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Abstract

In this review we present some recent extensions of the method of the weakly conjugate operator.
We illustrate these developments through examples of operators on graphs and groups.

Introduction

In spectral analysis, one of the most powerful tools is the method of the conjugate operator, also
called Mourre’s commutator method after the seminal work of Mourre in the early eighties. This
approach has reached a very high degree of precision and abstraction in [1]; see also [14] for
further developments. In order to study the nature of the spectrum of a selfadjoint operator H ,
the main idea of the standard method is to find an auxiliary selfadjoint operator A such that the
commutator i[H,A] is strictly positive when localized in some interval of the spectrum ofH . More
precisely, one looks for intervals J of R such that

E(J)i[H,A]E(J) ≥ aE(J) (1)

for some strictly positive constant a that depends on J , whereE(J) denotes the spectral projection
of H on the interval J . An additional compact contribution to (1) is allowed, greatly enlarging the
range of applications.
When strict positivity is not available, one can instead look for an A such that the commutator is
positive and injective, i.e.

i[H,A] > 0. (2)

This requirement is close to the one of the Kato-Putnam theorem, cf. [29, Thm. XIII.28]. A
new commutator method based on such an inequality was proposed in [7, 8]. By analogy to the

∗On leave from Université de Lyon; Université Lyon 1; INSA de Lyon, F-69621; Ecole Centrale de Lyon; CNRS,
UMR5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France.

1



method of the conjugate operator, it has been called the method of the weakly conjugate operator
(MWCO). Under some technical assumptions, both approaches lead to a limiting absorption prin-
ciple, that is, a control of the resolvent of H near the real axis. In the case of the usual method of
the conjugate operator, this result is obtained locally in J , and away from thresholds. The MWCO
establishes the existence of the boundary value of resolvent also at thresholds, but originally ap-
plies only to situations where the operator H has a purely absolutely continuous spectrum. This
drawback limits drastically the range of applications. However, in some recent works [26, 27, 30]
the MWCO has also been applied successfully to examples with point spectrum. This review in-
tend to present and illustrate some of these extensions through applications to the spectral theory
of operators acting on groups and graphs.
Compared to the huge number of applications based on an inequality of the form (1), the number of
papers that contain applications of the MWCO is very small. Let us cite for example the works [13,
24, 25] that deal with the original form of the theory, and the papers [12, 20] that contain very close
arguments. The derivation of the limiting absorption principle of [12] has been abstracted in [30].
The framework of [30] is still the one of the MWCO, but since its result applies a certain class of
two-body Schrödinger operators which have bound states below zero, it can also be considered as
the first extension of the MWCO dealing with operators that are not purely absolutely continuous.
The main idea of [30] is that H itself can add some positivity to (2). The new requirement is the
existence of a constant c ≥ 0 such that

−cH + i[H,A] > 0.

This inequality, together with some technical assumptions, lead to a limiting absorption principle
which is either uniform on R if c = 0 or uniform on [0,∞) if c > 0.
The extensions of the MWCO developed in [26, 27] are of a different nature. In these papers, the
operators H under consideration admit a natural conjugate operator A that fulfills the inequality
i[H,A] ≥ 0, namely, the commutator is positive but injectivity may fail. In that situation, the
authors considered a decomposition H := K ⊕ G, and the restrictions of H and i[H,A] to these
subspaces. In favorable circumstances the injectivity can be restored in one of the subspace, and
a comprehensible description of the vectors of the second subspace can be given. This decom-
position leads again to statements that are close to the ones of the MWCO, but which apply to
operators with arbitrary spectrum. This extension is described in Section The extension.
We would also like to mention the references [2, 3]. They pereform what can be considered as a
unitary version of the MWCO and extend the Kato-Putnam analysis of unitary operators to the case
of unbounded conjugate operators. The main applications concern time-depending propagators.
The content of this review paper is the following. In Section The Method of the Weakly Conjugate
Operator we recall the original method of the weakly conjugate operator, and then present an
abstract version of the approach used in [26, 27]. In Section Spectral Analysis for Adjacency
Operators on Graphs we present applications of this approach to the study of adjacency operators
on graphs. A similar analysis for operators of convolution on locally compact groups is performed
in Section Convolution Operators on Locally Compact Groups.
Let us finally fix some notations. Given a selfadjoint operator H in a Hilbert space H, we write
Hc(H), Hac(H), Hsc(H), Hs(H) and Hp(H) respectively for the continuous, absolutely con-
tinuous, singularly continuous, singular and pure point subspaces of H with respect to H . The
corresponding parts of the spectrum of H are denoted by σc(H), σac(H), σsc(H), σs(H) and
σp(H).



