
March 13, 2013 14:45 WSPC/S0129-055X 148-RMP J070-1350003

Reviews in Mathematical Physics
Vol. 25, No. 2 (2013) 1350003 (40 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0129055X13500037

SPECTRAL ANALYSIS AND TIME-DEPENDENT
SCATTERING THEORY ON MANIFOLDS WITH

ASYMPTOTICALLY CYLINDRICAL ENDS

S. RICHARD∗,‡ and R. TIEDRA DE ALDECOA†,§

∗Institut Camille Jordan, CNRS, UMR5208,
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We review the spectral analysis and the time-dependent approach of scattering theory

for manifolds with asymptotically cylindrical ends. For the spectral analysis, higher order
resolvent estimates are obtained via Mourre theory for both short-range and long-range
behaviors of the metric and the perturbation at infinity. For the scattering theory, the
existence and asymptotic completeness of the wave operators is proved in a two-Hilbert
spaces setting. A stationary formula as well as mapping properties for the scattering
operator are derived. The existence of time delay and its equality with the Eisenbud–
Wigner time delay is finally presented. Our analysis mainly differs from the existing
literature on the choice of a simpler comparison dynamics as well as on the complemen-
tary use of time-dependent and stationary scattering theories.
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1. Introduction

Manifolds with asymptotically cylindrical ends are certainly some of the most stud-
ied manifolds in spectral and scattering theory, and many results related to them
are already available in the literature, see for example, [13–16, 29, 30, 38, 41, 42].
The aim of the present paper is to complement this bulk of information and to apply
recent technics or results in commutator methods, time-dependent scattering the-
ory, stationary methods and quantum time delay to these manifolds. As examples
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of new results, we provide higher order resolvent estimates for both short-range
and long-range behaviors of the metric and the perturbation at infinity, we deduce
mapping properties of the scattering operator, and we also prove the existence and
the equality of global and Eisenbud–Wigner time delays. Also, we emphasize that
our analysis differs from much of the existing literature on the choice of a simpler
reference dynamics.

At the origin of this research stand our three recent works on spectral and
scattering theory in an abstract framework [44–46]. In the first two papers, it is
shown that, given a scattering process, particular choices of asymptotic reference
systems are better suited than others and automatically lead to richer results.
On manifolds with asymptotically cylindrical ends, this idea can be particularly
well illustrated. In the third paper, a comparison scheme for deducing a Mourre
estimate for a pair of self-adjoint operators (H,A) in a Hilbert space H from a
similar estimate for a second pair of operators (H0, A0) in an auxiliary Hilbert
space H0 has been put into evidence. Again, a clever choice of the reference system
(H0, H0) is of much help. However, this comparison scheme, though at the root of
the time-dependent scattering theory, has not yet been systematically implemented
in Mourre theory. This paper can also be regarded as an attempt to fill in this gap
in the context of manifolds with asymptotically cylindrical ends (see also [18–20,
22, 31] for related works).

Let us now be more precise about the model. We consider a smooth, non-
compact, complete Riemannian manifold M of dimension n+1 ≥ 2 without bound-
ary. We assume that M is of the form M = Mc ∪M∞, with Mc relatively compact
and M∞ open in M . Moreover, we suppose M∞ diffeomorphic to (0,∞)× Σ, with
Σ the disjoint union of a finite number of smooth, compact, connected Riemannian
manifolds of dimension n ≥ 1 without boundary. The Riemannian metric g|M∞ on
M∞ converges at infinity (in a suitable sense) to the product metric on (0,∞)×Σ.
The usual volume form on M is denoted by dv, while the one on Σ is denoted
by ds. In the Hilbert space H := L2(M, dv), we consider the self-adjoint operator
H := �M + V , where �M is the (Dirichlet) Laplace–Beltrami operator on M and
V is a multiplication operator by a smooth bounded function on M .

As a reference system, we consider the Laplace–Beltrami operator H0 := �R×Σ

in the Hilbert space H0 := L2(R×Σ, dx⊗ds). This choice of reference system instead
of the more usual Laplacian �(0,∞)×Σ in L2((0,∞) × Σ, dx⊗ ds) with a Neumann
or Dirichlet condition at the origin is inspired by the following considerations. On
the first hand, it involves no arbitrariness when defining H0, since the Laplacian
�R×Σ is the only natural choice for the comparison operator in L2(R×Σ, dx⊗ ds).
On the second hand, it allows to take constantly advantage of the existence of a
simple conjugate operator A0 for H0 and a simple spectral representation for H0.
Finally, it permits to define easily a family {H0(y)}y∈R of mutually commuting self-
adjoint operators in H0, which plays an important role for the proof of the existence
of quantum time delay (the operators H0(y) are simply the translated operators
e−iyΦ0 H0 eiyΦ0 , with Φ0 := Q⊗ 1 and Q the position operator in L2(R, dx)).
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In order to link the dynamicsH in H to the reference dynamics H0 in H0 we use,
as is usual in scattering theory, an identification operator J ∈ B(H0,H). Essen-
tially, J acts as the zero operator on vectors ϕ ∈ H0 having support in (−∞, 1)×Σ
and maps isometrically vectors ϕ ∈ H0 having support in (2,∞) × Σ onto vectors
Jϕ ∈ H having support in M∞. With these tools at hand, and by using extensively
the two-Hilbert scheme of [46], we are able to establish various novel results for the
operator H and the scattering triple (H0, H, J) that we now describe.

In Sec. 4, we perform the spectral analysis of H when both the metric g and the
potential V are the sum of two terms, one having a short-range type behavior at
infinity and one having a long-range type behavior at infinity. We start in Sec. 4.1 by
defining an appropriate conjugate operator A for H . Following the general scheme
of [46, Sec. 3], we simply use the operator A = JA0J

∗, with A0 the generator of
dilations along the R-axis in H0. With this operator, we establish a Mourre estimate
for H in Proposition 4.9. Then, by using an abstract result of [11], we prove the
Zygmund–Hölder regularity of the map

R � λ �→ 〈A〉−s(H − λ∓ i0)−1〈A〉−s ∈ B(H) (1.1)

for suitable s and away from the critical values ofH . This result implies in particular
higher order resolvent estimates for H and higher order differentiability of the map
(1.1) (see Proposition 4.11 for a precise statement). As a by-product, formulated in
Proposition 4.12, we obtain the absence of singular continuous spectrum and the
finiteness of the point spectrum of H away from the set T of eigenvalues of the
(transverse) Laplacian �Σ on Σ. In the particular case where the metric g|M∞ is
purely short-range with decay 〈x〉−µ, µ > 1, at infinity this result is comparable
with the one recently obtained in [30, Theorem 3.10] with alternative techniques.

In Sec. 5, we present the time-dependent scattering theory for the triple
(H0, H, J) when the metric g|M∞ on M∞ decays as 〈x〉−µ, µ > 1, at infinity.
In Proposition 5.3, we prove that the generalized wave operators

W± := s- lim
t→±∞

eitH J e−itH0

exist and are partial isometries with initial subspaces H±
0 := {ϕ ∈ H0 | supp(F ⊗

1)ϕ ⊂ R± × Σ}. Here F denotes the Fourier transform in L2(R). Then, we estab-
lish in Proposition 5.7 the asymptotic completeness of the wave operators W± by
using an abstract criterion of [46]. This implies in particular the existence and the
unitarity of the scattering operator S := W ∗

+W− : H−
0 → H+

0 . In Sec. 5.3, we
pursue our study by deriving a precise stationary formula for the scattering matrix
S(λ) at energy λ (see Theorem 5.10). This formula, together with the Zygmund–
Hölder regularity of the resolvent map, allows us to prove that the map λ �→ S(λ)
is locally k-times Hölder continuously differentiable away from the critical values
of H if µ > k + 1 (see Corollary 5.11 for details). This result implies in turns
a mapping property of the scattering operator S, which is crucial (and usually
considered as the difficult part) for the proof of the existence of time delay (see
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Proposition 5.12). Finally, we prove in Sec. 5.5 the existence of time delay and
its equality with Eisenbud–Wigner time delay using the abstract method of [45].
Namely, we show for suitable incoming states ϕ ∈ H0 that the symmetrized time
delay τr(ϕ) defined in terms of sojourn times in regions of size 2r converges as
r → ∞ to the expectation value of the Eisenbud–Wigner time delay operator;
that is,

lim
r→∞ τr(ϕ) =

∫ ∞

0

dλ
〈

(F0ϕ)(λ),−iS(λ)∗
(

dS(λ)
dλ

)
(F0ϕ)(λ)

〉
H0(λ)

,

with F0 : H0 →
∫ ⊕
[0,∞) dλH0(λ) the spectral transformation for H0 (see Theo-

rem 5.14 and Remark 5.15 for a precise statement).
As a final comment, let us stress that even if manifolds with asymptotically

cylindrical ends are certainly a piece of folklore for experts in global analysis, most of
the results contained in this paper are either new or presented in a more systematic
form than the ones already existing in the literature. Furthermore, the abstract
framework underlying our analysis as well as our scheme of investigations can serve
again for further investigations on other types of manifolds. We intend to perform
such investigations in the near future.

Notations. S (R) denotes the Schwartz space on R and S ′(R) the set of tempered
distributions on R. The operators P and Q are respectively the momentum and the
position operators in L2(R), i.e. (Pϕ)(x) := −iϕ′(x) and (Qϕ)(x) := xϕ(x) for each
ϕ ∈ S (R) and x ∈ R. N := {0, 1, 2, . . .} is the set of natural numbers, and the
sets

Hs
t (R) := {f ∈ S ′(R) | ‖〈Q〉t〈P 〉sf‖L2(R) <∞}, s, t ∈ R,

are the usual weighted Sobolev space on R (with the convention that Hs(R) :=
Hs

0(R) and Ht(R) := H0
t (R)). The one-dimensional Fourier transform F is a topo-

logical isomorphism of Hs
t (R) onto Ht

s(R) for any s, t ∈ R. We write χV for the
characteristic function on a given set V . Finally, ⊗ (respectively �) stands for the
closed (respectively algebraic) tensor product of Hilbert spaces or of operators.

2. Reference System

We introduce in this section the asymptotic reference system (H0, H0). As explained
in the introduction, the configuration space subjacent to the Hilbert space H0 is a
direct product R×Σ, where Σ is the disjoint union of N ≥ 1 Riemannian manifolds
Σ�. So, we start by defining each manifold Σ� separately.

Let (Σ�, h�) be a smooth, compact, orientable, connected Riemannian manifold
of dimension n ≥ 1, without boundary. Denote by X(Σ�) the set of smooth vector
fields on Σ�. On a chart (O�, ω�) of Σ�, the Riemannian metric h� : X(Σ�)⊗X(Σ�) →
C∞(Σ�) is given by the collection of functions (h�)jk ∈ C∞(O�), j, k ∈ {1, . . . , n},
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defined by

(h�)jk := h�

(
∂

∂ωj�
,
∂

∂ωk�

)
.

The contravariant form of the metric tensor h� has components (h�)jk determined
by the matrix relation

∑
i(h�)ij(h�)

ik = δkj , and the volume element ds� on Σ� is
given by

ds� := h� dω� with h� :=
√

det{(h�)jk}.

The Laplace–Beltrami operator �Σ�
in the Hilbert space L2(Σ�) := L2(Σ�, ds�) is

defined on each chart by

�Σ�
ϕ := −

n∑
j,k=1

h−1
�

∂

∂ωj�
h�(h�)jk

∂

∂ωk�
ϕ, ϕ ∈ C∞(Σ�).

It is known that �Σ�
is essentially self-adjoint on C∞(Σ�) [17, Theorem 3] and

that the closure of �Σ�
(which we denote by the same symbol) has a spectrum

σ(�Σ�
) consisting in an unbounded sequence of finitely degenerated eigenvalues

0 = τ�,0 < τ�,1 ≤ τ�,2 ≤ · · · repeated according to multiplicity [47, Theorem 1.29].
For N ≥ 1, let Σ :=

⊔N
�=1 Σ� be the disjoint union of the manifolds Σ�. When

endowed with the metric h defined by

[h(X,Y )](	, p) := (h�)p(X(�,p), Y(�,p)), (	, p) ∈ Σ, X(�,p), Y(�,p) ∈ TpΣ�,

the set Σ becomes a Riemannian manifold with volume element ds given by the
sum of the respective volume elements. The Laplace–Beltrami operator �Σ �⊕N

�=1 �Σ�
in L2(Σ) := L2(Σ, ds) �

⊕N
�=1 L2(Σ�, ds�) is essentially self-adjoint on

C∞(Σ) �
⊕N

�=1 C
∞(Σ�) and has purely discrete spectrum T := {τj}j∈N (the val-

ues τj being the elements of {τ�,k | 	 = 1, . . . , N, k ∈ N} arranged in ascending order
and repeated according to multiplicity).

