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Abstract: An explicit construction is provided for embedding n positive eigenvalues in the

spectrum of a Schrödinger operator on the half-line with a Dirichlet boundary condition at the

origin. The resulting potential is of von Neumann-Wigner type, but can be real-valued as well as

complex-valued.
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1. Introduction. Since the seminal paper of

von Neumann and Wigner [13], Schrödinger oper-

ators with embedded positive eigenvalues have

always played a special role in spectral and in

scattering theory. In particular, several attempts

have been made for generalizing the original result

and for studying the stability of the embedded

eigenvalues. It is obviously impossible to mention

all references dealing with these questions, but let

us mention a few which are related to our inves-

tigations [3–5,8,11], as well as the books [6, Chap.

4.4] and [10, App. 2, Chap. XI.8]. Despite these

numerous works it seems to the authors of the

present note that there is still some room left for

discussing the case of n distinct embedded eigen-

values, especially for complex-valued potentials.

Given n numbers �1 > �2 > � � � > �n > 0, we

propose a very simple construction of a von

Neumann and Wigner’s type potential V such that

the corresponding Schrödinger operator � d2

dr2 þ V
on Rþ with Dirichlet condition at the origin, admits

the eigenvalues �2
1; �

2
2; . . . ; �2

n. The potential V as

well as the eigenfunctions vj are explicitly con-

structed and do not rely on an implicit equation.

In addition, a family of n parameters can still be

chosen arbitrarily, asserting once more that these

eigenvalues are stable under suitable modifications

of the potential, see for example [1,5]. We empha-

size that depending on the choice of these param-

eters, the potential V can be real and thus leads to

a self-adjoint operator, or can be complex-valued.

Note however that the leading term of the potential

is of the form (for large r)

V ðrÞ ¼ � 4

r

Xn
j¼1

�j sinð2�jrÞ þOðr�2Þ;ð1Þ

which implies in particular that the dependence in

these parameters takes place only in the remainder

term at infinity. In fact, in the main statement

below we exhibit the second term of the expansion

of the potential and its dependence on the men-

tioned parameters.

The possibility of constructing a potential V of

the form (1) with n positive eigenvalues has been

known for a long time, see for example [6,9,10].

Despite this fact, it appears to the authors that an

explicit solution has never been provided. Let us

however emphasize that our inspiration came from

the paper [9] and from the book [6], in the special

case when all mentioned parameters are equal to 1

(or more precisely when the matrix A of Theorem 1

is equal to the identity matrix). Moses and Tuan

based their example on the Gel’fand-Levitan theory

for inverse problem, see [7]. By adapting their idea,

one can construct directly a potential having

several positive eigenvalues, but it is not necessary

to use the theory of Gel’fand and Levitan. Let us

also mention that an alternative construction has

been proposed in [11] which leads to the possibility

of embedding a finite or an infinite number of

positive eigenvalues, but even in the finite case, the

resulting potential is not of the form of the one we
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exhibit. In addition, it seems that most if not all

previous works were dealing with real-valued po-

tentials only.

In the last part of this note, we mention that

our main result, obtained for Schrödinger operator

on Rþ with a Dirichlet condition at the origin, also

leads to a similar result for Schrödinger operators

on R3 with spherically symmetric potential of the

form V ðj � jÞ. We also show that such a simple

construction can only take place in R3 and not in

any other dimension Rd if d is different from 1 or 3.

Let us finally mention that part of the results of

the present note was announced in [12].

2. The main result. For any positive num-

bers �1 > �2 > � � � > �n > 0 and any r 2 R, let us set

sðrÞ :¼ tðsinð�1rÞ; sinð�2rÞ; . . . ; sinð�nrÞÞ
cðrÞ :¼ tðcosð�1rÞ; cosð�2rÞ; . . . ; cosð�nrÞÞ

gijðrÞ :¼
Z r

0

sinð�i�Þ sinð�j�Þ d�;

where tð�Þ means the transposed vector (a column

vector). Note that gij ¼ gji, and by taking the

equality

sinð�i�Þ sinð�j�Þ

¼ 1

2
cosðð�i � �jÞ�Þ � cosðð�i þ �jÞ�Þ
� �

into account, one also infers that

gijðrÞ ¼
hijðrÞ for i 6¼ j
r

2
þ hiiðrÞ for i ¼ j

8<
:ð2Þ

with

hijðrÞ ¼

sinðð�i � �jÞrÞ
2ð�i � �jÞ

�
sinðð�i þ �jÞrÞ

2ð�i þ �jÞ
for i 6¼ j

�
sinð2�irÞ

4�i
for i ¼ j.