Acknowledgements. M. M. was partially supported by the Chilean Science Foundation Fondecyt
under the Grant 1085162. S. R. and R. T. d A. thank the Swiss National Science Foundation for
financial support.

The Method of the Weakly Conjugate Operator

In this section we recall the basic characteristics of the method of the weakly conjugate operator,
as originally introduced and applied to partial differential operators in [7, 8]. We then present the
abstract form of the extension developed in [26, 27]. The method works for unbounded operators,
but for our purposes it is enough to assume H bounded.

The standard theory

We start by introducing some notations. The symbol H stands for a Hilbert space with scalar
product 〈·, ·〉 and norm ‖ · ‖. Given two Hilbert spaces H1 and H2, we denote by B(H1,H2)
the set of bounded operators from H1 to H2, and put B(H) := B(H,H). We assume that H is
endowed with a strongly continuous unitary group {Wt}t∈R. Its selfadjoint generator is denoted
by A and has domain D(A). In most of the applications A is unbounded.

Definition 1. A bounded selfadjoint operator H inH belongs to C1(A;H) if one of the following
equivalent condition is satisfied:

(i) the map R 3 t 7→W−tHWt ∈ B(H) is strongly differentiable,

(ii) the sesquilinear form

D(A)×D(A) 3 (f, g) 7→ i 〈Hf,Ag〉 − i 〈Af,Hg〉 ∈ C

is continuous when D(A) is endowed with the topology ofH.

We denote by B the strong derivative in (i), or equivalently the bounded selfadjoint operator as-
sociated with the extension of the form in (ii). The operator B provides a rigorous meaning to the
commutator i[H,A]. We write B > 0 if B is positive and injective, namely if 〈f,Bf〉 > 0 for all
f ∈ H \ {0}.

Definition 2. The operator A is weakly conjugate to the bounded selfadjoint operator H if H ∈
C1(A;H) and B ≡ i[H,A] > 0.

For B > 0 let us consider the completion B of H with respect to the norm ‖f‖B := 〈f,Bf〉1/2.
The adjoint space B∗ of B can be identified with the completion of BH with respect to the norm
‖g‖B∗ :=

〈
g,B−1g

〉1/2. One has then the continuous dense embeddings B∗ ↪→ H ↪→ B, and
B extends to an isometric operator from B to B∗. Due to these embeddings it makes sense to
assume that {Wt}t∈R restricts to a C0-group in B∗, or equivalently that it extends to a C0-group
in B. Under this assumption (tacitly assumed in the sequel) we keep the same notation for these
C0-groups. The domain of the generator of the C0-group in B (resp. B∗) endowed with the graph
norm is denoted by D(A,B) (resp. D(A,B∗)). In analogy with Definition 1 the requirement B ∈
C1(A;B,B∗) means that the map R 3 t 7→ W−tBWt ∈ B(B,B∗) is strongly differentiable, or
equivalently that the sesquilinear form

D(A,B)×D(A,B) 3 (f, g) 7→ i 〈f,BAg〉 − i 〈Af,Bg〉 ∈ C



is continuous when D(A,B) is endowed with the topology of B. Here, 〈·, ·〉 denotes the duality
between B and B∗. Finally let E be the Banach space