Then, we define in the Hilbert space H0 := L2(R × Σ, dx⊗ ds) � L2(R) ⊗ L2(Σ)
the operator H0 := P 2 ⊗ 1 + 1⊗�Σ. The operator H0 is essentially self-adjoint on
S (R) � C∞(Σ) and has domain [10, Sec. 3]

D(H0) = {L2(R) ⊗ D(�Σ)} ∩ {H2(R) ⊗ L2(Σ)},

endowed with the intersection topology. The spectral measure EH0( · ) of H0 is
purely absolutely continuous and admits the tensorial decomposition [54, Ex. 8.21]:

EH0( ·) =
∑
j∈N

EP
2+τj ( ·) ⊗ Pj, (2.1)

with EP
2+τj( · ) the spectral measure of the operator P 2 + τj and Pj the one-

dimensional eigenprojection of �Σ corresponding to the eigenvalue τj . In particular,
the spectrum σ(H0) and the absolutely continuous spectrum σac(H0) of H0 satisfy
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the identities:

σ(H0) = σac(H0) = [0,∞).

In order to give some results on the spectral representation of H0, one needs
to introduce extra quantities: The fiber H0(λ) at energy λ ≥ 0 in the spectral
representation of H0 is

H0(λ) :=
⊕
j∈N(λ)

{Pj L2(Σ) ⊕ Pj L2(Σ)} with N(λ) := {j ∈ N | τj ≤ λ}.

It is the natural counterpart of the constant fiber L2(Sn−1) appearing in the Hilbert
space L2([0,∞); L2(Sn−1)) hosting the spectral representation of the Laplace oper-
ator in Rn. Since H0(λ) is naturally embedded in

H0(∞) :=
⊕
j∈N

{Pj L2(Σ) ⊕ Pj L2(Σ)},

we shall sometimes write H0(∞) instead of H0(λ). For ξ ∈ R, we let γ(ξ) : S (R) →
C be the restriction operator given by γ(ξ)ϕ := ϕ(ξ). For λ ∈ [0,∞)\T , we define
the operator T0(λ) : S (R) � L2(Σ) → H0(λ) for j ∈ N(λ) by

[T0(λ)ϕ]j := (λ− τj)−1/4{[γ(−
√
λ− τj) ⊗ Pj]ϕ, [γ(

√
λ− τj) ⊗ Pj]ϕ}. (2.2)

We can now state the main properties for the operators F0(λ) := 2−1/2T0(λ)(F⊗1).
For brevity, we write Ĥ0 for the Hilbert space

∫ ⊕
[0,∞) dλH0(λ).

Lemma 2.1 (Spectral Transformation for H0). Let t ∈ R. Then

(a) For each λ ∈ [0,∞)\T and s > 1/2, the operator F0(λ) extends to an element
of B(Ht

s(R) ⊗ L2(Σ),H0(∞)).
(b) For each s > k + 1/2 with k ∈ N, the function [0,∞)\T � λ �→ F0(λ) ∈

B(Ht
s(R)⊗L2(Σ),H0(∞)) is locally k-times Hölder continuously differentiable.

(c) The mapping F0 : H0 → Ĥ0 given for all ϕ ∈ S (R) � L2(Σ) and every λ ∈
[0,∞)\T by

(F0ϕ)(λ) := F0(λ)ϕ,

extends to a unitary operator, and

F0H0F
−1
0 =

∫ ⊕

[0,∞)

dλλ.

Furthermore, for any φ ∈ Ĥ0 with φ(λ) = {φ(λ)−j , φ(λ)+j }j∈N(λ) for almost
every λ ∈ [0,∞), one has

F−1
0 φ = (F−1 ⊗ 1)φ̃ with

φ̃(ξ, ·) :=


√

2|ξ|
∑
j∈N

φ(ξ2 + τj)−j for almost every ξ < 0

√
2|ξ|
∑
j∈N

φ(ξ2 + τj)+j for almost every ξ ≥ 0.
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Proof. Point (a) can be shown as in [51, Lemma 2.4(a)]. For (b), a look at the
expression (2.2) for T0(λ) shows it is sufficient to prove that the function γ : R →
B(Hs

t (R),C) is k-times Hölder continuously differentiable. But, we already know
from [52, Lemma A.1] that γ is k-times Hölder continuously differentiable from R

to B(Hs(R),C). This fact, together with the identity

γ(ξ)〈Q〉tϕ = 〈ξ〉tγ(ξ)ϕ, ϕ ∈ Hs(R), ξ, t ∈ R,

implies the desired differentiability.
Finally, the result of point (c) can be shown as in [51, Proposition 2.5].

3. Manifold with Asymptotically Cylindrical Ends

Let (M, g) be a smooth, second countable, complete Riemannian manifold of dimen-
sion n+ 1, without boundary. Assume that M is of the form M = Mc ∪M∞, with
Mc relatively compact and M∞ open in M . Moreover, suppose that M∞ (with the
induced atlas) can be identified to (0,∞)×Σ (with the direct product atlas) in the
following sense: There exists a diffeomorphism ι : M∞ → (0,∞)×Σ mapping each
local chart of M∞ to a local chart of (0,∞) × Σ. In other terms, if the collection
{(Vα, ρα)} stands for the atlas on M∞, then the collection

{(Uα, (x, ωα))} := {(ι(Vα), ρα ◦ ι−1)}

defines an equivalent atlas on (0,∞) × Σ. We also assume that ι(Mc ∩ M∞) ⊂
(0, 1) × Σ.

We denote by gjk the components of g on a chart (W, ζ) of M , we set {gjk} :=
{gjk}−1, and we define the volume element dv on M as

dv := g dζ with g :=
√

det{gjk}.

In the Hilbert space H := L2(M, dv) we consider the operator H given by

Hψ := (�M + V )ψ, ψ ∈ C∞
c (M),

where �M is the (Dirichlet) Laplace–Beltrami operator on M and V belongs to
the set C∞

b (M) of smooth functions on M with covariant derivatives of all orders
bounded (note that we use the same notation for a function and for the corre-
sponding multiplication operator). In our setup, a function belongs to C∞

b (M)
if it belongs to C∞(M) and if on M∞ its covariant derivatives of all orders are
bounded when using the atlas {(Vα, ρα)} on M∞ obtained by pullback from the
atlas {(Uα, (x, ωα))} on (0,∞) × Σ. Since M is complete and V is bounded, the
operator H is essentially self-adjoint on C∞

c (M) [17, Theorem 3], and H acts as

Hψ := −
n+1∑
j,k=1

g−1 ∂

∂ζj
ggjk

∂

∂ζk
ψ + V ψ, ψ ∈ C∞

c (M),

on each chart (W, ζ) ofM . Now, on each complete Riemannian manifold M, one can
define the Sobolev spaces W k(M) given in terms of the covariant derivatives and
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the Sobolev spaces H2k(M) given in terms of the Laplace-Beltrami operator (see
[48, Sec. 0] for details). Therefore, the domain D(H) of H satisfies in our situation

D(H) = D(�M ) = H2(M).

In Lemmas 3.1 and 3.2 below, we recall a compacity criterion and a result on
elliptic regularity that will be used in various instances. In Lemma 3.1, the set
of continuous bounded functions on M is denoted by Cb(M), and the ideal of
compact operators of B(H) is denoted by K (H). In Lemma 3.2, the Laplacian
�M contained in H ≡ �M + V is regarded as the distributional Laplacian on
L2

loc(M) (the distributional Laplacian coincides with the usual Dirichlet Laplacian
on the subset H2(M) ⊂ L2

loc(M), see [28, Secs. 4.1–4.2] for details).

Lemma 3.1. Let m ∈ Cb(M) satisfy limx→∞ ‖(m◦ ι−1)(x, ·)‖L∞(Σ) = 0. Then the
product m(H ± i)−1 belongs to K (H).

Proof. Let V be any open relatively compact subset of M and let χV denote the
corresponding characteristic function. Then, one shows using standards results (see
[53, Sec. 1.2], [27, Sec. 2.2] and [48, Sec. 1]) that the operators χV(�M ± i)−1

belong to K (H). Since K (H) is closed in the norm topology, one infers by an
approximation argument taking the geometry of M into account that m(�M ±
i)−1 ∈ K (H). One then concludes by using the second resolvent equation (H ±
i)−1 = (�M ± i)−1{1 − V (H ± i)−1}.

Lemma 3.2 (Elliptic Regularity). Assume that V ∈C∞
b (M) and let u∈ L2

loc(M)
satisfy (�M+V −z)u=f for some z ∈C\σ(H) and f ∈C∞(M). Then, u∈C∞(M).

The proof is standard (see for instance [28, Corollary 7.3]) and left to the reader.
Note that the result even holds under the weaker assumption V ∈ C∞(M).

4. Spectral Analysis

We perform in this section the spectral analysis of the operator H . We impose
explicit decay assumptions on the metric and on the potential at infinity. Then, we
deduce various results on the regularity of the resolvent of H near the real axis.
For that purpose, we use Mourre theory in the way presented in the paper [46];
namely, we build the Mourre theory for H from the analog theory for H0, even
if H and H0 act in different Hilbert spaces. Note that Mourre theory has already
been successfully used in the context of these manifolds, for example, in [18, 22],
but both operators H and H0 were considered in the same Hilbert space. Another
approach of Mourre theory for the study of Riemannian Laplacians has recently
appeared in [32], and in a more restricted context in [12].

To begin with, we need to introduce an identification operator from H0 to H.
For this, we recall that ι∗ and (ι−1)∗ are, respectively, the pullback by ι and the
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push-forward by ι−1. Then, we let j ∈ C∞(R; [0, 1]) satisfy

j(x) :=

{
1 if x ≥ 2

0 if x ≤ 1,

and set

J : H0 → H, ϕ �→ χ∞

√
ι∗(1 ⊗ h)

g
ι∗((j ⊗ 1)ϕ),

where χ∞ is the characteristic function for M∞ and h :=
√

det{hjk}. One has
‖J‖B(H0,H) = 1, since ‖Jϕ‖H = ‖ϕ‖H0 for each function ϕ ∈ H0 with supp(ϕ) ⊂
(2,∞) × Σ.

Our second task consist in fixing the decay behavior of the metric and the
potential onM∞. In our setup, conditions on gjk, V and ι could be stated separately.
We prefer to combine these conditions in a single one on g̃jk := (ι−1)∗gjk and
Ṽ := (ι−1)∗V , since it corresponds to the usual approach in the literature. Note
that even if we work in a smooth setting, we shall distinguish short-range and
long-range behaviors for the sake of completeness.

In the following assumption, we use the notation ∂α for the higher order deriva-
tive (∂x, ∂ω)α with multi-index α ∈ Nn+1 and the notation 〈x〉 := (1 + x2)1/2 for
x ∈ R.

Assumption 4.1. Assume that the metric g̃jk = (g̃L)jk +(g̃S)jk and the potential
Ṽ = ṼL + ṼS satisfy the following:

(LR) There exists µL > 0 such that for each α ∈ N
n+1 and each j, k ∈ {1, . . . , n+1}

one has

|∂α((g̃L)jk − (1 ⊕ h)jk)(x, ω)| ≤ cα 〈x〉−µL−|α| and

|(∂αṼL)(x, ω)| ≤ cα 〈x〉−µL−|α|

for some constant cα ≥ 0 and for all x > 0 and ω ∈ Σ.
(SR) There exists µS > 0 such that for each α ∈ Nn+1 and each j, k ∈ {1, . . . , n+1}

one has

|∂α((g̃S)jk − (1⊕ h)jk)(x, ω)| ≤ cα 〈x〉−µS and |(∂αṼS)(x, ω)| ≤ cα 〈x〉−µS

for some constant cα ≥ 0 and for all x > 0 and ω ∈ Σ.

Let also µ := min{µL, µS}.

Simple consequences of Assumption 4.1 are the following:

(i) For each α ∈ Nn+1, one has |(∂αg̃jk)(x, ω)| ≤ dα for some constant dα ≥ 0
and for all x > 0 and ω ∈ Σ.

(ii) There exists a constant δ > 0 such that g̃ > δ on (0,∞) × Σ.
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(iii) The curvature tensor ofM is uniformly bounded, as are all its covariant deriva-
tives. So, the Sobolev spaces W 2k(M) and H2k(M) (introduced in Sec. 3) are
equal for all k ∈ N and D(H) = D(�M ) = H2(M) = W 2(M).