8>>>>><
>>>>>:

Both expressions for gij will be useful later on.

We also denote by G the n� n hermitian

matrix ðgijÞni;j¼1, and set 1n for the n� n identity

matrix. In the sequel we write C1ð½0;1ÞÞ for

smooth functions on ð�";1Þ, for some " > 0, but

restricted to the subset ½0;1Þ. Finally, we write C�

for C n f0g, and use the standard notation f 0 for the

derivative of a function f with respect to its

variable. Our main result then reads:

Theorem 1. Let A ¼ Diagða1; � � � ; anÞ be a

diagonal matrix with aj 2 fz 2 C� j <ðzÞ � 0g.

Then, ðAþGðrÞÞ is invertible for any r � 0, and

by setting

vðrÞ :¼ �ðAþGðrÞÞ�1sðrÞ
and

V ðrÞ :¼ 2
Xn
j¼1

sinð�j�Þ vjð�Þ
 !0

ðrÞ;

the following properties hold:

(i) V 2 L1ðRþÞ \ C1ð½0;1ÞÞ and satisfies for

r!1

V ðrÞ ¼ �
4

r

Xn
j¼1

�j sinð2�jrÞð3Þ

þ
8

r2

Xn
j¼1

aj �j sinð2�jrÞ þWðrÞ
 !

þOðr�3Þ;
with W the real-valued function given by

W ðrÞ ¼
Xn
j¼1

sin2ð�jrÞ
 !2

þ 2
Xn
i;j¼1

hijðrÞ�i sinð�jrÞ cosð�irÞ:

(ii) For any j, the component vj of v belongs to

C1ð½0;1ÞÞ and satisfies jvjðrÞj � Const. r
1þr2 for any

r 2 Rþ. In addition, vj is a solution of the equation

ð� d2

dr2 þ V Þvj ¼ �2
j vj, where the Dirichlet realization

of the operator � d2

dr2 þ V is considered in L2ðRþÞ.
Remark 2. Let us emphasize that the essen-

tial spectrum ½0;1Þ of the Dirichlet realization of

� d2

dr2 þ V , as well as its embedded eigenvalues �2
j ,

are independent of any choice of the parameters aj,

as long as the invertibility condition of AþGðrÞ is

ensured. This property is quite remarkable since

the vj’s and hence the potential V depend on A, as

shown in (3). Note that in this expression, we have

emphasized the linear dependence on the parame-

ters aj in the second order term, but the remainder

term also depends on them. Note also that V is real-

valued, and thus � d2

dr2 þ V is self-adjoint, if aj > 0

for all j 2 f1; . . . ; ng, but is complex-valued if

=ðajÞ 6¼ 0 for some j. This persistence of the

embedded eigenvalues under lower order modifica-

tions of the potential is consistent with the results

contained in [1,5].

Remark 3. For information and as we shall

see in (5), (6) and in (13), each vj satisfies the

expansions for r! 0
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vjðrÞ ¼ �a�1
j �jrþOðr4Þ;

and for r!1

vjðrÞ ¼ �
2

r
sinð�jrÞ þ

4

r2

�
aj sinð�jrÞ

þ
Xn
l¼1

hjlðrÞ sinð�lrÞ
�
þOðr�3Þ:

In a similar way, the asymptotic expansions of

v0jðrÞ as r!1 can be obtained from (14), and the

asymptotic expansion of v00j ðrÞ as r!1 follows

readily from the relation v00j ¼ ð��2
j þ V Þvj.

The following proof is divided into several

small pieces. We use the notation MnðCÞ for the

set of all n� n complex matrices, and the notation

h�; �i :¼
Pn

j¼1 �j�j for the usual scalar product in

Cn.