(
D(A,B∗),B∗

)
1/2,1

defined by real inter-
polation, see for example [1, Proposition 2.7.3]. One has then the natural continuous embeddings
B(H) ⊂ B(B∗,B) ⊂ B(E , E∗) and the following results [8, Theorem 2.1]:

Theorem 3. Assume thatA is weakly conjugate toH and thatB ≡ i[H,A] belongs toC1(A;B,B∗).
Then there exists a constant C > 0 such that∣∣〈f, (H − λ∓ iµ)−1f

〉∣∣ ≤ C‖f‖2E

for all λ ∈ R, µ > 0 and f ∈ E . In particular the spectrum of H is purely absolutely continuous.

The global limiting absorption principle plays an important role for partial differential operators,
cf. [7, 13, 24, 30]. However, for the examples included sections 3 and 4, the space E involved has a
rather obscure meaning and cannot be greatly simplified, so we shall only state the spectral results.

The extension

The extension proposed in [26, 27] relies on the following observation. Assume that H is a
bounded selfadjoint operator in a Hilbert space H. Assume also that there exists a selfadjoint
operator A such that H ∈ C1(A;H), and that

B ≡ i[H,A] = K2 (3)

for some selfadjoint operator K, which is bounded by hypothesis. It follows that i[H,A] ≥ 0
but injectivity may not be satisfied. So let us introduce the decomposition of the Hilbert space
H := K⊕G withK := ker(K). The operatorB is reduced by this decomposition and its restriction
B0 to G satisfies B0 > 0. Formally, the positivity and injectivity of B0 are rather promising, but
are obviously not sufficient for a direct application of the MWCO to B0.
However, let us already observe that some informations on Hp(H) can be inferred from (3). In-
deed, it follows from the Virial Theorem [1, Prop. 7.2.10] that any eigenvector f of H satisfies
〈f, i[H,A]f〉 = 0. So 0 =

〈
f,K2f

〉
= ‖Kf‖2, i.e. f ∈ ker(K), and one has proved:

Lemma 4. If H ∈ C1(A;H) and i[H,A] = K2, thenHp(H) ⊂ K = ker(K).

Let us now come back to the analysis of B0. The space B can still be defined in analogy with
what has been presented in the previous section: B is the completion of G with respect to the norm
‖f‖B := 〈f,Bf〉1/2. Then, the adjoint space B∗ of B can be identified with the completion of BG
with respect to the norm ‖g‖B∗ :=

〈
g,B−1g

〉1/2. But in order to go further on, some compatibility
has be imposed between the decomposition of the Hilbert space and the operators H and A. Let
us assume that both operators H and A are reduced by the decomposition K⊕G ofH, and let H0

and A0 denote their respective restriction to G. It clearly follows from the above lemma that H0

has no point spectrum.
We are now in a suitable position to rephrase Theorem 3 in our present framework. We freely use
the notations introduced above.

Theorem 5. Assume that H ∈ C1(A;H) and that B ≡ i[H,A] = K2. Assume furthermore that
both operators H and A are reduced by the decomposition ker(K)⊕ ker(K)⊥ of H and that B0

belongs to C1(A0;B,B∗). Then a limiting absorption principle holds for H0 uniformly on R, and
in particular the spectrum of H0 is purely absolutely continuous.



A straightforward consequence of this statement is that

Hsc(H) ⊂ Hs(H) ⊂ K = ker(K).

We will see in the applications below that Theorem 5 applies to various situations, and that it really
is a useful extension of the original method of the weakly conjugate operator.