Now, we determine an expression for the operator HJ − JH0 acting on suitable
elements of H0. The main ingredient of the computation is the following equality

∂

∂ρj
ψ = ι∗

{
∂

∂(x, ω)j
((ι−1)∗ψ)

}
, supp(ψ) ⊂M∞, (4.1)

which follows from the definition of the diffeomorphism ι. Using the matricial con-
ventions, we obtain for any ϕ ∈ S (R) � C∞(Σ) that

Tϕ := (HJ − JH0)ϕ

= −χ∞ ι∗g
[
g̃−1(1 ⊗ h)−1/2 b1(∂x, ∂ω)g̃ g̃−1

(
∂x
∂ω

)
g̃−1/2(1 ⊗ h)1/2(j ⊗ 1)ϕ

+ g̃−1/2(1 ⊗ h)−1/2(j ⊗ 1)(∂x, ∂ω)b2

(
∂x
∂ω

)
g̃−1/2(1 ⊗ h)1/2(j ⊗ 1)ϕ

+ g̃−1/2(1 ⊗ h)−1/2(j ⊗ 1)(∂x, ∂ω)(1 ⊗ h)(1 ⊕ h−1)
(
∂x
∂ω

)
b3 g̃−1/2ϕ

− Ṽ g̃−1/2(1 ⊗ h)1/2(j ⊗ 1)ϕg
]
, (4.2)

with b1 := (1 ⊗ h)1/2 − g̃1/2(j ⊗ 1), b2 := g̃ g̃−1 − (1 ⊗ h)(1 ⊕ h−1) and b3 :=
(1 ⊗ h)1/2(j ⊗ 1) − g̃1/2.

The following lemma will be used at various places in the sequel. Its statement
involves the multiplication operator Φ0 on R × Σ given by

Φ0ϕ := (idR ⊗ 1)ϕ, ϕ ∈ S (R) � C∞(Σ), (4.3)

where idR is the function R � x �→ x ∈ R. The closure of Φ0 in H0 (which we denote
by the same symbol) is self-adjoint.

Lemma 4.2. Suppose that Assumption 4.1 holds with µ > 0 and take γ ∈
[0, µ]. Then, the operator T 〈Φ0〉γ defined on S (R) � C∞(Σ) extends continu-
ously to an element of B(D(H0),H). Furthermore, for any z ∈ C\R the operator
(H − z)−1T 〈Φ0〉γ defined on S (R)�C∞(Σ) extends continuously to an element of
B(H0,H).

Proof. We know that T 〈Φ0〉γϕ = −χ∞ ι∗(T 0〈Φ0〉γϕ) for any ϕ ∈ S (R)�C∞(Σ),
where T 0 is the differential operator within the square brackets in (4.2). Further-
more, some routine computations involving Assumption 4.1 and its consequences
(i) and (ii) imply that for each α ∈ Nn+1 there exists a constant dα ≥ 0 such that{

|(∂αb1)(x, ω)| +
n+1∑
j,k=1

|[∂α(b2)jk](x, ω)| + |(∂αb3)(x, ω)|
}
〈x〉µ ≤ dα (4.4)

for all x > 0 and ω ∈ Σ. Therefore, the operator T 0〈Φ0〉γ is a second order dif-
ferential operator on S (R)�C∞(Σ) with coefficients in C∞

b (R ×Σ) (with respect
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to the basis of vector fields ∂/∂(x, ω)j). So, it follows from the boundedness result
[48, Lemma 1.6] that T 0〈Φ0〉γ extends continuously to a bounded operator (denoted
similarly) fromW 2(R×Σ) toW 0(R×Σ) ≡ H0. Now, since R×Σ is geodesically com-
plete and with bounded curvatures, one also has W 2(R×Σ) = H2(R×Σ) ≡ D(H0)
[48, Sec. 5], and thus T 0〈Φ0〉γ extends to a bounded operator from D(H0) to
H0. This result, together with the inclusion χ∞ ι∗ ∈ B(H0,H), implies the first
statement.

For the second statement, we consider for ψ ∈ (H− z̄)C∞
c (M) and ϕ ∈ S (R)�

C∞(Σ) the equality

〈ψ, (H − z)−1T 〈Φ0〉γϕ〉H = 〈〈Φ0〉γT ∗(H − z̄)−1ψ, ϕ〉H0 .

Furthermore, for any ζ ∈ C∞
c (M), we observe that 〈Φ0〉γT ∗ζ = χ(0,∞)×Σ(ι−1)∗

(Lζ), where L is a second order differential operator on C∞
c (M) with coefficients in

C∞
b (M) (with respect on M∞ to the basis of vector fields ∂/∂ρj, see (4.1)). Now,

we know from [48, Lemma 1.6] and the consequence (iii) of Assumption 4.1 that
L extends continuously to a bounded operator from W 2(M) ≡ D(H) to H. Thus,
the statement follows from the density of (H − z̄)C∞

c (M) in H and the density of
S (R) � C∞(Σ) in H0.

Let us finally note that the previous result implies in particular that J ∈
B(D(H0),D(H)).

4.1. Conjugate operator for H

In this section, we define a conjugate operator for H and use it to deduce some
standard results. The conjugate operator could be either defined as a geometric
object or as a modification of the generator of dilations on R. We present the
former approach because self-adjointness is automatically obtained, but we link
afterward the two possible constructions.

So, let X ∈ X(M) be the smooth vector field defined by

X := χ∞ ι∗(j2 idR ⊗ 1)(ι−1)∗

(
∂

∂x

)
.

Given p ∈M , it is known [1, Sec. 2.1] that there exist ε > 0, a neighborhood V ⊂M

of p and a smooth map F : (−ε, ε)×V →M satisfying for each (τ, q) ∈ (−ε, ε)×V
the differential equation d

dτ F (τ, q) = XF (τ,q), F (0, q) = q. Furthermore, for each
τ ∈ (−ε, ε) the map Fτ := F (τ, · ) is a diffeomorphism onto its image. In fact,
one has F (τ, p) = p for all (τ, p) ∈ R × M\M∞ since X ≡ 0 on M\M∞, and
one can show that the vector field X is complete by applying the completeness
criterion [1, Proposition 2.1.20] with the proper function f : M → R given by f :=
χ∞ ι∗(j2 idR ⊗ 1). So, the restricted map Fτ |M∞ : M∞ → M∞ is a diffeomorphism
for each τ ∈ R.

Based on the complete vector field X one can construct a unitary group acting
on H. However, M being a priori not orientable, one has to take some extra care
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when defining the group: Since the manifolds Σ� are orientable, it follows that
M∞ ≡ ι−1((0,∞) × Σ) is also orientable. So, dv is a volume form on M∞ [8,
Theorem 7.7], and there exists a unique smooth function detdv(Fτ |M∞) : M → R,
called the determinant of Fτ |M∞ , which satisfies (Fτ |M∞)∗dv = detdv(Fτ |M∞) dv
[1, Definition 2.5.18]. For each τ ∈ R we can thus define the map

Jτ : M → R, p �→
{

1 if p ∈M\M∞
detdv(Fτ |M∞)(p) if p ∈M∞.

Since Fτ |Mc∩M∞ is the identity map, we have detdv(Fτ |M∞) = 1 on Mc ∩ M∞
[1, Proposition 2.5.20(ii)], and thus Jτ is a smooth function on M .

We can now define for each τ ∈ R and each ψ ∈ C∞
c (M) the operator

U(τ)ψ := J1/2
τ F ∗

τ ψ.

Some routine computations using [1, Proposition 2.5.20] show that U(τ) can be
extended to an isometry from H to H (which we denote by the same symbol), and
that {U(τ)}τ∈R defines a strongly continuous unitary group in H. Furthermore,
since Jτ (p) > 0 for all p ∈ M , one sees easily that U(τ)C∞

c (M) ⊂ C∞
c (M). Thus,

one can apply Nelson’s Lemma to show that the generator A of the unitary group
{U(τ)}τ∈R is essentially self-adjoint on C∞

c (M). Direct computations with ψ ∈
C∞

c (M) (see [1, Sec. 5.4]) show that

Aψ = −iχ∞

(
LX +

1
2
divdvX

)
ψ,

LXψ = χ∞ ι∗
{

(j2 idR ⊗ 1)
∂

∂x
(ι−1)∗ψ

}
,

divdvX = g−1LXg + ι∗{((j2)′ idR + j2) ⊗ 1},

(4.5)

with LX the Lie derivative alongX and divdvX the divergence of X with respect to
the volume form dv of M∞. Note that the function χ∞divdvX belongs to C∞

b (M)
under Assumption 4.1 with µL > 0 and µS ≥ 1.

Remark 4.3. Let A0 be the generator of dilations in H0, that is, the operator
given by A0 := 1

2 (PQ + QP) ⊗ 1. Then a direct calculation shows that

Aψ = JA0J
∗ψ

for any ψ ∈ C∞
c (M). Therefore, the operator A is nothing else but the generator

of dilations A0 injected in the Hilbert space H via the identification operator J .

We can now study the regularity of the operators H0 and H with respect to the
operators A0 and A. For this we mainly use the framework and notations from [4].
In particular, we say that the self-adjoint operator H is of class Ck(A), k ∈ N, if
the map

R � t �→ e−itA(H − i)−1 eitA ∈ B(H)

is k-times strongly differentiable. In the case of a bounded operator B ∈ B(H),
this is equivalent to showing that the map t �→ e−itA B eitA is k-times strongly
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differentiable, and we write B ∈ Ck(A). The same definitions hold with H, H,A
replaced by H0, H0, A0. Due to its simplicity and its tensorial structure, it is easily
shown that H0 is of class Ck(A0), with A0 defined in Remark 4.3, for any k ∈ N.
In the next lemma, whose proof is inspired from [9, Sec. 2.1] and [26, Lemma A.2],
we show that H is of class C1(A) (higher regularity of H with respect to A will
be considered in Sec. 4.3). As mentioned in [26, Appendix A], checking the C1(A)-
condition is sometimes omitted in the Mourre analysis on a manifold, and without
this condition the application of the Virial Theorem is erroneous.

Lemma 4.4. Suppose that Assumption 4.1 holds with µL > 0 and µS ≥ 1. Then
H is of class C1(A).

Proof. Consider the family of multiplication operators χn ∈ B(H) defined as
follows: Let η ∈ C∞(R; R) satisfy η(x) = 1 if x ≤ 1 and η(x) = 0 if x ≥ 2,
and for any n ∈ N∗ let χn ∈ C∞

c (M ; R) be given by χn = 1 on M\M∞ and
[(ι−1)∗χn](x, ω) := η(x/n) for (x, ω) ∈ (0,∞) × Σ.

Then, one has s-limn→∞ χn = 1, and a direct calculation taking Remark 4.3
into account shows that limn→∞ Aχnψ = Aψ for each ψ ∈ C∞

c (M). Furthermore,
Lemma 3.2 implies that χn(H + i)−1C∞

c (M) ⊂ C∞
c (M), and lengthy but standard

computations involving the identity (4.1) show that limn→∞A[H,χn](H+ i)−1ψ =
0 for each ψ ∈ C∞

c (M). Using these facts, one obtains that

〈(H − i)−1ψ,Aψ〉H − 〈Aψ, (H + i)−1ψ〉H
= lim
n→∞〈ψ, [(H + i)−1, Aχn]ψ〉H

= lim
n→∞〈ψ,−(H + i)−1[H,A]χn(H + i)−1ψ〉H.

Now, a routine computation taking into account Formula (4.5), Assumption 4.1
with µL > 0 and µS ≥ 1, and the bound (4.4) shows that there exists a second
order differential operator L with coefficients in C∞

b (M) (with respect on M∞ to
the basis ∂/∂ρj) such that [H,A] = L on C∞

c (M). Since L extends continuously
to a bounded operator from W 2(M) ≡ D(H) to H due to [48, Lemma 1.6], one
obtains that

〈(H − i)−1ψ,Aψ〉H − 〈Aψ, (H + i)−1ψ〉H = 〈ψ,−(H + i)−1L(H + i)−1ψ〉H. (4.6)

But, the set C∞
c (M) is a core for A, thus (4.6) even holds for ψ ∈ D(A). So, the

quadratic form D(A) � ψ �→ 〈(H − i)−1ψ,Aψ〉H − 〈Aψ, (H + i)−1ψ〉H extends
uniquely to the bounded form defined by the operator −(H + i)−1L(H + i)−1 ∈
B(H), and thus H is of class C1(A) (see [4, Definition 6.2.2]).

Lemma 4.4 implies in particular that �M is of class C1(A), since the potential
V = 0 satisfies Assumption 4.1 for any µL, µS > 0. To close the section, we show
that the group {eitA}t∈R leaves the domain D(H) ≡ D(�M ) invariant:

Lemma 4.5. Suppose that Assumption 4.1 holds with µL > 0 and µS ≥ 1. Then
eitAD(H) ⊂ D(H) for all t ∈ R.
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Proof. As mentioned in the previous proof there exists a second order differen-
tial operator L ∈ B(D(H),H) such that [H,A] = L on C∞

c (M). So, Lemma 4.4
together with [4, Eq. (6.2.24)] imply, in the form sense on H, that

(H + i)−1[H,A](H + i)−1 = (H + i)−1L(H + i)−1,

where [H,A] ∈ B(D(H),D(H)∗) is the operator associated with the unique exten-
sion to D(H) of the quadratic form D(H)∩D(A) � ψ �→ 〈Hψ,Aψ〉H−〈Aψ,Hψ〉H.
Therefore, L and [H,A] are equals in B(D(H),D(H)∗), and [H,A] D(H) =
L D(H) ⊂ H. The claim then follows from Lemma 4.4 and the invariance crite-
rion [23, Lemma 2].

