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Weber–Schafheitlin-type integrals with exponent 1

Johannes Kellendonk* and Serge Richard

Université de Lyon, Université Lyon 1, Institut Camille Jordan, CNRS UMR 5208,
Villeurbanne Cedex, France

(Received 7 April 2008 )

Explicit formulae for Weber–Schafheitlin-type integrals with exponent 1 are derived. The results of these
integrals are distributions on R+.
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1. Introduction

Let Jμ denote the Bessel function of the first kind and of order μ. An integral of the form

∫ ∞

0
κρ Jμ(sκ) Jν (κ)dκ (1)

for suitable μ, ν, ρ ∈ R and s ∈ R+ = (0, ∞) is called a Weber–Schafheitlin integral [10, Chapter
13.4]. If ρ is strictly less than 1, the result of this integration is known and can be found in many
textbooks or handbooks; see for example [3,10,12]. However, the critical case ρ = 1 turns out
to be of considerable interest in the scattering theory (forthcoming paper, The Aharonov–Bohm
wave operators revisited, by J. Kellendonk and S. Richard). Therefore, we provide in this paper
the result of Equation (1) for ρ = 1 as well as the result of the related integral

∫ ∞

0
κ H(1)

μ (sκ) Jν(κ) dκ (2)

where H(1)
μ is the Hankel function of the first kind and of order μ. We emphasize that both results

are not functions of the variable s but distributions on R+. We also mention that in [2] the special
cases ν = ±μ of Equation (1) and ν = μ of Equation (2) have already been explicitly calculated.

It is interesting to note that for values of ρ strictly smaller than 1, integral (1) can also be seen
as a very special case of a more general family of expressions analysed by Srivastava, Miller and
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148 J. Kellendonk and S. Richard

their collaborators. For example, in [9] the integrals

∫ ∞

0
t�−1

⎛
⎝ n∏

j=1

Jνj
(xj t)

⎞
⎠ dt

are evaluated in terms of Lauricella hypergeometric functions. In [4–7], the Mellin transform of the
product of two generalized hypergeometric functions is investigated, and again Equation (1) can be
obtained by a very special choice of the parameters. However, the extreme values corresponding to
ρ = 1 are not considered in these references. Such an investigation would certainly be of interest,
and our result can be seen as a first step in this direction (see also [8] for related work).

2. The derivation of integral (2)

Let us start by recalling that for z ∈ C satisfying −π/2 < arg(z) ≤ π one has [1, Equation 9.6.4]

H(1)
μ (z) = 2

iπ
e−iπμ/2 Kμ(−iz),

where Kμ is the modified Bessel function of the second kind and of order μ. Moreover, for
�(z) > 0 and ν + 2 > |μ| the following result holds [10, Section 13.45]:

∫ ∞

0
κKμ(zκ)Jν(κ) dκ = �((ν + μ)/2 + 1)�((ν − μ)/2 + 1)

�(ν + 1)
z−2−ν

× 2F 1

(
ν + μ

2
+ 1,

ν − μ

2
+ 1; ν + 1; −z−2

)
,

where 2F 1 is the Gauss hypergeometric function [1, Chapter 15]. Thus, by setting z = s + iε with
s ∈ R+ and ε > 0 one obtains

Iμ,ν(s + iε) :=
∫ ∞

0
κ H(1)

μ ((s + iε)κ)Jν(κ)dκ

= 2

iπ
e−iπμ/2 �((ν + μ)/2 + 1)�((ν − μ)/2 + 1)

�(ν + 1)
(−is + ε)−2−ν

× 2F 1

(
ν + μ

2
+ 1,

ν − μ

2
+ 1; ν + 1; (s + iε)−2

)
.

Taking into account [1, Equality 15.3.3] one can isolate from the 2F 1-function a factor that is
singular for s = 1 when ε goes to 0:

2F 1

(
ν + μ

2
+ 1,

ν − μ

2
+ 1; ν + 1; (s + iε)−2

)

= 1

1 − (s + iε)−2 2F 1

(
ν + μ

2
,
ν − μ

2
; ν + 1; (s + iε)−2

)
.