Spectral Analysis for Adjacency Operators on Graphs

We present in this section the results of [26] on the spectral analysis for adjacency operators on
graphs. We follow the notations and conventions of this paper regarding graph theory.
A graph is a couple (X,∼) formed of a non-void countable setX and a symmetric relation∼ onX
such that x ∼ y implies x 6= y. The points x ∈ X are called vertices and couples (x, y) ∈ X ×X
such that x ∼ y are called edges. So, for simplicity, multiple edges and loops are forbidden in our
definition of a graph. Occasionally (X,∼) is said to be a simple graph. For any x ∈ X we denote
by N(x) := {y ∈ X : y ∼ x} the set of neighbours of x. We write deg(x) := #N(x) for the
degree or valence of the vertex x and deg(X) := supx∈X deg(x) for the degree of the graph. We
also suppose that (X,∼) is uniformly locally finite, i.e. that deg(X) < ∞. A path from x to y
is a sequence p = (x0, x1, . . . , xn) of elements of X , usually denoted by x0x1 . . . xn, such that
x0 = x, xn = y and xj−1 ∼ xj for each j ∈ {1, . . . , n}.
Throughout this section we restrict ourselves to graphs (X,∼) which are simple, infinite countable
and uniformly locally finite. Given such a graph we consider the adjacency operator H acting in
the Hilbert spaceH := `2(X) as

(Hf)(x) :=
∑
y∼x

f(y), f ∈ H, x ∈ X.

Due to [28, Theorem 3.1], H is a bounded selfadjoint operator with ‖H‖ ≤ deg(X) and spectrum
σ(H) ⊂ [−deg(X), deg(X)].
Results on the nature of the spectrum of adjacency operators on graphs are quite sparse. Some
absolutely continuous examples are given in [28], including the lattice Zn and homogeneous trees.
For cases in which singular components are present we refer to [11], [17], [31] and [32].
We now introduce the key concept of [26]. Sums over the empty set are zero by convention.

Definition 6. A function Φ : X → R is semi-adapted to the graph (X,∼) if

(i) there exists C ≥ 0 such that |Φ(x)− Φ(y)| ≤ C for all x, y ∈ X with x ∼ y,

(ii) for any x, y ∈ X one has ∑
z∈N(x)∩N(y)

[2Φ(z)− Φ(x)− Φ(y)] = 0. (4)

If in addition for any x, y ∈ X one has∑
z∈N(x)∩N(y)

[Φ(z)− Φ(x)] [Φ(z)− Φ(y)] [2Φ(z)− Φ(x)− Φ(y)] = 0, (5)

then Φ is adapted to the graph (X,∼).



For a function Φ semi-adapted to the graph (X,∼) we consider inH the operator K given by

(Kf)(x) := i
∑
y∼x

[Φ(y)− Φ(x)] f(y), f ∈ H, x ∈ X.

The operator K is selfadjoint and bounded due to the condition (i) of Definition 6. It commutes
withH , as a consequence of Condition (4). We also decompose the Hilbert spaceH into the direct
sum H = K ⊕ G, where G is the closure of the range KH of K, thus the orthogonal complement
of the closed subspace

K := ker(K) =
{
f ∈ H :

∑
y∈N(x) Φ(y)f(y) = Φ(x)

∑
y∈N(x) f(y) for each x ∈ X

}
.

It is shown in [26, Sec. 4] that H and K are reduced by this decomposition, and that their restric-
tions H0 and K0 to the Hilbert space G are bounded selfadjoint operators.
A rather straightforward application of the general theory presented in section The extension gives

Theorem 7 (Theorem 3.2 of [26]). Assume that Φ is a function semi-adapted to the graph (X,∼).
Then H0 has no point spectrum.

Theorem 8 (Theorem 3.3 of [26]). Let Φ be a function adapted to the graph (X,∼). Then the
operator H0 has a purely absolutely continuous spectrum.