4.2. Mourre estimate

In [46], an abstract method giving a Mourre estimate for H from a Mourre estimate
for the pair (H0, A0) has been developed. The verification of the assumptions nec-
essary to apply this method is the content of the next lemmas. Here, C0(R) denotes
the set of continuous functions on R vanishing at ±∞.

Lemma 4.6. Suppose that Assumption 4.1 holds with µ > 0, and let η ∈ C0(R).
Then the difference Jη(H0) − η(H)J belongs to K (H0,H).

Proof. Let z ∈ C\R. We know from Lemma 4.2 that (H − z)−1T 〈Φ0〉µ, defined
on S (R) � C∞(Σ), extends continuously to an operator C(z) ∈ B(H0,H). Fur-
thermore, one can show by mimicking the proof of [35, Lemma 2.1] that K(z) :=
〈Φ0〉−µ(H0−z)−1 belongs to K (H0). So, one has on (H0−z)(S (R)�C∞(Σ)) the
equalities

J(H0 − z)−1 − (H − z)−1J = (H − z)−1T 〈Φ0〉µ〈Φ0〉−µ(H0 − z)−1 = C(z)K(z),

and by the density of (H0 − z)(S (R) � C∞(Σ)) in H0 these equalities extend
continuously to H0. One concludes by taking into account the fact that the vector
space generated by the family of functions {( · − z)−1}z∈C\R is dense in C0(R) and
that the set K (H0,H) is closed in B(H0,H).

Suppose that Assumption 4.1 holds with µL > 0 and µS ≥ 1, and let η ∈ C∞
c (R).

Then, we deduce from Lemma 4.4 and [4, Theorem 6.2.5] that η(H) ∈ C1(A).
Therefore, the quadratic form D(A) � ψ �→ 〈Aψ, η(H)ψ〉H−〈η̄(H)ψ,Aψ〉H extends
uniquely to a bounded form on H, with corresponding bounded operator denoted
by [A, η(H)]. Since, the same holds for the pair (H0, A0) in H0, one can define
similarly the operator [A0, η(H0)] ∈ B(H0).

The next lemma shows that these two commutators do not differ too much, even
though they live in different Hilbert spaces:

Lemma 4.7. Suppose that Assumption 4.1 holds with µL > 0 and µS > 1, and let
η ∈ C∞

c (R). Then, the difference of bounded operators J [A0, η(H0)]J∗ − [A, η(H)]
belongs to K (H).
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Proof. We apply [46, Proposition 3.12], which shows in an abstract framework
how the inclusion J [A0, η(H0)]J∗ − [A, η(H)] ∈ K (H) follows from a certain set of
hypotheses. Therefore, we simply check the hypotheses in question.

First, we know that H0 is of class C1(A0) with [H0, A0] = −2iP 2 ⊗ 1 ∈
B(D(H0),H0) and that H of class C1(A) due to Lemma 4.4. Next, one has to
show that the operator J extends to an element of B(D(H0)∗,D(H)∗). For this,
let D := {ϕ ∈ S (R) � C∞(Σ) | ‖ϕ‖H0 = 1} and observe that

‖J‖B(D(H0)∗,D(H)∗) ≤ Const.‖〈H〉−1J(H0 + 1)‖B(H0,H)

≤ Const.

(
1 + sup

ϕ∈D
‖〈H〉−1JH0ϕ‖H

)

= Const.

(
1 + sup

ϕ∈D
‖〈H〉−1(HJ − T )ϕ‖H

)
which is finite due to Lemma 4.2.

Two additional hypotheses have to be checked. The first one is the inclusion
J(H0−z)−1− (H−z)−1J ∈ K (H0,H), z ∈ C\R, which has already been obtained
in the proof of Lemma 4.6. The second one is the inclusion J [H0, A0]J∗ − [H,A] ∈
K (D(H),D(H)∗) (note that we already know that J [H0, A0]J∗−[H,A] is bounded
from D(H) to D(H)∗ due to the previous observations). Now, a rather lengthy
but straightforward computation taking Assumption 4.1 into account shows for all
ϕ ∈ C∞

c (M) that

(J [H0, A0]J∗ − [H,A])ϕ = mLϕ,

where L is a second order differential operator on C∞
c (M) with coefficients in

C∞
b (M) (with respect on M∞ to the basis ∂/∂ρj) and support in M∞, and m ∈

Cb(M) satisfies limx→∞ ‖(m◦ι−1)(x, ·)‖L∞(Σ) = 0. It follows for all ψ ∈ 〈H〉C∞
c (M)

that

〈H〉−1(J [H0, A0]J∗ − [H,A])〈H〉−1ψ = 〈H〉−1mL〈H〉−1ψ.

But we know from [48, Lemma 1.6] that the operator L〈H〉−1, defined on the dense
set 〈H〉C∞

c (M), extends to an element of B(H). We also know from Lemma 3.1
that 〈H〉−1m ≡ (m(H + i)−1(H + i)〈H〉−1)∗ belongs to K (H). Therefore, there
exists an operator K ∈ K (H) such that 〈H〉−1(J [H0, A0]J∗ − [H,A])〈H〉−1 = K

on H, which means that J [H0, A0]J∗ − [H,A] ∈ K (D(H),D(H)∗).

Lemma 4.8. For each η ∈ C∞
c (R), the operator η(H)(JJ ∗ − 1)η(H) belongs to

K (H).

Proof. One has JJ ∗ = χ∞ ι∗(j2 ⊗ 1), so JJ ∗ − 1 acts as a multiplication operator
by a function in C∞

c (M). Therefore, the right-hand side of the equality

η(H)(JJ ∗ − 1)η(H) = η(H)(JJ ∗ − 1)(H + i)−1(H + i)η(H)
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is the product of one element of K (H) and two elements of B(H), due to
Lemma 3.1.

In the next statement, we use the notation EH(λ; δ), with λ ∈ R and δ > 0, for
the spectral projection EH((λ− δ, λ+ δ)).

Proposition 4.9 (Mourre Estimate). Suppose that Assumption 4.1 holds with
µL > 0 and µS > 1. Then for each λ ∈ R\T , there exist δ, a > 0 and K ∈ K (H)
such that

EH(λ; δ)[iH,A]EH(λ; δ) ≥ aEH(λ; δ) +K.

Proof. The hypotheses (i)–(iv) of [46, Theorem 3.1] are verified in Lemmas 4.4,
4.7–4.8, respectively. Moreover, it is known (see, for instance, [51, Sec. 3.1]) that
A0 is strictly conjugate to H0 on R\T . So, the claim follows by applying [46,
Theorem 3.1], keeping in mind that A0 is conjugate to H0 at λ ∈ R if A0 is strictly
conjugate to H0 at λ.

Remark 4.10 (Critical Values of H). In the sequel, we call κ(H) := T ∪
σp(H) the set of critical values of H . This terminology is motivated by the fact
that Proposition 4.9, together with [4, Theorem 7.2.13], implies that A is strictly
conjugate to H on R\κ(H).

4.3. Higher order resolvent estimates and absolute continuity

The main result of this section is a statement on the differentiability of the boundary
values of the resolvent of H , which will be useful when discussing the stationary
formula for the scattering operator. Its proof is based on the abstract approach
developed in [11].

We start by introducing a multiplication operator Φ on M given by

Φψ := χ∞ ι∗(j2 idR ⊗ 1)ψ, ψ ∈ C∞
c (M). (4.7)

The closure of Φ in H (which we denote by the same symbol) is self-adjoint [43,
Exercise 5.1.15] and equal to JΦ0J

∗ on C∞
c (M). Furthermore, for a map h ∈

C(R; B(H)) and any s > 0 we say that h is Lipschitz–Zygmund continuous of class
Λs (in short h ∈ Λs) if

(i) 0 < s < 1 and ‖h(x+ ε) − h(x)‖B(H) ≤ Const. |ε|s for all x ∈ R and |ε| ≤ 1,
(ii) s = 1 and ‖h(x + ε) + h(x − ε) − 2h(x)‖B(H) ≤ Const. |ε| for all x ∈ R and

|ε| ≤ 1,
(iii) s = k + σ with k ∈ N∗ and σ ∈ (0, 1), and h ∈ Ckb (R) with kth derivative

h(k) ∈ Λσ.

Now, we state the main result of this section.

Proposition 4.11 (Higher Order Resolvent Estimates). Suppose that
Assumption 4.1 holds with µL > 0 and µS > k, for some k ∈ N∗. Take
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σ ∈ (0,min{µL, µS − k, 1}) and set s := k + σ − 1/2. Then for λ ∈ R\κ(H)
and 	 ∈ {1, 2, . . . , k}, the limit 〈A〉−s(H − λ ∓ i0)−�〈A〉−s := limε↘0〈A〉−s(H −
λ ∓ iε)−�〈A〉−s exists in B(H), and the map

R\κ(H) � λ �→ 〈A〉−s(H − λ∓ i0)−1〈A〉−s ∈ B(H) (4.8)

is locally of class Λk−1+σ. In particular, the map (4.8) is (k−1)-times continuously
differentiable, with derivative

dk−1

dλk−1
〈A〉−s(H − λ∓ i0)−1〈A〉−s = (k − 1)!〈A〉−s(H − λ∓ i0)−k〈A〉−s, (4.9)

and the map R\κ(H) � λ �→ 〈A〉−s(H − λ ∓ i0)−k〈A〉−s ∈ B(H) is locally of
class Λσ.

Before the proof, we recall that Lemma 4.5 implies that the restriction to G :=
D(H) of the unitary group generated by A defines a C0-group in G as well as in
its adjoint space G∗ (cf. [4, Proposition 3.2.5]); we still denote by A the generators
of these two C0-groups. In particular, for any operator B ∈ B(G,G∗), we write
B ∈ Ck(A;G,G∗) if the map R � t �→ e−itA B eitA ∈ B(G,G∗) is k-times strongly
differentiable. Similar definitions hold for the regularity classes Ck(A;G,H) and
Ck(A;H,G).

Proof. (a) We prove the claim by applying [11, Theorem, p. 12] to our situation.
So, we only need to check the hypotheses of that theorem. For that purpose, we
note that s > 1/2 and that H has a spectral gap due to the lower bound �M ≥ 0
and the boundedness of V . We also refer to point (b) below for a verification of the
hypothesis on the regularity of H with respect to A. Thus, [11, Theorem, p. 12]
applies and the map (4.8) is locally Lipschitz–Zygmund of order s−1/2 on R\κ(H).
In particular, since s−1/2 > k−1, the map (4.8) is (k−1)-times continuously differ-
entiable with bounded derivatives. The equality (4.9) follows from the observation
made in [11, pp. 12 and 13].

(b) For the regularity of H with respect to A, it is necessary to show that H is
of class C s+1/2(A) ≡ C s+1/2,∞(A) (see [11, Sec. 2.1]). By [4, Proposition 5.2.2(b)],
we know that this holds if H is of class Ck(A) and if the k-iterated commutator
adkA((H− i)−1) of (H− i)−1 with A belongs to C σ(A) with σ = s+1/2−k ∈ (0, 1).

We first show thatH is of class Ck(A). Since G is left invariant by the group gen-
erated by A, and since H is of class C1(A) with [iH,A] ∈ B(G,H) (see Lemma 4.5
and its proof), Proposition 3.2 of [46] tells us it is enough to prove the inclu-
sion [H,A] ∈ Ck−1(A;G,H) (this condition implies the weaker assumption H ∈
Ck−1(A;G,H) ∩Ck(A;G,G∗)). Let us assume that k > 1 since otherwise the proof
is trivial. We know from [4, Theorem 5.1.3(b)] that D1 := [H,A] ∈ C1(A;G,H) if

lim inf
τ↘0

1
τ
‖ eiτAD1 e−iτA−D1‖B(G,H) <∞. (4.10)

Now, a direct calculation using Assumption 4.1 with µL > 0 and µS ≥ k shows that
there exists a second order differential operator D2 with coefficients in C∞

b (M)
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(with respect on M∞ to the basis ∂/∂ρj) such that [A,D1] = D2 on C∞
c (M). So,

since eitA C∞
c (M) ⊂ C∞

c (M) for all t ∈ R, one has

lim inf
τ↘0

1
τ
‖ eiτAD1 e−iτA−D1‖B(G,H)

= lim inf
τ↘0

sup
ψ∈C∞

c (M), ‖ψ‖G=1

∥∥∥∥∫ 1

0

ds eiτsAD2 e−iτsA ψ
∥∥∥∥
H
,

and one gets the bound (4.10) by noting that ‖D2‖B(G,H) < ∞ (due to [48,
Lemma 1.6]) and that ‖ eitA ψ‖G ≤ Const.‖ψ‖G for all t ∈ [0, 1] (due to [4, Propo-
sition 3.2.2(b)]). Thus D1 ∈ C1(A;G,H), and this procedure can be repeated iter-
atively (with D2 replacing D1, and so forth) to show that D1 ∈ Ck−1(A;G,H).