Furthermore, by inserting the equalities

1

1 − (s + iε)−2
= −(s + iε)2 1

s

1

((1 + ε2)/s − s) − 2iε
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Integral Transforms and Special Functions 149

and

(−is + ε)−2−ν = −eiπν/2(s + iε)−2−ν,

in these expressions, one finally obtains that Iμ,ν(s + iε) is equal to

2

iπ
eiπ(ν−μ)/2 1

s

(s + iε)−ν

((1 + ε2)/s − s) − 2iε

�((ν + μ)/2 + 1)�((ν − μ)/2 + 1)

�(ν + 1)

2F 1

(
ν + μ

2
,
ν − μ

2
; ν + 1; (s + iε)−2

)
. (3)

We are now ready to study the ε-behaviour of each of the above terms. For the particular choice
of the three parameters (ν + μ)/2, (ν − μ)/2 and ν + 1, the map

z �→ 2F 1

(
ν + μ

2
,
ν − μ

2
; ν + 1; z

)
,

which is holomorphic in the cut complex plane C \ [1, ∞), extends continuously to [1, ∞). The
limits from above and below yield generally two different continuous functions and, by convention,
the hypergeometric function on [1, ∞) is the limit obtained from below. Since �(

(s + iε)−2
)

< 0,
the 2F 1-factor in Equation (3) converges to 2F 1((ν + μ)/2, (ν − μ)/2; ν + 1; s−2) as ε → 0,
uniformly in s on any compact subset of R+.

For the other factors, let us observe that (s + iε)−ν converges to s−ν as ε → 0 uniformly in s

on any compact subset of R+. Furthermore, it is known that

lim
ε→0

1

((1 + ε2)/s − s) − 2iε
= Pv

(
1

1/s − s

)
+ i

π

2
δ(s − 1), (4)

where the convergence has to be understood in the sense of distributions on R+. In the last
expression, δ is the Dirac measure centred at 0 and Pv denotes the principal value integral. By
collecting all these results one can prove the following proposition.

PROPOSITION 1 For any μ, ν ∈ R satisfying ν + 2 > |μ| and s ∈ R+ one has

∫ ∞

0
κ H(1)

μ (sκ)Jν(κ)dκ = eiπ(ν−μ)/2 δ(s − 1) + 2

iπ
eiπ(ν−μ)/2 Pv

(
1

1/s − s

)

× s−ν

s

�((ν + μ)/2 + 1)�((ν − μ)/2 + 1)

�(ν + 1)

× 2F 1

(
ν + μ

2
,
ν − μ

2
; ν + 1; s−2

)
(5)

as an equality between two distributions on R+.

Remark 1 A priori, the second term in the r.h.s. is not well defined, since it is the product
of the distribution Pv( 1

1/s−s
) with a function which is not smooth, or at least differentiable at

s = 1. However, by using the development of the hypergeometric function in a neighbourhood of
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150 J. Kellendonk and S. Richard

1 [1, Equation 15.3.11] it is easily observed that

�((ν + μ)/2 + 1) �((ν − μ)/2 + 1)

�(ν + 1)
2F 1

(
ν + μ

2
,
ν − μ

2
; ν + 1; s−2

)
= 1 + (s − 1) h(s)

(6)
with a function h that belongs to L1

loc(R+). Thus, for any α ∈ R, the second term in the r.h.s. of
Equation (5) is equal to

2

iπ
eiπ(ν−μ)/2

[
sαPv

(
1

1/s − s

)
+ sα

1/s − s

(
s−ν−α

s

�((ν + μ)/2 + 1)�((ν − μ)/2 + 1)

�(ν + 1)

× 2F 1

(
ν + μ

2
,
ν − μ

2
; ν + 1; s−2

)
− 1

)]
, (7)

with the second term in L1
loc(R+). Clearly, this distribution is now well defined. The parameter α

has been added because it may be useful in certain applications.

Remark 2 To describe the singularity at s = 1, the decomposition (7) of the second term of the
r.h.s. of Equation (5) is certainly valuable. However, it seems to us that this decomposition is less
useful if one needs to control the behaviour at s = 0.

Remark 3 In the special case μ = ±ν, the hypergeometric function is equal to 1, and thus the
r.h.s. simplifies drastically.