The role of the weakly conjugate operator is played by A := 1
2(ΦK +KΨ) and the assumptions

imposed on Φ make the general theory work.
For a certain class of admissible graphs, the result of Theorem 8 on the restrictionH0 can be turned
into a statement on the original adjacency operatorH . The notion of admissibility requires (among
other things) the graph to be directed. Thus the family of neighbors N(x) := {y ∈ X : y ∼ x} is
divided into two disjoint sets N−(x) (fathers) and N+(x) (sons), N(x) = N−(x) tN+(x). We
write y < x if y ∈ N−(x) and x < y if y ∈ N+(x). On drawings, we set an arrow from y to x
(x← y) if x < y, and say that the edge from y to x is positively oriented.
We assume that the directed graph subjacent to X , from now on denoted by (X,<), is admissible
with respect to these decompositions, i.e. (i) it admits a position function and (ii) it is uniform. A
position function is a function Φ : X → Z such that Φ(y) + 1 = Φ(x) whenever y < x. It is
easy to see that it exists if and only if all paths between two points have the same index (which
is the difference between the number of positively and negatively oriented edges). The directed
graph (X,<) is called uniform if for any x, y ∈ X the number # [N−(x) ∩N−(y)] of common
fathers of x and y equals the number # [N+(x) ∩N+(y)] of common sons of x and y. Thus
the admissibility of a directed graph is an explicit property that can be checked directly, without
making any choice. The graph (X,∼) is admissible if there exists an admissible directed graph
subjacent to it.

Theorem 9 (Theorem 1.1 of [26]). The adjacency operator of an admissible graph (X,∼) is
purely absolutely continuous, except at the origin, where it may have an eigenvalue with eigenspace

ker(H) =
{
f ∈ H :

∑
y<x f(y) = 0 =

∑
y>x f(y) for each x ∈ X

}
. (6)

Many examples of periodic graphs, both admissible and non-admissible, are presented in [26, Sec.
6]. In particular, it is explained that periodicity does not lead automatically to absolute continuity,
especially (but not only) if the number of orbits is infinite. D-products of graphs, as well as the
graph associated with the one-dimensional XY Hamiltonian, are also treated in [26]. We recall
in Figures 1, 2, and 5 some two-dimensional Z-periodic examples taken from [26, Sec. 6]. More
involved, Zn-periodic situations are also available.



Fig. 1: Example of an admissible directed graph with ker(H) 6= {0}

Fig. 2: Example of an admissible directed graph

(a)

(b)

Fig. 3: Examples of admissible, directed graphs with ker(H) = {0}

Fig. 4: Example of an admissible, directed graph with ker(H) 6= {0}
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Fig. 5: Example of a non-admissible, adapted graph (with function Φ as indicated)



Convolution Operators on Locally Compact Groups

In this section we consider locally compact groups X , abelian or not, and convolution operators
Hµ, acting on L2(X), defined by suitable measures µ belonging to M(X), the Banach ∗-algebra
of complex bounded Radon measures on X . Using the method of the weakly conjugate operator,
we determine subspaces K1

µ and K2
µ of L2(X), explicitly defined in terms of µ and the family

Hom(X,R) of continuous group morphisms Φ : X → R, such thatHp(Hµ) ⊂ K1
µ andHs(Hµ) ⊂

K2
µ. This result, obtained in [27], supplements other works on the spectral theory of operators on

groups and graphs [4, 5, 6, 9, 10, 11, 15, 17, 18, 19, 21, 22, 23, 31].
Let X be a locally compact group (LCG) with identity e, center Z(X) and modular function ∆.
Let us fix a left Haar measure λ on X , using the notation dx := dλ(x). On discrete groups the
counting measure (assigning mass 1 to every point) is considered. The notation a.e. stands for
“almost everywhere” and refers to the Haar measure λ.
We consider in the sequel the convolution operator Hµ, µ ∈ M(X), acting in the Hilbert space
H := L2(X,dλ), i.e.

Hµf := µ ∗ f,

where f ∈ H and

(µ ∗ f)(x) :=

∫
X

dµ(y) f(y−1x) for a.e. x ∈ X.