Let us now show that adkA((H − i)−1) belongs to C σ(A). For that purpose, we
first note that the inclusion H ∈ Ck(A;G,H) implies by [4, Proposition 5.1.6] that
(H − i)−1 ∈ Ck(A;H,G). Then, we observe that

adkA((H − i)−1) = adk−1
A ([(H − i)−1, A])

= −adk−1
A ((H − i)−1[H,A](H − i)−1)

=
∑

�1,�2,�3≥0
�1+�2+�3=k−1

c�1,�2,�3 ad�1A ((H − i)−1)

× ad�2A ([H,A])ad�3A ((H − i)−1),

with c�1,�2,�3 ∈ R, ad�1A ((H − i)−1) and ad�3A ((H − i)−1) in C1(A;H,G) ⊂
C σ(A;H,G) and ad�2A ([H,A]) in B(G,H). Now, a duality argument implies that
ad�1A ((H − i)−1) also belongs to C σ(A;G∗,H). Thus, if one shows that ad�2A ([H,A])
belongs to C σ(A;G,G∗), then the statement would follow from an application of
[4, Proposition 5.2.3.(a)]. So, one is reduced to proving that D�2 := ad�2A ([H,A]) ∈
C σ(A;G,G∗) for any 	2 ≤ k − 1, which is equivalent to

‖e−itAD�2 eitA−D�2‖B(G,G∗) ≤ Const. |t|σ for all t ∈ (0, 1). (4.11)

Now, algebraic manipulations as in [4, p. 325] together with the point (i) of the
proof of [4, Proposition 7.5.7] imply that

‖e−itAD�2 eitA−D�2‖B(G,G∗) ≤ Const.‖ sin(tA)D�2‖B(G,G∗)

≤ Const.‖tA(tA+ i)−1D�2‖B(G,G∗),

with the constants independent of t ∈ [0, 1]. Furthermore, if At := tA(tA + i)−1

and Λt := t〈Φ〉(t〈Φ〉 + i)−1 with Φ defined in (4.7), then one has

At = {At + i(tA+ i)−1A〈Φ〉−1}Λt,

with A〈Φ〉−1 ∈ B(H,G∗) due to [48, Lemma 1.6]. Finally, it is shown in the abstract
framework of the proof of [4, Proposition 7.5.7] that ‖At‖B(G∗)+‖(tA+i)−1‖B(G∗) ≤
Const. for all t ∈ [0, 1]. Thus, the estimate (4.11) would hold if one shows that
‖ΛtD�2‖B(G,H) ≤ Const. |t|σ.
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For this, we recall that D�2 is (for any 	2 ≤ k − 1) equal on C∞
c (M) to a

second order differential operator with coefficients in C∞
b (R) (with respect on M∞

to the basis ∂/∂ρj) if µL > 0 and µS ≥ k. But, since µL > 0, µS > k and σ ≤
min{µL, µS − k}, the product 〈Φ〉σD�2 is still a second second order differential
operator on C∞

c (M) with coefficients in C∞
b (R). It follows that

‖ΛtD�2‖B(G,H) ≤ ‖Λt〈Φ〉−σ‖B(H) ‖〈Φ〉σD�2‖B(G,H)

≤ Const. sup
x∈R

|t〈x〉1−σ(t〈x〉 + i)−1| ≤ Const. |t|σ,

as required.

The nature of the spectrum of H can now be deduced:

Proposition 4.12 (Spectral Properties of H). Suppose that Assumption 4.1
holds with µL > 0 and µS > 1. Then, the eigenvalues of H outside T are of finite
multiplicity and can accumulate only at points belonging to T . Furthermore, the
operator H has no singular continuous spectrum.

Proof. We know from Proposition 4.9 that a Mourre estimate holds for H . We
also know from the proof of Proposition 4.11 with k = 1 that the operator H is
of class C 1+σ(A) for any σ ∈ (0,min{µL, µS − 1, 1}). So, H is a fortiori of class
C1,1(A). Finally, we recall that H has a spectral gap, as mentioned in the proof
of Proposition 4.11. Therefore, one can simply apply [4, Theorem 7.4.2] to obtain
the stated results (note that [4, Theorem 7.4.2] only implies that H has no singular
continuous spectrum in R\T , but since T is countable this implies that H has no
singular continuous spectrum at all).

We refer to [21] for further information on the accumulation of eigenvalues at
thresholds in a similar setting.

4.4. From one weight to another

The higher order resolvent estimates for H obtained in Proposition 4.11 are for-
mulated in terms of the weights 〈A〉−s. However, in applications, such as for the
existence of the wave operators or for the mapping properties of the scattering
operator, it is often more convenient to deal with weights defined in terms of mul-
tiplication operators (see, for example, the seminal works [33, 34]). So, we devote
this subsection to the derivation of higher order resolvent estimates for H in terms
of the weights 〈Φ〉−s (see (4.7)).

We start by recalling a similar result for the pair (H0,Φ0) that can be deduced
from the proof of [51, Lemma 3.6]:

Lemma 4.13. Let s > k − 1/2 for some k ∈ N∗. Then for λ ∈ R\T and 	 ∈
{1, 2, . . . , k}, the limit 〈Φ0〉−s(H0 − λ ∓ i0)−�〈Φ0〉−s := limε↘0〈Φ0〉−s(H0 − λ ∓
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iε)−�〈Φ0〉−s exists in B(H0), and the map

R\T � λ �→ 〈Φ0〉−s(H0 − λ∓ i0)−1〈Φ0〉−s ∈ B(H0)

is (k − 1)-times continuously differentiable, with derivative

dk−1

dλk−1
〈Φ0〉−s(H0 − λ∓ i0)−1〈Φ0〉−s = (k − 1)!〈Φ0〉−s(H0 − λ∓ i0)−k〈Φ0〉−s.

We turn now to the derivation of similar resolvent estimates for H in terms of
the weights 〈Φ〉−s.

Proposition 4.14. Suppose that Assumption 4.1 holds with µL > 0 and µS > k,

for some k ∈ N∗. Take σ ∈ (0,min{µL, µS − k, 1}) and set s := k + σ − 1/2. Then
for λ ∈ R\κ(H) and 	 ∈ {1, 2, . . . , k}, the limit 〈Φ〉−s(H − λ ∓ i0)−�〈Φ〉−s :=
limε↘0〈Φ〉−s(H − λ∓ iε)−�〈Φ〉−s exists in B(H), and the map

R\κ(H) � λ �→ 〈Φ〉−s(H − λ∓ i0)−1〈Φ〉−s ∈ B(H) (4.12)

is locally of class Λk−1+σ. In particular, the map (4.12) is (k−1)-times continuously
differentiable with (k − 1)th derivative locally of class Λσ.

Proof. Take z ∈ C\σ(H), fix λ0 ∈ R\σ(H) and let m ∈ N∗ with 2m ≥ s. Then,
by applying iteratively m-times the formula [4, Eq. 7.4.2] for the resolvent R(z) :=
(H − z)−1 one obtains that

R(z) = (z − λ0)2mR(λ0)mR(z)R(λ0)m + I(z, λ0,m),

where I(z, λ0,m) is a polynomial in z with coefficients in B(H). It follows that

〈Φ〉−sR(z)〈Φ〉−s

= (z − λ0)2m〈Φ〉−sR(λ0)mR(z)R(λ0)m〈Φ〉−s + 〈Φ〉−sI(z, λ0,m)〈Φ〉−s

= (z − λ0)2m{〈Φ〉−sR(λ0)m〈A〉s}〈A〉−sR(z)〈A〉−s{〈A〉sR(λ0)m〈Φ〉−s}

+ 〈Φ〉−sI(z, λ0,m)〈Φ〉−s. (4.13)

Furthermore, it is proved in Lemma A.3 that B := 〈A〉sR(λ0)m〈Φ〉−s belongs to
B(H). So, (4.13) can be written as

〈Φ〉−sR(z)〈Φ〉−s = (z − λ0)2mB∗〈A〉−sR(z)〈A〉−sB + 〈Φ〉−sI(z, λ0,m)〈Φ〉−s.

This last identity (with z = λ ± iε), together with Proposition 4.11, implies the
claim.

5. Scattering Theory

In this section, we present the standard short-range scattering theory for our model.
Accordingly, we formulate all our statements in terms of the common exponent
µ ≡ min{µL, µS} to ensure that both the short-range and long-range perturbations
decay at least as 〈x〉−µ at infinity. As usual, the assumption µ > 1 is sufficient to
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guarantee the existence and the asymptotic completeness of the wave operators.
Note that the existence and the asymptotic completeness of the wave operators
were already proved in [18] in a similar context but with both operators H and H0

living in the same Hilbert space. More recently, another proof has been given in
[30] for two operators H0 and H living in different Hilbert spaces and for manifolds
with boundaries, but without a perturbation V .

5.1. Existence of the wave operators

This first subsection deals with the existence of the wave operators and some of
their properties. Mourre theory as developed in the previous section is not necessary
for that part of the investigations. However, once the problem of the asymptotic
completeness will be addressed, all the results obtained so far will be necessary.

We start with two lemmas which will play a key role when proving the existence
of the wave operators. Their statement involves the sets

Dt := {ϕ ∈ Ht(R) ⊗ L2(Σ) |ϕ = η(H0)ϕ for some η ∈ C∞
c (R\T )}, t ≥ 0,

which are dense in H0 since each Dt contains the dense set
j0∑
j=0

(F−1ϕj) ⊗ υj | j0 ∈ N, ϕj ∈ C∞
c (R\ ±

√
{T − τj}+) and υj ∈ Pj L2(Σ)

,
where {T − τj}+ := {T − τj} ∩ [0,∞).

Lemma 5.1. Suppose that Assumption 4.1 holds with µ > 0, let ϕ ∈ Ds with s > 0
and take µ′ < min{µ, s}. Then, one has for any t ∈ R

‖T e−itH0 ϕ‖H ≤ Const.(1 + |t|)−µ′
. (5.1)

Proof. Let ϕ ∈ Ds. Then, one deduces from Lemma 4.2 that

‖T e−itH0 ϕ‖H ≤ Const.‖〈H0〉〈Φ0〉−µ e−itH0 ϕ‖H0 .

Since ϕ ∈ Ds there exist η ∈ C∞
c (R\T ) and j0 ∈ N such that

e−itH0 ϕ =
j0∑
j=0

(e−it(P
2+τj) ⊗Pj)η(H0)ϕ =

j0∑
j=0

(e−it(P
2+τj) η(P 2 + τj) ⊗ Pj)ϕ.

As a consequence, one obtains that

‖T e−itH0 ϕ‖H ≤ Const.
j0∑
j=0

‖〈P 2 + τj〉〈Q〉−µ e−it(P
2+τj) ηj(P 2)〈Q〉−s‖B(L2(R)),
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with ηj := η( · + τj). Then, some commutators calculations lead to the estimate

‖T e−itH0 ϕ‖H ≤ Const.
j0∑
j=0

‖〈Q〉−µ e−itP
2
P 2ηj(P 2)〈Q〉−s‖B(L2(R)) (5.2)

+ Const.
j0∑
j=0

‖〈Q〉−µ e−itP
2
Pηj(P 2)〈Q〉−s‖B(L2(R)) (5.3)

+ Const.
j0∑
j=0

‖〈Q〉−µ e−itP
2
ηj(P 2)〈Q〉−s‖B(L2(R)). (5.4)

Since 0 /∈ supp(ηj), one can apply [5, Lemma 9] to infer that (5.2) and (5.4) are
bounded by the right-hand side of (5.1) with µ′ < min{µ, s}. For (5.3), one first
uses the equality

P ηj(P 2)〈Q〉−s = {〈P 〉ηj(P 2)〈Q〉−s}{〈Q〉sP 〈P 〉−1〈Q〉−s},

and then the same bound can be obtained by taking [5, Lemma 9] and [5, Lemma 1]
into account.

For the next lemma, we introduce the subspaces H±
0 of H0 given by

H±
0 := {ϕ ∈ H0 | supp(F ⊗ 1)ϕ ⊂ R± × Σ}, (5.5)

where R+ := (0,∞) and R− := (−∞, 0). We also note that the sets Dt ∩ H±
0 are

dense in H±
0 for each t ≥ 0 because they contain the dense sets

j0∑
j=0

(F−1ϕj) ⊗ υj | j0 ∈ N, ϕj ∈ C∞
c (R±\±

√
{T − τj}+) and υj ∈ Pj L2(Σ)

.
Lemma 5.2. Let s > 0 and ϕ± ∈ Ds ∩H±

0 . Then, one has

‖(J∗J − 1) e−itH0 ϕ±‖H0 ≤ Const.(1 + |t|)−s for any t ∈ R±.

Proof. The proof of this statement relies on estimates obtained in [6, Sec. II.A]
in the context of one-dimensional anisotropic scattering. In [6, Eq. 17] it is proved
that if ψ ∈ Hs(R) with supp(Fψ) ⊂ R+, then one has for each x0 ∈ R and t > 0

‖χ(−∞,x0) e−itP
2
ψ‖L2(R) ≤ Const.(1 + |t|)−s.