Proof. a) Let us first show the invertibility of

AþGðrÞ for any r � 0. For r ¼ 0, it follows from

the definition that Gð0Þ ¼ 0, and then A is inver-

tible because each aj 6¼ 0. Assume now that there

exists � 2 Cn n f0g which belongs to the kernel of

AþGðrÞ for some fixed r > 0. Then one has

0 ¼ h�; ðAþGðrÞÞ�ið4Þ
¼ ih�;=ðAÞ�i þ h�; ½<ðAÞ þGðrÞ��i:

By assumption on aj, it follows that <ðAÞ � 0, while

for the second real term one has

h�;GðrÞ�i ¼
Z r

0

Xn
i;j¼1

�i�j sinð�i�Þ sinð�j�Þ d�

¼
Z r

0

Xn
i¼1

�i sinð�i�Þ
�����

�����
2

d� > 0:

One infers from these estimates that the real term

in (4) can not be equal to 0, leading thus to a

contradiction.

Since AþGðrÞ is invertible for any r � 0, one

sets

vðrÞ :¼ �ðAþGðrÞÞ�1sðrÞð5Þ

and readily infers that v 2 C1ð½0;1Þ; CnÞ.
b) Let us observe that for any r > 0 and by the

mean value theorem, it exists � ¼ �ðrÞ 2 ð0; 1Þ such

that gijðrÞ ¼ r sinð�i�rÞ sinð�j�rÞ, from which one

deduces that

1

r3
gijðrÞ

����
���� ¼ sinð�i�rÞ

�i�r

����
���� sinð�j�rÞ

�j�r

����
�����i�j�2 � �i�j:

Consequently, from this estimate and from the

explicit expression provided in (2) the following

properties hold:

AþGðrÞ ¼
r

2
1n þOð1Þ as r!1

AþOðr3Þ as r! 0

8<
:

¼
r

2
ð1n þOðr�1ÞÞ as r!1

AþOðr3Þ as r! 0;

8<
:

and for the inverse of this matrix, one deduces that

ðAþGðrÞÞ�1 ¼
2

r
1n þOðr�2Þ as r!1

A�1 þOðr3Þ as r! 0:

8<
:ð6Þ

As a consequence of these estimates, one infers

from the definition of vðrÞ and from the estimate

j sinð�irÞj � �ir that for any j 2 f1; . . . ; ng and any

r � 0

jvjðrÞj � Const.
r

1þ r2
:

It thus follows that vj 2 L2ðRþÞ.
c) Let us now consider v0, the derivative of v

with respect to its variable. Since

v0ðrÞ ¼ ðAþGðrÞÞ�1G0ðrÞðAþGðrÞÞ�1sðrÞð7Þ
� ðAþGðrÞÞ�1s0ðrÞ;

one deduces from (6) and from the definition of

GðrÞ that jv0jðrÞj � Const. ð1þ rÞ�1, for any r � 0

and any j 2 f1; . . . ; ng. Note that a simple conse-

quence of this estimate is that V 2 L1ðRþÞ. In

addition, the regularity property of V can easily be

deduced from the corresponding properties of the

functions v and s.

d) Let us now check that the equality

�
d2

dr2
þ V

 !
v ¼M2v

holds, with M the diagonal n� n matrix

Diagð�1; �2; . . . ; �nÞ. In order to compute the ex-

pression �v00 þ V v, observe that from the initial

relation ðAþGðrÞÞvðrÞ ¼ �sðrÞ one infers that

G0ðrÞvðrÞ þ ðAþGðrÞÞv0ðrÞ ¼ �McðrÞ

and that

G00ðrÞvðrÞ þ 2G0ðrÞv0ðrÞ þ ðAþGðrÞÞv00ðrÞ
¼M2sðrÞ;

or equivalently that

No. 1] Schrödinger operators with n positive eigenvalues 9



ðAþGðrÞÞv00ðrÞ
¼M2sðrÞ � 2G0ðrÞv0ðrÞ �G00ðrÞvðrÞ:

From these relations, one then deduces that

ðAþGðrÞÞðv00ðrÞ � ½V v�ðrÞ þM2vðrÞÞ
¼M2sðrÞ � 2G0ðrÞv0ðrÞ �G00ðrÞvðrÞ
� V ðrÞðAþGðrÞÞvðrÞ þM2ðAþGðrÞÞvðrÞ
þ ½GðrÞ;M2�vðrÞ
¼ �2G0ðrÞv0ðrÞ �G00ðrÞvðrÞ þ V ðrÞsðrÞð8Þ
þ ½GðrÞ;M2�vðrÞ;

where ½�; �� is used for the commutator of two

matrices.