The operator Hµ is bounded with norm ‖Hµ‖ ≤ ‖µ‖, and it admits an adjoint operator H∗µ equal
to Hµ∗ , the convolution operator by µ∗ ∈ M(X) defined by µ∗(E) = µ(E−1). If the measure µ
is absolutely continuous w.r.t. the left Haar measure λ, so that dµ = adλ with a ∈ L1(X), then
µ∗ is also absolutely continuous w.r.t. λ and dµ∗ = a∗dλ, where a∗(x) := a(x−1)∆(x−1) for
a.e. x ∈ X . In such a case we simply write Ha for Hadλ. We shall always assume that Hµ is
selfadjoint, that is µ = µ∗.
Given µ ∈ M(X), let ϕ : X → R be such that the linear functional

F : C0(X)→ C, g 7→
∫
X

dµ(x)ϕ(x)g(x)

is bounded. Then there exists a unique measure in M(X) associated to F , due to the Riesz-
Markov representation theorem. We write ϕµ for this measure, and we simply say that ϕ is such
that ϕµ ∈ M(X). We call real character any continuous group morphism Φ : X → R.

Definition 10. Let µ = µ∗ ∈ M(X).

(a) A real character Φ is semi-adapted to µ if Φµ,Φ2µ ∈ M(X), and (Φµ) ∗ µ = µ ∗ (Φµ).
The set of real characters that are semi-adapted to µ is denoted by Hom1

µ(X,R).

(b) A real character Φ is adapted to µ if Φ is semi-adapted to µ,Φ3µ ∈ M(X), and (Φµ) ∗
(Φ2µ) = (Φ2µ) ∗ (Φµ). The set of real characters that are adapted to µ is denoted by
Hom2

µ(X,R).

Let Kjµ :=
⋂

Φ∈Homj
µ(X,R)

ker(HΦµ), for j = 1, 2; then the main result is the following.

Theorem 11 (Theorem 2.2 of [27]). Let X be a LCG and let µ = µ∗ ∈ M(X). Then

Hp(Hµ) ⊂ K1
µ and Hs(Hµ) ⊂ K2

µ.



The cases K1
µ = {0} or K2

µ = {0} are interesting; in the first case Hµ has no eigenvalues, and
in the second case Hµ is purely absolutely continuous. A more precise result is obtained in a
particular situation.

Corollary 12 (Corollary 2.3 of [27]). LetX be a LCG and let µ = µ∗ ∈ M(X). Assume that there
exists a real character Φ adapted to µ such that Φ2 is equal to a nonzero constant on supp(µ).
ThenHµ has a purely absolutely continuous spectrum, with the possible exception of an eigenvalue
located at the origin, with eigenspace ker(Hµ) = ker(HΦµ).

Corollary 12 specially applies to adjacency operators on certain classes of Cayley graphs, which
are Hecke-type operators in the regular representation, thus convolution operators on discrete
groups.
To see how the method of the weakly conjugate operator comes into play, let us sketch the proof
of the second inclusion in Theorem 11. In quantum mechanics in Rd, the position operators Qj
and the momentum operators Pj satisfy the relation Pj = i[H,Qj ] with H := −1

2∆, and the
usual conjugate operator is the generator of dilations D := 1

2

∑
j(QjPj + PjQj). So if we regard

Φ ∈ Hom2
µ(X,R) as a position operator on X , it is reasonable to think of K := i[Hµ,Φ] as

the corresponding momentum operator and to use A := 1
2(ΦK + KΦ) as a tentative conjugate

operator. In fact, simple calculations using the hypotheses of Definition 10.(b) show that

K = −iHΦµ ∈ B(H) and i[Hµ, A] = K2.

Therefore Hµ ∈ C1(A;H) and the commutator i[Hµ, A] is a positive operator. However, in order
to apply the theory of Section The Method of the Weakly Conjugate Operator, we need strict
positivity. So, we consider the subspace G := [ker(K)]⊥ of H, where i[Hµ, A] ≡ K2 is strictly
positive. The orthogonal decomposition H := K ⊕ G with K := ker(K), reduces Hµ, K, and A,
and their restrictions H0, K0, and A0 to G are selfadjoint. It turns out that all the other conditions
necessary to apply Theorem 5 can also be verified in the Hilbert space G. So we get the inclusion

Hs ⊂ K = ker(HΦµ).