A similar estimate with t < 0 also holds if ψ ∈ Hs(R) and supp(Fψ) ⊂ R− (see
[6, Eq. (20)]).
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Now, it is easily observed that

J∗J − 1 = (j2 − 1) ⊗ 1 = χ(−∞,2)(j2 − 1) ⊗ 1.

So, one obtains

‖(J∗J − 1) e−itH0 ϕ‖H0 ≤ ‖(χ(−∞,2) e−itP
2 ⊗1)ϕ‖H0

for any t ∈ R and ϕ ∈ H0. This, together with the extensions of the mentioned
estimates to the algebraic tensor product L2(R)�L2(Σ), implies the claim for vectors
ϕ± ∈ Ds ∩H±

0 and t ∈ R±.

Proposition 5.3 (Existence of the Wave Operators). Suppose that Assump-
tion 4.1 holds with µ > 1. Then, the generalized wave operators

W± := s- lim
t→±∞

eitH J e−itH0

exist and are partial isometries with initial subspaces H±
0 .

Proof. The existence of the wave operators is based on the Cook-Kuroda method.
One first observes that, since J ∈ B(D(H0),D(H)), the following equality holds
for any ϕ ∈ D(H0):

eitH J e−itH0 ϕ = Jϕ+ i

∫ t

0

ds eisH T e−isH0 ϕ.

Furthermore, if ϕ ∈ Dµ ⊂ D(H0) it follows from Lemma 5.1 that there exists
µ′ ∈ (1, µ) such that∫ ∞

−∞
ds‖eisHT e−isH0 ϕ‖H ≤ Const.

∫ ∞

−∞
ds (1 + |s|)−µ′

<∞.

Since Dµ is dense in H0, this estimate implies the existence of both wave operators
W±.

We now show that W±H∓
0 = {0}. Assume that ϕ± ∈ Ds ∩ H±

0 for some s > 0.
Then, one has

‖W±ϕ∓‖H = lim
t→±∞ ‖eitHJ e−itH0 ϕ∓‖H = lim

t→±∞ ‖Jχ(0,∞) e−itH0 ϕ∓‖H

≤ Const. lim
t→±∞ ‖(χ(0,∞) e−itP

2 ⊗1)ϕ∓‖H0

≤ Const. lim
t→±∞(1 + |t|)−s

= 0,

where we have used for the last inequality the extension of the estimates [6, Eqs. (18)
and (19)] to the algebraic tensor product L2(R)� L2(Σ). Since Ds ∩H∓

0 is dense in
H∓

0 , one infers that W±H∓
0 = {0}.
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Finally, we show that ‖W±ϕ±‖H = ‖ϕ±‖H0 for each ϕ± ∈ H±
0 . One has for any

ϕ± ∈ Ds ∩H±
0

|‖W±ϕ±‖2
H − ‖ϕ±‖2

H0
| = lim

t→±∞ |〈e−itH0 ϕ±, (J∗J − 1) e−itH0 ϕ±〉H0 |

≤ Const. lim
t→±∞ ‖(J∗J − 1) e−itH0 ϕ±‖H0

= 0,

due to Lemma 5.2. So, the statement follows by the density of Ds ∩H±
0 in H±

0 .

Finally, we present an estimate which is going to play an important role when
proving the existence of the time delay. Its proof relies on estimates obtained so far
in this section.

Lemma 5.4. Suppose that Assumption 4.1 holds with µ > 2. Then, one has for
any ϕ± ∈ Dµ ∩H±

0

‖(J∗W± − 1) e−itH0 ϕ±‖H0 ∈ L1(R±, dt).

Proof. Let ϕ ∈ Dµ. Then, we know from Lemma 5.1 that there exists µ′ ∈ (2, µ)
such that

‖J∗(W− − J) e−itH0 ϕ‖H0 ≤ Const.
∫ t

−∞
ds ‖T e−isH0 ϕ‖H

≤ Const.
∫ t

−∞
ds (1 + |s|)−µ′ ∈ L1(R−, dt).

A similar argument shows that ‖J∗(W+ − J) e−itH0 ϕ‖H0 belongs to L1(R+, dt).
Furthermore, one obtains from Lemma 5.2 that

‖(J∗J − 1) e−itH0 ϕ±‖H0 ∈ L1(R±, dt)

for each ϕ± ∈ Dµ∩H±
0 . Since J∗W±−1 = J∗(W±−J)+(J∗J−1), the combination

of both estimates implies the claim.

5.2. Asymptotic completeness of the wave operators

We establish in this subsection the asymptotic completeness of the wave operators
W± by applying the abstract criterion [46, Proposition 5.1]. To do so, we need two
preliminary lemmas.

Lemma 5.5. One has s-limt→±∞(JJ ∗ − 1) e−itH Pac(H) = 0.

Proof. We know from the proof of Lemma 4.8 that (JJ ∗ − 1)(H + i)−1 ∈ K (H).
So, one can conclude using a classical propagation estimate for vectors in Pac(H)H
(see [3, Proposition 5.7(b)]).

In the next lemma, we prove the existence of the adjoint wave operators. For that
purpose, we follow the standard approach (see [55, Corollary 4.5.7]) by showing that
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HJ−JH0 admits for all ϕ ∈ D(H0) and ψ ∈ D(H) a sesquilinear form decomposition

〈Jϕ,Hψ〉H − 〈JH0ϕ, ψ〉H = 〈G0ϕ,Gψ〉H, (5.6)

where G0 : H0 → H is H0-bounded and locally H0-smooth on R\T and G : H → H
is H-bounded and locally H-smooth on R\κ(H) (with κ(H) being of measure zero).
The definition of local smoothness is, for example, provided in [55, Definition 4.3.9].
In our setting, we employ for suitable s ∈ R the parameter dependent operators
given formally by G(s) := 〈Φ〉−s and G0(s) := 〈Φ〉sT (see the proof below for their
precise definitions).

Lemma 5.6. Suppose that Assumption 4.1 holds with µ > 1. Then, the following
wave operators exist:

W±(H0, H, J
∗) := s- lim

t→±∞
eitH0 J∗ e−itH Pac(H).

Proof. We fix s ∈ (1/2, µ − 1/2) and show as in Lemma 4.2 that the operator
〈Φ〉sT 〈Φ0〉µ−s defined on S (R)�C∞(Σ) extends continuously to an operator Bs ∈
B(D(H0),H). It follows by Proposition A.2(i) that there exists an operator Cs ∈
B(H0,H) such that one has on S (R) � C∞(Σ)

〈Φ〉sT = Bs(H0 − i)−1(H0 − i)〈Φ0〉s−µ = Cs〈Φ0〉s−µ(H0 − i).

Thus, one gets for any ϕ ∈ S (R) � C∞(Σ) and ψ ∈ D(H) the equalities

〈Jϕ,Hψ〉H − 〈JH0ϕ, ψ〉H = 〈〈Φ〉sTϕ, 〈Φ〉−sψ〉H
= 〈Cs〈Φ0〉s−µ(H0 − i)ϕ, 〈Φ〉−sψ〉H, (5.7)

which extend to all ϕ ∈ D(H0) due to the density of S (R) � C∞(Σ) in D(H0).
Now, the operator G(s) := 〈Φ〉−s is H-bounded and locally H-smooth on

R\κ(H) due to Proposition 4.14 with k = 1, and some standard computations
show that the operator G0(s) := Cs〈Φ0〉s−µ(H0− i) is H0-bounded and H0-smooth
on R\T . So, the decomposition (5.7) is equivalent to (5.6), and the claim is proved.

We are finally in a position to prove the asymptotic completeness of the wave
operators:

Proposition 5.7 (Asymptotic Completeness of the Wave Operators). Sup-
pose that Assumption 4.1 holds with µ > 1. Then, Ran(W±(H,H0, J)) = Hac(H).

Proof. This result follows from [46, Proposition 5.1], whose assumptions have been
checked in Proposition 5.3, Lemma 5.5 and Lemma 5.6.

Remark 5.8. Let us collect some information about the spectrum of the oper-
ator H . Under the Assumption 4.1 with µL > 0 and µS > 1, a Mourre esti-
mate was obtained in Proposition 4.9 based on the abstract scheme presented
in [46, Theorem 3.1]. It also follows from this abstract result, together with
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[4, Proposition 7.2.6], that σess(H) ⊂ σess(H0) = [0,∞), and thus σac(H) ⊂ [0,∞),
since σsc(H) = ∅ due to Proposition 4.12.

More can be said under (the stronger) Assumption 4.1 with µ > 1: We know by
Lemma 2.1(c) that the restrictions H±

0 := H0 � H±
0 are self-adjoint operators with

spectrum σ(H±
0 ) = σac(H±

0 ) = [0,∞). We also know by Propositions 5.3 and 5.7
that the absolutely continuous parts of H±

0 and H are unitarily equivalent. So, one
has σac(H) = [0,∞), and we deduce from Proposition 4.12 that

σess(H) = σac(H) = [0,∞).

5.3. Stationary formula for the scattering operator

In simple situations, the scattering operator is defined as the product W ∗
+W− from

H0 to H0. However, in our setup, this product is not unitary since the wave opera-
tors are partial isometries with non-trivial kernels. Therefore, we define instead the
scattering operator as

S := W ∗
+W− : H−

0 → H+
0 ,

and note that this operator is unitary due to the asymptotic completeness estab-
lished in Proposition 5.7 (see (5.5) for the definition of the spaces H±

0 ⊂ H0). Since
the scattering operator S commutes with the free evolution group {eitH0}t∈R, one
infers from Lemma 2.1(c) that S admits a direct integral decomposition

F0SF−1
0 =

∫ ⊕

[0,∞)

dλS(λ) : F0H−
0 → F0H+

0 ,

where S(λ) (the scattering matrix at energy λ) is an operator acting unitarily from
H−

0 (λ) := (F0H−
0 )(λ) to H+

0 (λ) := (F0H+
0 )(λ). Here, the subspaces H±

0 (λ) ⊂ H0(λ)
satisfy

H−
0 (λ) =

⊕
j∈N(λ)

Pj L2(Σ) ⊕ {0} and H+
0 (λ) =

⊕
j∈N(λ)

{0} ⊕ Pj L2(Σ),

and are embedded in H−
0 (∞) :=

⊕
j∈N

Pj L2(Σ) ⊕ {0} and H+
0 (∞) :=

⊕
j∈N

{0} ⊕
Pj L2(Σ).

In the sequel, we derive a formula for the operators S(λ) by using the stationary
scattering theory of [55, Sec. 5.5]. Our first step toward that formula is the following
lemma; recall that T ≡ {τj}j∈N is the spectrum of �Σ in L2(Σ) and that G0(s) ∈
B(D(H0),H), with s ∈ (1/2, µ− 1/2), was defined in the proof of Lemma 5.6.

Lemma 5.9. Suppose that Assumption 4.1 holds with µ > 1 and let λ ∈ [0,∞)\T .
Then,

(a) for any s ∈ (1/2, µ− 1/2), the operator Z0(λ;G0(s)) : H → H0(λ) given by

Z0(λ;G0(s))ψ := (F0G0(s)∗ψ)(λ), ψ ∈ D(H),

is well-defined and extends to an element of B(H,H0(λ)) which we denote by
the same symbol,
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(b) if µ > k + 1 for some k ∈ N, and if s ∈ (1/2, µ − k − 1/2), the function
[0,∞)\T � λ �→ Z0(λ;G0(s)) ∈ B(H,H0(∞)) is locally k-times Hölder contin-
uously differentiable,

(c) for all s1, s2 ∈ (1/2, µ− 1/2), one has

Z0(λ;G0(s1))〈Φ〉−s1 = Z0(λ;G0(s2))〈Φ〉−s2 .

Proof. The three claims are proved, respectively, in points (a)–(c) below. In the
proofs, we freely use the following inclusions which can be established as in Lemma
4.2: Given s1, s2 ∈ R with s1 + s2 ≤ µ, one has

L(s1, s2) := (H − i)−1〈Φ〉s1T 〈Φ0〉s2 � S (R) � C∞(Σ) ∈ B(H0,H)

and

R(s1, s2) := 〈Φ〉s1T 〈Φ0〉s2(H0 + i)−1 � S (R) � C∞(Σ) ∈ B(H0,H).