Proof of Proposition 1 (a) For any ε > 0, let us define the function

pε : R+ 	 s �→ 1

((1 + ε2)/s − s) − 2iε
∈ C

and the function R+ 	 s → qε(s) ∈ C by

qε(s) := 2

iπ
eiπ(ν−μ)/2 (s + iε)−ν

s

�((ν + μ)/2 + 1) �((ν − μ)/2 + 1)

�(ν + 1)

× 2F 1

(
ν + μ

2
,
ν − μ

2
; ν + 1; (s + iε)−2

)
.

Clearly, one gets from Equation (3) that pε(s)qε(s) = Iμ,ν(s + iε) and from the above remarks
that

lim
ε→0

qε(s) = 2

iπ
eiπ(ν−μ)/2 s−ν

s

�((ν + μ)/2 + 1)�((ν − μ)/2 + 1)

�(ν + 1)

× 2F 1

(
ν + μ

2
,
ν − μ

2
; ν + 1; s−2

)
=: q0(s),

the convergence being uniform in s on any compact subset of R+. Furthermore, it follows from
[1, Equation 15.1.20] that q0(1) = (2/iπ)eiπ(ν−μ)/2.

(b) Let g ∈ C∞
c (R+), i.e. g is a smooth function with compact support in R+, and set

Mg := sup
ε∈[0,1]

∫
R+

|qε(s)g(s)| ds.

For any η > 0, one can then choose a compact subset Kη of [0, ∞) such that

sup
ε∈[0,1]

sup
s∈R+\Kη

|pε(s)| ≤ η

6Mg

,

which implies that
∫

R+\Kη
|qε(s)pε′(s)g(s)|ds ≤ η/6 for all ε, ε′ ∈ [0, 1].
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Integral Transforms and Special Functions 151

(c) Finally, one has

∫
R+

qε(s)pε(s)g(s) ds =
∫

R+
q0(s)pε(s)g(s) ds +

∫
R+

(qε(s) − q0(s))pε(s)g(s) ds

=
∫

R+
pε(s)q0(s)g(s) ds +

∫
Kη

(qε(s) − q0(s))pε(s)g(s) ds

+
∫

R+\Kη

(qε(s) − q0(s))pε(s)g(s) ds.

For ε → 0, the first term on the r.h.s. converges to

eiπ(ν−μ)/2g(1) + 2

iπ
eiπ(ν−μ)/2

∫
R+

Pv

(
1

1/s − s

)
s−ν

s

�((ν + μ)/2 + 1)�((ν − μ)/2 + 1)

�(ν + 1)

× 2F 1

(
ν + μ

2
,
ν − μ

2
; ν + 1; s−2

)
g(s) ds.

Indeed, the convergence of Equation (4) holds in the sense of distributions not only on smooth
functions on R+ with compact support, but also on the product q0g of the non-smooth function
q0 with the smooth function g. This can easily be obtained by using the development given in
Equation (6). Furthermore, one has

∣∣∣∣∣
∫

Kη

(qε(s) − q0(s))pε(s)g(s) ds

∣∣∣∣∣ ≤ sup
s∈Kη∩ supp g

|qε(s) − q0(s)|
∫

Kη

|pε(s)g(s)| ds,

which is less than η/3 for ε small enough since qε − q0 converges uniformly to 0 on any compact
subset of R+. And finally, from the choice of Kη one has

∣∣∣∣∣
∫

R+\Kη

(qε(s) − q0(s))pε(s)g(s) ds

∣∣∣∣∣ ≤ η/3.

Since η is arbitrary, one has thus obtained that the map s �→ pε(s)qε(s) converges in the
sense of distributions on R+ to the distribution given by the r.h.s. term of the statement of he
proposition. �

Remark 4 In the previous proof, the Lebesgue measure on R+ has been used for the evaluation
of the distribution on a smooth function with compact support in R+. Let us notice that the same
result holds if the measure ds/s is chosen instead of the Lebesgue measure.