On the other hand, observe that

G0ðrÞ ¼ ðsinð�irÞ sinð�jrÞÞni;j¼1 ¼ sðrÞ tsðrÞ;

where we have used the identification of Cn with the

matrices Mn1ðCÞ. As a consequence, one infers that

G0ðrÞv0ðrÞ ¼ hsðrÞ; v0ðrÞi sðrÞ;ð9Þ

and that

G00ðrÞvðrÞ ¼ hsðrÞ; vðrÞi s0ðrÞ þ hs0ðrÞ; vðrÞi sðrÞ:ð10Þ

Observe also that ð½GðrÞ;M2�Þij ¼ ð�2
j � �2

i ÞgijðrÞ,
and by the equality �2

j sinð�j�Þ ¼ �½sinð�j�Þ00�ð�Þ one

gets that

ð�2
j � �2

i ÞgijðrÞ

¼
Z r

0

sinð�i�Þ�2
j sinð�j�Þ d�

�
Z r

0

�2
i sinð�i�Þ sinð�j�Þ d�

¼ sinð�i�Þð�½sinð�j�Þ0�ð�ÞÞ
� �r

0

þ
Z r

0

½sinð�i�Þ0�ð�Þ ½sinð�j�Þ0�ð�Þ d�

� ð�½sinð�i�Þ0�ð�ÞÞ sinð�j�Þ
� �r

0

�
Z r

0

½sinð�i�Þ0�ð�Þ ½sinð�j�Þ0�ð�Þ d�

¼ ½� sinð�i�Þ sinð�j�Þ0 þ sinð�i�Þ0 sinð�j�Þ�ðrÞ:
Consequently, one has obtained that

½GðrÞ;M2� ¼ �sðrÞ ts0ðrÞ þ s0ðrÞ tsðrÞ:ð11Þ

By inserting now the equalities (9), (10) and

(11) into (8) one infers that

ðAþGðrÞÞðv00ðrÞ � ½V v�ðrÞ þM2vðrÞÞ
¼ �2hsðrÞ; v0ðrÞi sðrÞ � hsðrÞ; vðrÞi s0ðrÞ

� hs0ðrÞ; vðrÞi sðrÞ þ V ðrÞsðrÞ
� hs0ðrÞ; vðrÞi sðrÞ þ hsðrÞ; vðrÞi s0ðrÞ
¼ �2 hsðrÞ; v0ðrÞi þ hs0ðrÞ; vðrÞið ÞsðrÞ þ V ðrÞsðrÞ
¼ �2½hsð�Þ; vð�Þi0�ðrÞsðrÞ þ V ðrÞsðrÞ
¼ 0

since V ðrÞ is given by

�2½hsð�Þ; vð�Þi0�ðrÞ ¼ �2
Xn
j¼1

sinð�j�Þ vjð�Þ
 !0

ðrÞ:

Finally, since AþGðrÞ is invertible, one infers that

v00ðrÞ � ½V v�ðrÞ þM2vðrÞ ¼ 0, or equivalently that

�v00ðrÞ þ ½V v�ðrÞ ¼M2vðrÞ, as expected.

e) It has been shown in b) that vj 2 L2ðRþÞ for

any j 2 f1; . . . ; ng, and the equality vjð0Þ ¼ 0 clearly

holds. In addition, it follows from the estimate

obtained in c) that v0j 2 L2ðRþÞ. Finally, since V 2
L1ðRþÞ, as pointed out in c), one infers from the

equality �v00 ¼M2v� V v that v00j 2 L2ðRþÞ as well.

