j,Φ j]V ∗

νx AI
ν,μ(x)ψ

〉
. (5.10)

By setting Ek := (H ′
0)

−4ζ(H ′2
0 )(∂k H0)η(H0) ∈ B(H0) and by performing a further integration by parts, one obtains that (5.8)

is equal to

iμ−3
∑

j,k

∫
Rd

dx
[
∂2

j (F f )
]
(x)

〈
ψ,

1

ν

{
Vνx Ek V ∗

νx

(
∂k AI

ν,μ

)
(x) − Ek

(
∂k B I

μ

)
(x)

}
ψ

〉

= −iμ−3
∑

j,k

∫
Rd

dx
[
∂k∂

2
j (F f )

]
(x)

〈
ψ,

1

ν

{
Vνx Ek V ∗

νx AI
ν,μ(x) − Ek B I

μ(x)
}
ψ

〉

+ μ−3
∑

j,k

∫
d

dx
[
∂2

j (F f )
]
(x)

〈
ψ, Vνx[Ek,Φk]V ∗

νx AI
ν,μ(x)ψ

〉
.

R
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By mimicking the proof of Lemma 5.2, with η(H0) replaced by Ek , one obtains that there exist c, s > 0 such that for all
|μ| > 1, x ∈ R

d and ν ∈ (−1,1) \ {0}∥∥∥∥ 1

ν

{
Vνx Ek V ∗

νx AI
ν,μ(x) − Ek B I

μ(x)
}∥∥∥∥ � c

(
1 + |μ|)〈x〉s.

So, the terms (5.8) and (5.9) can be bounded uniformly in ν ∈ (−1,1) \ {0} by a function in L1(R \ [−1,1],dμ). For the
term (5.10), a direct calculation shows that it can be written as

−iμ−2
∑

j,k

∫
R

dx (F f )(x)
〈
V ∗

νxψ, [C j,Φ j]V ∗
νxCk Vνx

(
∂k AI

ν,−μ

)
(−x)V ∗

νxψ
〉
.

So, doing once more an integration by parts with respect to xk , one also obtains that this term is bounded uniformly in
ν ∈ (−1,1) \ {0} by a function in L1(R \ [−1,1],dμ).

The last estimates, together with our previous estimate for |μ| � 1, show that |L(ν,μ)| is bounded uniformly in |ν| < 1
by a function in L1(R,dμ). So, one can interchange the limit ν ↘ 0 and the integration over μ in (5.7). The interchange of
the limit ν ↘ 0 and the integration over x in (5.7) is justified by the bound obtained in Lemma 5.2. �

The existence of the usual time delay is now a direct consequence of Theorems 4.3 and 5.3:

Theorem 5.4. Let H0 , f , H and Φ satisfy Assumptions 2.1, 2.2, 3.1, 4.1 and 5.1. For each t ∈ R, let L(t) : H → H0 satisfy L(t)E H (I) ∈
B(H, H0) for any bounded subset I ⊂ R. Finally, let ϕ ∈ H−

0 ∩ D2 verify Sϕ ∈ D2 , (4.6) and (5.5). Then one has

lim
r→∞τ in

r (ϕ) = lim
r→∞τr(ϕ) = −〈

ϕ, S∗[T f , S]ϕ〉
,

with T f defined by (3.2).

Remark 5.5. In L2(Rd), the position operators Q j and the momentum operators P j are related to the free Schrödinger
operator by the commutation formula P j = i[−�/2, Q j]. Therefore, if one interprets the collection {Φ1, . . . ,Φd} as a family
of position operators, then it is natural (by analogy to the Schrödinger case) to think of H ′

0 ≡ (i[H0,Φ1], . . . , i[H0,Φd]) as
a velocity operator for H0. As a consequence, one can interpret the commutation assumption (5.5) as the conservation of
(a function of) the velocity operator H ′

0 by the scattering process, and the meaning of Theorem 5.4 reduces to the following:
If the scattering process conserves the velocity operator H ′

0, then the usual and the symmetrized time delays are equal.
There are several situations where the commutation assumption (5.5) is satisfied. Here we present three of them:

(i) Suppose that H0 is of class C1(Φ), and assume that there exists v ∈ R
d \{0} such that H ′

0 = v . Then the operator F f (H ′
0)

reduces to the scalar F f (v), and [F f (H ′
0), S] = 0 in B(H0). This occurs for instance in the case of Friedrichs-type and

Stark operators (see [21, Section 7.1]).
(ii) Suppose that Φ has only one component and that H ′

0 = H0. Then the operator F f (H ′
0) ≡ F f (H0) is diagonalizable in

the spectral representation of H0. We also know that S is decomposable in the spectral representation of H0. Thus
(5.5) is satisfied for each ϕ ∈ D0, since diagonalizable operators commute with decomposable operators. This occurs
in the case of Φ-homogeneous operators H0 such as the free Schrödinger operator (see [21, Section 7.2] and also [7,
Sections 10 and 11]).

(iii) More generally, suppose that F f (H ′
0) is diagonalizable in the spectral representation of H0. Then (5.5) is once more

satisfied for each ϕ ∈ D0, since diagonalizable operators commute with decomposable operators. For instance, in the
case of the Dirac operator and of dispersive systems with a radial symbol, we have neither H ′

0 = v ∈ R
d \ {0}, nor

H ′
0 = H0. But if we suppose f radial, then F f (H ′

0) is nevertheless diagonalizable in the spectral representation of H0
(see [21, Section 7.3] and [29, Remark 4.9]).
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