(a) Take ψ ∈ D(H), ϕ ∈ D(H0) and {ϕn}n∈N ⊂ S (R) � C∞(Σ) such that
limn→∞ ‖ϕ− ϕn‖D(H0) = 0. Then, we have for any fixed s ∈ (1/2, µ− 1/2)

〈ψ,G0(s)ϕ〉H = lim
n→∞〈ψ, 〈Φ〉sTϕn〉H

= lim
n→∞〈(H + i)ψ, (H − i)−1〈Φ〉sT 〈Φ0〉µ−s〈Φ0〉s−µϕn〉H

= lim
n→∞〈(H + i)ψ,L(s, µ− s)〈Φ0〉s−µϕn〉H

= 〈〈Φ0〉s−µL(s, µ− s)∗(H + i)ψ, ϕ〉H0 ,

meaning that G0(s)∗ψ = 〈Φ0〉s−µL(s, µ− s)∗(H + i)ψ. It follows by Lemma 2.1(a)
that for each λ ∈ [0,∞)\T

Z0(λ;G0(s))ψ

= F0(λ)〈Φ0〉s−µL(s, µ− s)∗(H + i)ψ

= F0(λ)

1 ⊗

 ∑
j∈N(λ)

Pj

 〈Φ0〉s−µL(s, µ− s)∗(H + i)ψ

= F0(λ)(〈Q〉s−µ ⊗ 1)

1 ⊗

 ∑
j∈N(λ)

Pj

 (H0 − i)

× (H0 − i)−1L(s, µ− s)∗(H + i)ψ

= F0(λ)(〈Q〉s−µ ⊗ 1){(P 2 − i) ⊗ 1 + 1 ⊗ (�Σ)λ}

× (H0 − i)−1L(s, µ− s)∗(H + i)ψ, (5.8)

where (�Σ)λ :=
∑
j∈N(λ) τj Pj ∈ B(L2(Σ)). Now, a direct calculation using Propo-

sition A.2(iii) shows for all ϕ̃ ∈ S (R) � C∞(Σ) that

〈ϕ̃, (H0 − i)−1L(s, µ− s)∗(H + i)ψ〉H0 = 〈ϕ̃, R(s, µ− s)∗ψ〉H0 .
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So, one infers that (H0 − i)−1L(s, µ− s)∗(H + i)ψ = R(s, µ− s)∗ψ by the density
of S (R) � C∞(Σ) in H0, and thus

Z0(λ;G0(s))ψ = F0(λ)(〈Q〉s−µ ⊗ 1){(P 2 − i) ⊗ 1 + 1 ⊗ (�Σ)λ}R(s, µ− s)∗ψ.

Now, the operator on the right-hand side belongs to B(H,H0(λ)) due to
Lemma 2.1(a). So, one obtains that

Z0(λ;G0(s)) � D(H)

= F0(λ)(〈Q〉s−µ ⊗ 1){(P 2 − i) ⊗ 1 + 1 ⊗ (�Σ)λ}R(s, µ− s)∗, (5.9)

which proves the first claim.
(b) Write Z0(λ;G0(s)) for the closure Z0(λ;G0(s)) � D(H) and fix an interval

(τj , τj+1). Then, the function

(τj , τj+1) � λ �→ Z0(λ;G0(s))

≡ F0(λ)(〈Q〉s−µ ⊗ 1){(P 2 − i) ⊗ 1 + 1 ⊗ (�Σ)λ}R(s, µ− s)∗∈B(H,H0(∞))

depends on λ only via the factor F0(λ), since (�Σ)λ is independent of λ on
(τj , τj+1). Therefore, it follows by Lemma 2.1(b) that the function [0,∞)\T � λ �→
Z0(λ;G0(s)) ∈ B(H,H0(∞)) is locally k-times Hölder continuously differentiable if
s is chosen such that µ−s > k+1/2. But, we know by hypothesis that µ > k+1. So,
the condition µ−s > k+1/2 is verified for any s ∈ (1/2, µ−k−1/2) ⊂ (1/2, µ−1/2).

(c) Let s1, s2 ∈ (1/2, µ−1/2), ϕ ∈ H0(λ) and ψ ∈ C∞
c (M). Then, Formula (5.8)

implies that

〈ϕ,Z0(λ;G0(s1))〈Φ〉−s1ψ〉H0(λ) = 〈L(s1, µ−s1)〈Φ0〉s1−µF0(λ)∗ϕ, (H+i)〈Φ〉−s1ψ〉H.

So, by taking {ζn}n∈N ⊂ S (R) � C∞(Σ) such that limn→∞ ‖〈Φ0〉s1−µF0(λ)∗ϕ −
ζn‖H0 = 0, one infers that

〈ϕ,Z0(λ;G0(s1))〈Φ〉−s1ψ〉H0(λ)

= lim
n→∞〈(H − i)−1〈Φ〉s1T 〈Φ0〉µ−s1ζn, (H + i)〈Φ〉−s1ψ〉H

= lim
n→∞〈(H − i)−1〈Φ〉s2T 〈Φ0〉µ−s2〈Φ0〉s2−s1ζn, (H + i)〈Φ〉−s2ψ〉H

= lim
n→∞〈L(s2, µ− s2)〈Φ0〉s2−s1ζn, (H + i)〈Φ〉−s2ψ〉H

= 〈ϕ,Z0(λ;G0(s2))〈Φ〉−s2ψ〉H0(λ).

One concludes by noting that ϕ is arbitrary in H0(λ) and that C∞
c (M) is dense

in H.

In the proof of the next theorem, we use the fact that the identification operator
J extends, for each s ∈ R, to an element of B(D(〈Φ0〉s),D(〈Φ〉s)). We also use the
notation σ̂(H0) for a core of the spectrum σ(H0) ≡ σac(H0); namely, a Borel set
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σ̂(H0) such that:

(i) σ̂(H0) is a Borel support of the spectral measure EH0(·), namely,
EH0(R\σ̂(H0))= 0,

(ii) if I is a Borel support of EH0( ·), then σ̂(H0)\I has Lebesgue measure zero.

The set σ̂(H0) is unique up to a set of Lebesgue measure zero (see [55, Sec. 1.3.3]
for more details).

Theorem 5.10 (Stationary Formula for the S-Matrix). Suppose that
Assumption 4.1 holds with µ > 1. Then, for any s1, s2, s3 ∈ (1/2, µ − 1/2) and
for almost every λ ∈ [0,∞)\κ(H) we have

S(λ) = −2πiF0(λ)J∗〈Φ〉−s1Z0(λ;G0(s1))∗

+ 2πiZ0(λ;G0(s2))〈Φ〉−s2 (H − λ− i0)−1〈Φ〉−s3Z0(λ;G0(s3))∗, (5.10)

with Z0(λ;G0( ·)) given by the right-hand side of (5.9).

Before the proof, we recall that the usual scattering operator S̃ (from H0 to H0)
coincides on H−

0 with our unitary scattering operator S : H−
0 → H+

0 .

Proof. Let s1 ∈ (1/2, µ− 1/2), ϕ ∈ H−
0 ∩D(〈Φ0〉s1) and λ ∈ R\T . Then, we know

from Lemma 4.13 that the following limits exist in H (see the proof of Proposition
5.6 for the definitions of G0(s1) and Cs1 ):

s- lim
ε↘0

G0(s1)(H0 − λ∓ iε)−1ϕ

= s-lim
ε↘0

Cs1〈Φ0〉s1−µ(H0 − i)(H0 − λ∓ iε)−1〈Φ0〉−s1〈Φ0〉s1ϕ

= s-lim
ε↘0

Cs1{〈Φ0〉−µ + (λ ± iε− i)〈Φ0〉s1−µ(H0 − λ∓ iε)−1〈Φ0〉−s1}〈Φ0〉s1ϕ.

Furthermore, the operator G0(s1) is H0-smooth in the weak sense since it is H0-
smooth on R\T (see [55, Sec. 5.1]), and the operator G(s1) ≡ 〈Φ〉−s1 is |H |1/2-
bounded. Therefore, all the assumptions of [55, Theorem 5.5.3] are verified on the
dense set D(〈Φ0〉s1) ⊂ H0 due to Proposition 4.14. It follows that the representation
[55, Eq. (5.5.3+)] for S̃(λ) holds for almost every λ ∈ σ̂(H0). So, we have for almost
every λ ∈ σ̂(H0)\T and all ϕ ∈ H−

0 ∩ D(〈Φ0〉s1) the equalities

(F0S̃ϕ)(λ) = S̃(λ)F0(λ)ϕ = {u+(λ) − 2πi[Z0(λ; G̃0(s1))Z0(λ;G0(s1))∗

− Z0(λ;G0(s1))Bs1(λ + i0)Z0(λ;G0(s1))∗]}F0(λ)ϕ,

(5.11)

with the operators u+(λ), Z0(λ; G̃0(s1)) and Bs1(λ + i0) defined in points (i), (ii)
and (iii) that follow:

(i) We know from [55, Theorem 5.3.6] (which applies in our case) that the
stationary wave operator U+(H,H0; J) coincides with the wave operator W+. It

1350003-29



March 13, 2013 14:45 WSPC/S0129-055X 148-RMP J070-1350003

S. Richard & R. Tiedra de Aldecoa

then follows from [55, Eq. (2.7.16)] that

U+(H0, H0; J∗J) = U+(H,H0; J)∗U+(H,H0; J) = W ∗
+W+ = P+

0 ,

with P+
0 the orthogonal projection onto H+

0 . Since H+
0 and H−

0 are orthogonal and
since u+(λ) : H0(λ) → H0(λ) is defined by the relation

u+(λ)F0(λ)ϕ = [F0U+(H0, H0; J∗J)ϕ](λ),

it follows that

u+(λ)F0(λ)ϕ = (F0P
+
0 ϕ)(λ) = 0.

(ii) One has G̃0(s1) := G(s1)J with G(s1) = 〈Φ〉−s1 . Therefore, the operator
Z0(λ; G̃0(s1)) : H → H0(λ) (defined as Z0(λ;G0(s1)), but with G0(s1) replaced by
G̃0(s1)) satisfies for all ψ ∈ H

Z0(λ; G̃0(s1))ψ = F0(λ){G̃0(s1)}∗ψ = F0(λ)J∗〈Φ〉−s1ψ.

Lemma 2.1(a) and the inclusion J∗ ∈B(D(〈Φ〉s1 ),D(〈Φ0〉s1)) implies that Z0(λ;
G̃0(s1)) ∈ B(H,H0(λ)).

(iii) The operator

Bs1(λ + i0) := G(s1)(H − λ− i0)−1G(s1)∗ = 〈Φ〉−s1(H − λ− i0)−1〈Φ〉−s1

belongs to B(H) for all λ ∈ R\κ(H) due to Proposition 4.14.
Now, by replacing the expressions of points (i), (ii) and (iii) into (5.11) and then

by using Lemma 5.9(c), one gets for any s1, s2, s3 ∈ (1/2, µ− 1/2) and for almost
every λ ∈ σ̂(H0)\κ(H) that

S̃(λ)F0(λ)ϕ = −2πi{F0(λ)J∗〈Φ〉−s1Z0(λ;G0(s1))∗

− Z0(λ;G0(s1))〈Φ〉−s1 (H − λ− i0)−1〈Φ〉−s1Z0(λ;G0(s1))∗}F0(λ)ϕ

= −2πi{F0(λ)J∗〈Φ〉−s1Z0(λ;G0(s1))∗

− lim
ε↘0

Z0(λ;G0(s1))〈Φ〉−s1 (H − λ− iε)−1〈Φ〉−s1

× Z0(λ;G0(s1))∗}F0(λ)ϕ

= −2πi{F0(λ)J∗〈Φ〉−s1Z0(λ;G0(s1))∗

− Z0(λ;G0(s2))〈Φ〉−s2 (H − λ− i0)−1〈Φ〉−s3Z0(λ;G0(s3))∗}F0(λ)ϕ.

Furthermore, Lemma 2.1(a), Lemma 5.9 and Proposition 4.14 imply that the oper-
ator within the curly brackets is well-defined on H−

0 (λ) for all λ ∈ [0,∞)\κ(H).
So, since S̃ and S are equal on H−

0 , it follows that (5.10) holds for almost every
λ ∈ [0,∞)\κ(H).

In the next corollary, we identify (without loss of generality) the operator S(λ)
with the right-hand side of Formula (5.10) for all λ ∈ [0,∞)\κ(H).

Corollary 5.11 (Differentiability of the S-Matrix). Suppose that Assumption
4.1 holds with µ > k + 1 for some k ∈ N. Then, the function [0,∞)\κ(H) � λ �→
S(λ) ∈ B(H−

0 (∞),H+
0 (∞)) is locally k-times Hölder continuously differentiable.
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Proof. We first show that λ �→ S(λ) is locally k-times Hölder continuously dif-
ferentiable from [0,∞)\κ(H) to B(H−

0 (∞),H0(∞)). For that purpose, we let
s1, s2, s3 ∈ (1/2, µ − 1/2) and note from Formula (5.10) that it is sufficient to
prove that the terms

A�1,�2(λ) :=
{

d�1

dλ�1
F0(λ)J∗〈Φ〉−s1

}{
d�2

dλ�2
Z0(λ;G0(s1))∗

}
exist and are locally Hölder continuous for all λ ∈ [0,∞)\κ(H) and all integers
	1, 	2 ≥ 0 satisfying 	1 + 	2 ≤ k, and that the terms

B�1,�2,�3(λ) :=
{

d�1

dλ�1
Z0(λ;G0(s2))

}{
d�2

dλ�2
〈Φ〉−s2(H − λ− i0)−1〈Φ〉−s3

}
×
{

d�3

dλ�3
Z0(λ;G0(s3))∗

}
exist and are locally Hölder continuous for all λ ∈ [0,∞)\κ(H) and all integers
	1, 	2, 	3 ≥ 0 satisfying 	1 + 	2 + 	3 ≤ k.