Since Φ ∈ Hom2
µ(X,R) is arbitrary, this implies the second inclusion of Theorem 11.

Examples

The construction of weakly conjugate operators for Hµ relies on real characters. So a small vec-
tor space Hom(X,R) is an obstacle to applying the method. A real character Φ maps compact
subgroups of X to the unique compact subgroup {0} of R. Consequently, abundancy of compact
elements (elements x ∈ X generating compact subgroups) prevents us from constructing weakly
conjugate operators. The extreme case is when X is itself compact, so that Hom(X,R) = {0}.
Actually in such a case all convolution operators Hµ have pure point spectrum. We review now
briefly some of the groups for which we succeeded in [27] to apply the MWCO.
If the group X is unimodular, one can exploit commutativity in a non-commutative setting by
using central measures (i.e. elements of the center Z[M(X)] of the convolution Banach ∗-algebra
M(X)). For instance, in the case of central groups [16], we have the following result (B(X) stands
for the closed subgroup generated by the set of compact elements of X):

Proposition 13 (Proposition 4.2 of [27]). Let X be a central group and µ0 = µ∗0 ∈ M(X) a
central measure such that supp(µ0) is compact and not included in B(X). Let µ1 = µ∗1 ∈ M(X)
with supp(µ1) ⊂ B(X) and set µ := µ0 + µ1. ThenHac(Hµ) 6= {0}.



Let us recall three examples deduced from Proposition 13 taken from [27].

Example 14. Let X := S3 × Z, where S3 is the symmetric group of degree 3. The group S3

has a presentation
〈
a, b | a2, b2, (ab)3

〉
, and its conjugacy classes are E1 = E−1

1 = {e}, E2 =
E−1

2 = {a, b, aba} and E3 = E−1
3 = {ab, ba}. Set E := {E2, E3} and choose IE1 , IE2 two finite

symmetric subsets of Z, each of them containing at least two elements. Then Hac(HχS ) 6= {0} if
S :=

⋃
E∈E E × IE .

Example 15. Let X := SU(2) × R, where SU(2) is the group (with Haar measure λ2) of
2 × 2 unitary matrices of determinant +1. For each ϑ ∈ [0, π] let C(ϑ) be the conjugacy
class of the matrix diag(eiϑ, e−iϑ) in SU(2). A direct calculation (using for instance Euler an-
gles) shows that λ2

(⋃
ϑ∈J C(ϑ)

)
> 0 for each J ⊂ [0, π] with nonzero Lebesgue measure.

Set E1 :=
⋃
ϑ∈(0,1)C(ϑ), E2 :=

⋃
ϑ∈(2,π)C(ϑ), E := {E1, E2}, IE1 := (−1, 1), and IE2 :=

(−3,−2) ∪ (2, 3). ThenHac(HχS ) 6= {0} if S :=
⋃
E∈E E × IE .

Example 16. Let X be a central group, let z ∈ Z(X) \B(X), and set µ := δz + δz−1 + µ1 for
some µ1 = µ∗1 ∈ M(X) with supp(µ1) ⊂ B(X). Then µ satisfies the hypotheses of Proposition
13, and we can choose Φ ∈ Hom(X,R) such that Φ(z) = 1

2Φ(z2) 6= 0 (note in particular
that z /∈ B(X) iff z2 /∈ B(X) and that Φµ1 = 0). Thus Hs(Hµ) ⊂ ker(HΦµ). But f ∈ H
belongs to ker(HΦµ) = ker

(
HΦ(δz+δz−1 )

)
iff f(z−1x) = f(zx) for a.e. x ∈ X . This periodicity

w.r.t. the non-compact element z2 implies that the L2-function f should vanish a.e. and thus that
Hac(Hµ) = H.