Thus, vj belongs to the Dirichlet realization of the

Laplace operator on Rþ, and this concludes the

proof of the second statement of the theorem.

f) It only remains to derive the asymptotic

expansion (3). For that purpose, let us set H :¼
ðhijÞni;j¼1, and let us use the notation k � k for the

norms on Cn and on MnðCÞ. By taking (2) into

account one gets

AþGðrÞ ¼
r

2
1n þ

2

r
ðAþHðrÞÞ

	 

:

Since kHðrÞk � C for all r � 0 with C independent

of r, one deduces that there exists r0 > 0 such that

for any r � r0

2

r
kAþHðrÞk <

1

2
:

From the Neumann series, one then infers that for

large r

ðAþGðrÞÞ�1 ¼
2

r
1n �

4

r2
ðAþHðrÞÞ þOðr�3Þ;ð12Þ

and by taking (12) and (7) into account, it follows

that

vðrÞ ¼ �
2

r
sðrÞ þ

4

r2
fAþHðrÞgsðrÞ þOðr�3Þ;ð13Þ

and that
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v0ðrÞ ¼ �
2

r
McðrÞ þ

4

r2
fsðrÞ tsðrÞ sðrÞð14Þ

þAMcðrÞ þHðrÞMcðrÞg þOðr�3Þ:
Finally, by putting together these information

one obtains that V ðrÞ is equal to

2hsðrÞ; v0ðrÞi þ 2hs0ðrÞ; vðrÞi
¼ 2hsðrÞ; v0ðrÞi þ 2hMcðrÞ; vðrÞi

¼ �
4

r
hsðrÞ;McðrÞi þ

8

r2
hsðrÞ; fsðrÞ tsðrÞ sðrÞ

þ AMcðrÞ þHðrÞMcðrÞgi �
4

r
hMcðrÞ; sðrÞi

þ 8

r2
hMcðrÞ; fAþHðrÞgsðrÞi þOðr�3Þ

¼ �
8

r
hsðrÞ;McðrÞi þ

8

r2
fhsðrÞ; AMcðrÞi

þ hMcðrÞ; AsðrÞig þ 8

r2
fksðrÞk4

þ hsðrÞ; HðrÞMcðrÞi þ hMcðrÞ; HðrÞsðrÞig
þOðr�3Þ

¼ � 4

r

Xn
j¼1

�j sinð2�jrÞ þ
8

r2

Xn
j¼1

aj�j sinð2�jrÞ

þ
8

r2
W ðrÞ þOðr�3Þ;

which gives the expansion (3). �

By using the standard relation between the

Dirichlet Laplacian on Rþ and the restriction of the

Laplace operator �� on R3 to spherically symmet-

ric functions (see for example [2, Sec. 11.3]), the

previous result easily leads to a similar statement

on R3.

Corollary 4. The operator ��þ V ðj � jÞ,
with domain the Sobolev space H2ðR3Þ, admits n

eigenfunctions uj satisfying

ð��þ V ðj � jÞÞuj ¼ �2
juj:

These uj are given by ujðxÞ :¼ vjðjxjÞ=jxj for any x 2
R3 and with vj defined in Theorem 1.

Let us finally show that this construction is

valid in R3 only. Indeed, if we consider the

d-dimensional Laplacian acting on spherically sym-

metric functions of the form ujðxÞ ¼ aðrÞvjðrÞ with

a; vj 2 C1ðð0;1ÞÞ, x 2 Rd n f0g and r ¼ jxj, then

we find that

½�uj�ðxÞ ¼ u00j ðrÞ þ
d� 1

r
u0jðrÞ

¼ aðrÞv00j ðrÞ þ 2a0ðrÞ þ
d� 1

r
aðrÞ

� �
v0jðrÞ

þ a00ðrÞ þ
d� 1

r
a0ðrÞ

� �
vjðrÞ:

In order to use the �v00j þ V vj ¼ �2
j vj, it is thus

necessary to impose that 2a0ðrÞ þ d�1
r aðrÞ ¼ 0 and

a00ðrÞ þ d�1
r a0ðrÞ ¼ 0. The first equation has the

unique solution (up to constants) given by aðrÞ ¼
rð�dþ1Þ=2, and by substituting this solution into the

second equation one obtains

a00ðrÞ þ
d� 1

r
a0ðrÞ ¼ �

ðd� 1Þðd� 3Þ
4

r�ðdþ3Þ=2

¼ 0

which means that d can only be equal to 3 (the

case d ¼ 1 and a ¼ const. clearly corresponds to

even functions on R).
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