3. The derivation of integral (1)

In the next proposition, the function H(1)
μ of the previous statement is replaced by the Bessel

function Jμ. Since H(1)
μ = Jμ + iYμ with Jμ and Yμ real on R+, taking the real part of both sides

of Equation (5) would lead to the result. However, since the real and the imaginary parts of the
Gauss hypergeometric function are not very explicit, we prefer to sketch an independent proof.
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152 J. Kellendonk and S. Richard

PROPOSITION 2 For any μ, ν ∈ R satisfying ν + 2 > |μ| and μ + 2 > |ν|, and s ∈ R+ one has
∫ ∞

0
κJμ(sκ)Jν(κ) dκ = cos(π(ν − μ)/2)δ(s − 1) + 2

π
sin(π(ν − μ)/2)Pv

(
1

1/s − s

)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sμ

s

�((μ + ν)/2 + 1)�((μ − ν)/2 + 1)

�(μ + 1)
2F 1

(
μ + ν

2
,
μ − ν

2
; μ + 1; s2

)
if s ≤ 1,

s−ν

s

�((ν + μ)/2 + 1)�((ν − μ)/2 + 1)

�(ν + 1)
2F 1

(
ν + μ

2
,
ν − μ

2
; ν + 1; s−2

)
if s > 1,

as an equality between two distributions on R+.

Remark 5 We refer to Remark 1 for a discussion on the fact that the distribution corresponding
to the second term on the r.h.s. is well defined.

Proof of Proposition 2 (a) Even if the proof is very similar to the previous one, two additional
observations have to be taken into account: (1) the map z �→ 2F 1(α, β; γ ; z) is real when z is
restricted to the interval [0, 1) and (2) there exists a simple relation between �(Iμ,ν) and �(Iν,μ).
More precisely, for any s ∈ R+ \ {1} one has

�(Iμ,ν(s)) =
∫ ∞

0
κJμ(sκ)Jν(κ) dκ

= s−2
∫ ∞

0
κJμ(κ)Jν(s

−1κ) dκ

= s−2�(Iν,μ(s−1)).

Thus the main trick of the proof is to use the previous expressions for s ∈ (1, ∞) since the
contribution of the 2F 1-function in Equation (5) is then real, and to obtain similar formulae below
for s ∈ (0, 1]. However, some care has to be taken because of the Dirac measure at 1 and of the
principal value integral also centred at 1.

So, for any s ∈ (0, 1] and ε > 0, let us set z := s − iε. Since the conditions −π/2 < arg(z−1) ≤
π , �(−iz−1) > 0 and μ + 2 > |ν| hold, one can obtain the analogue of Equation (3):

1

z2

∫ ∞

0
κH(1)

ν (z−1κ)Jμ(κ) dκ = − 2

iπ
e−iπ(ν−μ)/2 1

((1 + ε2)/s − s) + 2iε
mε(s),

with mε : (0, 1] → C, the function defined by

mε(s) := (s − iε)μ

s

�((μ + ν)/2 + 1)�((μ − ν)/2 + 1)

�(μ + 1)

× 2F 1

(
μ + ν

2
,
μ − ν

2
; μ + 1; (s − iε)2

)
. (8)

(b) We now collect both functions, for s ≤ 1 and s > 1. For that purpose, let lε : R+ → C be
the function defined for s ∈ (0, 1] by

lε(s) = − 2

iπ
e−iπ(ν−μ)/2 1

((1 + ε2)/s − s) + 2iε

and for s ∈ (1, ∞) by

lε(s) = 2

iπ
eiπ(ν−μ)/2 1

((1 + ε2)/s − s) − 2iε
.
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Integral Transforms and Special Functions 153

By selecting only the real part of lε, one obtains that �(lε) converges in the sense of distributions
on R+ as ε → 0 to the distribution:

cos(π(ν − μ)/2)δ(s − 1) + 2

π
sin(π(ν − μ)/2)Pv

(
1

1/s − s

)
.

Furthermore, let mε : R+ → C be the function defined for s ∈ (0, 1] by (8) and for
s ∈ (1, ∞) by

(s + iε)−ν

s

�((ν + μ)/2 + 1)�((ν − μ)/2 + 1)

�(ν + 1)
2F 1

(
ν + μ

2
,
ν − μ

2
; ν + 1; (s + iε)−2

)
.

As ε goes to 0, this function converges uniformly on any compact subset of R+ to a continuous
real function m0. Furthermore, this function takes the value 1 for s = 1. Indeed, these properties
of m0 follow from the facts that the 2F 1-functions are real on the [0, 1], that the convergences
from above or below this interval give the same values, and that the normalization factors have
been suitably chosen. The function m0 is the one given after the curly bracket in the statement of
the proposition.

(c) The remaining part of the proof can now be mimicked from part (c) of the proof of
the previous proposition. Therefore, we simply refer to this paragraph and omit it from the present
proof. �
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