If X is abelian all the commutation relations in Definition 10 are satisfied. Moreover one can
use the Fourier transform F to map unitarily Hµ on the operator Mm of multiplication with
m = F (µ) on the dual group X̂ of X . So one gets from from Theorem 11 a general lemma on
muliplication operators. We recall some definitions before stating it.

Definition 17. The function m : X̂ → C is differentiable at ξ ∈ X̂ along the one-parameter
subgroup ϕ ∈ Hom(R, X̂) if the function R 3 t 7→ m(ξ +ϕ(t)) ∈ C is differentiable at t = 0. In
such a case we write (dϕm) (ξ) for d

dtm(ξ + ϕ(t))
∣∣
t=0

. Higher order derivatives, when existing,
are denoted by dkϕm, k ∈ N.

We say that the one-parameter subgroup ϕ : R → X̂ is in Hom1
m(R, X̂) if m is twice differen-

tiable w.r.t. ϕ and dϕm, d2
ϕm ∈ F (M(X)). If, in addition, m is three times differentiable w.r.t. ϕ

and d3
ϕm ∈ F (M(X)) too, we say that ϕ belongs to Hom2

m(R, X̂).

Lemma 18 (Corollary 4.7 of [27]). Let X be a locally compact abelian group and let m0,m1 be
real functions with F−1(m0),F−1(m1) ∈ M(X) and supp(F−1(m1)) ⊂ B(X). Then

Hp(Mm0+m1) ⊂
⋂

ϕ∈Hom1
m0

(R,X̂)

ker(Mdϕm0)

and
Hs(Mm0+m1) ⊂

⋂
ϕ∈Hom2

m0
(R,X̂)

ker(Mdϕm0).



We end up this section by considering a class of semidirect products. Let N,G be two discrete
groups with G abelian (for which we use additive notations), and let τ : G→ Aut(N) be a group
morphism. Let X := N ×τ G be the τ -semidirect produt of N by G. The multiplication in X is
defined by

(n, g)(m,h) := (nτg(m), g + h),

so that
(n, g)−1 = (τ−g(n

−1),−g).

In this situation it is shown in [27] that many convolution operators Ha, with a : X → C of finite
support, have a non-trivial absolutely continuous component. For instance, we have the following
for a type of wreath products.

Example 19. Take G a discrete abelian group and put N := RJ , where R is an arbitrary discrete
group and J is a finite set on which G acts by (g, j) 7→ g(j). Then τg

(
{rj}j∈J

)
:= {rg(j)}j∈J

defines an action of G on RJ , thus we can construct the semidirect product RJ ×τ G. If G0 =
−G0 ⊂ G and R0 = R−1

0 ⊂ R are finite subsets with G0 ∩ [G \B(G)] 6= ∅, then N0 := RJ0
satisfies all the conditions of [27, Sec. 4.4]. ThusHac(HχS ) 6= {0} if S := N0 ×G0.

Virtually the methods of [27] could also be applied to non-split group extensions.
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[13] A. Iftimovici and M. Măntoiu. Limiting absorption principle at critical values for the Dirac
operator. Lett. Math. Phys. 49(3): 235–243, 1999.

[14] V. Georgescu, C. Gérard and J.S. Moeller. Commutators, C0-semigroups and Resolvent
Estimates. J. Funct. Anal. 216(2): 303–361, 2004.

[15] G. Georgescu and S. Golénia. Isometries, Fock spaces, and spectral analysis of Schrödinger
operators on trees. J. Funct. Anal. 227(2): 389–429, 2005.

[16] S. Grosser and M. Moskowitz. On central topological groups. Trans. Amer. Math. Soc. 127:
317–340, 1967.
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Metoda operatorului slab conjugat: Extensii si aplicatii la operatori definiti pe grafuri si
grupuri

Rezumat

In aceasta lucrare sunt prezentate cateva extensii recente ale metodei operatorului conjugat slab.
Sunt ilustrate aceste dezvoltari prin exemple ale aplicarii operatorilor pe grafuri si grupuri.