Now, the factors in B�1,�2,�3(λ) satisfy

d�3

dλ�2
Z0(λ;G0(s3))∗ ∈ B(H−

0 (∞),H) for s3 ∈ (1/2, µ− 	3 − 1/2),

d�2

dλ�2
〈Φ〉−s2(H − λ− i0)−1〈Φ〉−s3 ∈ B(H) for s2, s3 > 	2 + 1/2,

d�1

dλ�1
Z0(λ;G0(s2)) ∈ B(H,H0(∞)) for s2 ∈ (1/2, µ− 	1 − 1/2),

and are locally Hölder continuous due to Proposition 4.14 and Lemma 5.9. There-
fore, if

s2, s3 ∈ (	2 + 1/2, 	2 + 1/2 + µ− k − 1) ⊂ (1/2, µ− 1/2),

then B�1,�2,�3(λ) exists and is locally Hölder continuous for all λ ∈ [0,∞)\κ(H).
Since similar arguments apply to the term A�1,�2(λ) if s1 ∈ (	1 + 1/2, 	1 + 1/2 +
µ− k − 1), the announced differentiability is proved.

To conclude the proof, it only remains to note that all the derivatives d�

dλ�S(λ),
	 ∈ {1, . . . , k}, map H−

0 (λ) into H+
0 (λ) due to the formula

S(λ)H−
0 (λ) = (F0P

+
0 SH−

0 )(λ) = P+
0 (λ)S(λ)H−

0 (λ)

with P+
0 (λ) := (F0P

+
0 F

−1
0 )(λ).

5.4. Mapping properties of the scattering operator

In this subsection, we define and give some properties of a subset E ⊂ H−
0 which

will be useful when proving the existence of time delay.
Let ϕ ∈ H−

0 satisfy F0(λ)ϕ = ρ(λ)h(λ) for each λ ∈ [0,∞)\T , where
ρ ∈ C∞([0,∞)) has compact support in [0,∞)\κ(H) and [0,∞)\κ(H) � λ �→
h(λ) ∈ H0(λ) is λ-independent on each interval of [0,∞)\κ(H). Then, the finite
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span E of such vectors is dense in H−
0 if Assumption 4.1 holds with µ > 1 (see

Proposition 4.12), and we have the following inclusions:

Proposition 5.12. Suppose that Assumption 4.1 holds with µ > 4. Then E ⊂ D3

and S E ⊂ D3.

Proof. If ϕ ∈ E , there exists a compact set I in [0,∞)\κ(H) such that EH0(I)ϕ =
ϕ. Thus, in order to show that ϕ ∈ D3 one has to verify that ϕ ∈ H3(R)⊗ L2(Σ) =
D(Q3 ⊗ 1). So, let ψ ∈ S (R) � L2(Σ). Then, using (2.2) and Lemma 2.1(c), we
obtain for each λ ∈ [0,∞)\T

[F0(Q3 ⊗ 1)ψ](λ)j = {iζ(λ)−j ,−iζ(λ)+j }, (5.12)

where

ζ±j (λ) :=
3
8
(λ− τj)−3/2(F0ψ)(λ)±j +

3
2
(λ− τj)−1/2 d

dλ
(F0ψ)(λ)±j

+ 18(λ− τj)1/2
d2

dλ2
(F0ψ)(λ)±j + 8(λ− τj)3/2

d3

dλ3
(F0ψ)(λ)±j . (5.13)

The right-hand side of (5.12)–(5.13) with ψ ∈ S (R) � L2(Σ) replaced by ϕ ∈ E
defines a vector ϕ̃ belonging to Ĥ0. Thus, using partial integration for the terms
involving derivatives with respect to λ, one finds that

|〈(Q3 ⊗ 1)ψ, ϕ〉H0 | = |〈F0ψ, ϕ̃ 〉 bH0
| ≤ Const.‖ψ‖H0

for all ψ ∈ S (R)� L2(Σ). Since Q3 ⊗ 1 is essentially self-adjoint on S (R)� L2(Σ),
this implies that ϕ ∈ D(Q3 ⊗ 1), and therefore the inclusion E ⊂ D3.

For the second inclusion S E ⊂ D3, one observes that the function [0,∞)\κ(H) �
λ �→ S(λ) ∈ B(H−

0 (∞),H+
0 (∞)) is locally 3-times Hölder continuously differen-

tiable due to Corollary 5.11. Thus, the above argument with ϕ replaced by Sϕ

gives the result.

Remark 5.13. We believe that the statement of Proposition 5.12 could be replaced
by the following more general statement but we could not find a simple proof for it:
Suppose that Assumption 4.1 holds with µ > 3, then there exists s > 2 such that
E ⊂ Ds and S E ⊂ Ds. Such a result would lead to better mapping properties of
the scattering operator, and thus the necessary assumption on µ for the existence
of the time delay in the next section could be weakened accordingly.

5.5. Time delay

We introduce in this section the notion of time delay defined in terms of sojourn
times, and then we prove its existence and its equality with the so-called Eisenbud–
Wigner time delay. All proofs are based on the abstract framework developed in
[45] and on the various estimates obtained in the previous sections. Note that the
notions of sojourn time and time delay have already been discussed in [15, 42] for
similar manifolds but for different purposes.

1350003-32



March 13, 2013 14:45 WSPC/S0129-055X 148-RMP J070-1350003

Spectral Analysis and Time-Dependent Scattering Theory on Manifolds

We define the sojourn times by particularizing to our present model the defi-
nitions of [45]. For that purpose, we start by choosing a position observable in H0

which satisfies the special relations with respect to H0 required in [45, Sec. 2]. The
most natural choice is the position operator Φ0 ≡ Q⊗ 1 along the R-axis of R × Σ
already introduced in (4.3). Then, we define the sojourn time for the free evolution
e−itH0 as follows: Given χ[−1,1] the characteristic function for the set [−1, 1], we set
for ϕ ∈ D0 and r > 0

T 0
r (ϕ) :=

∫
R

dt 〈e−itH0 ϕ, χ[−1,1](Φ0/r) e−itH0 ϕ〉H0 ,

where the integral has to be understood as an improper Riemann integral. The
operator χ[−1,1](Φ0/r) is the projection onto the subspace EΦ0([−r, r])H0 of states
localized on the cylinder [−r, r] × Σ. Therefore, if ‖ϕ‖H0 = 1, then T 0

r (ϕ) can be
interpreted as the time spent by the evolving state e−itH0 ϕ inside [−r, r] × Σ.

When defining the sojourn time for the full evolution e−itH , one faces the prob-
lem that the localization operator χ[−1,1](Φ0/r) acts in H0 while the operator
e−itH acts in H. The simplest solution to this problem is to consider the oper-
ator χ[−1,1](Φ0/r) injected in H via J , i.e. Jχ[−1,1](Φ0/r)J∗ ∈ B(H), and for the
present model this solution turns out to be appropriate (see nonetheless [45, Sec. 4]
for a more general approach). It is then natural to define the sojourn time for the
full evolution e−itH by the expression

Tr,1(ϕ) :=
∫

R

dt〈e−itHW−ϕ, Jχ[−1,1](Φ0/r)J∗ e−itH W−ϕ〉H.

Another sojourn time appearing in this context is

T2(ϕ) :=
∫

R

dt〈e−itHW−ϕ, (1 − JJ ∗) e−itHW−ϕ〉H.

The finiteness of these expressions is proved below for suitable ϕ under Assump-
tion 4.1 with µ big enough. The term Tr,1(ϕ) can be interpreted as the time spent
by the scattering state e−itH W−ϕ, injected in H0 via J∗, inside EΦ0([−r, r])H0.
The term T2(ϕ) can be seen as the time spent by the scattering state e−itHW−ϕ
inside the subset (1− JJ ∗)H of H. Roughly speaking, this corresponds to the time
spent by the state in the relatively compact set Mc ⊂ M . Within this framework,
we say that

τr(ϕ) := Tr(ϕ) − 1
2
{T 0

r (ϕ) + T 0
r (Sϕ)},

with Tr(ϕ) := Tr,1(ϕ) + T2(ϕ), is the symmetrized time delay of the scattering
system (H0, H, J) with incoming state ϕ. This version of the usual unsymmetrized
time delay

τ in
r (ϕ) := Tr(ϕ) − T 0

r (ϕ)

is known to be the only time delay having a well-defined limit as r → ∞ for
complicated scattering systems (see, for example, [6, 7, 24, 36, 37, 49–51]). Our
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main result, properly stated below, is thus the existence of the limit limr→∞ τr(ϕ)
and its identity with the Eisenbud–Wigner time delay which we now define.

Given a localization function f : R → [0,∞) and an abstract pair of opera-
tors (H0,Φ0) satisfying some compatibility assumptions, it is shown in [44] how
to construct a natural time operator Tf for H0. Now, for the localization func-
tion f = χ[−1,1] and for our pair (H0,Φ0) of operators, this abstract construction
simplifies drastically, and a rapid inspection of [51, Proposition 2.6(b)] and [44, The-
orem 5.5] shows that the general time operator Tf introduced in [44, Sec. 5] reduces
to the operator TAB given by

〈ϕ, TABϕ〉H0 :=
〈
ϕ,

1
4
(QP−1 + P−1Q) ⊗ 1ϕ

〉
H0

, ϕ ∈ D1. (5.14)

The operator 1
4 (QP−1 +P−1Q), known as the Aharonov–Bohm operator, is the

usual time operator for the one-dimensional Schrödinger operator P 2 (see [2, Sec. 1]
and [39, Sec. 1]).

We are now in a suitable position to prove the existence of the limit
limr→∞ τr(ϕ) for incoming states ϕ in the dense subset E ⊂ H−

0 introduced in
the previous section:

Theorem 5.14 (Existence of Time Delay). Suppose that Assumption 4.1 holds
with µ > 4. Then, one has for each ϕ ∈ E

lim
r→∞ τr(ϕ) = −〈ϕ, S∗[TAB, S]ϕ〉H0 , (5.15)

with TAB given by (5.14).

Proof. The proof consists in an application of the abstract result [45, Theorem 4.3].
However, we first have to note that this theorem also applies to our non-smooth
localization function f = χ[−1,1]. Indeed, the only points where the smoothness
of the localization f is required in the proof of [45, Theorem 4.3] is for applying
Theorem 3.4 and Lemma 4.2 of [45]. Now, the result of [45, Theorem 3.4] also holds
for f = χ[−1,1] due to [51, Proposition 2.6(b)], and a rapid inspection of [45, Lemma
4.2] shows that its proof also holds for f = χ[−1,1]. So, Theorem 4.3 of [45] can be
applied, and we are left with the verification of its assumptions.

For that purpose, one first observes that with our choice of operator Φ0, one
has for each y ∈ R

H0(y) := e−iyΦ0 H0 eiyΦ0 = (P + y)2 ⊗ 1 + 1 ⊗�Σ.

Therefore, the operators H0(y), y ∈ R, mutually commute (Assumption 2.1 of
[45, Theorem 4.3]), and the regularity of H0 with respect to Φ0 is easily checked
(Assumption 2.2 of [45, Theorem 4.3]). In addition, a direct calculation using (2.1)
shows that the set κ(H0) of critical values of H0, introduced in [45, Definition 2.3],
coincides with T . Furthermore, it follows from Proposition 5.12 that ϕ ∈ H−

0 ∩ D3

and Sϕ ∈ D3. Finally, since Sϕ also belongs to H+
0 , it follows from Lemma 5.4 that
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both conditions of [45, Eq. (4.6)] are satisfied. Thus, Theorem 4.3 of [45] applies
and leads to the claim.

The interest of the equality between both definitions of time delay is twofold.
It generalizes and unifies various results on time delay scattered in the literature.
And it establishes a relation between the two formulations of scattering theory:
Eisenbud–Wigner time delay is a product of the stationary formulation while expres-
sions involving sojourn times are defined using the time-dependent formulation. An
equality relating these two formulations is always welcome.

Remark 5.15 (Eisenbud–Wigner Formula). Since T is equal to the Aharonov–
Bohm operator (5.14), the right-hand side of (5.15) can be even further simplified.
Indeed, following [51, Remark 2.7] one can check that the operator F0TABF

−1
0 acts

as i d
dλ outside T in the spectral representation of H0. Thus, under the hypotheses

of Theorem 5.14, the relation (5.15) reads

lim
r→∞ τr(ϕ) =

∫ ∞

0

dλ
〈

(F0ϕ)(λ),−iS(λ)∗
(

dS(λ)
dλ

)
(F0ϕ)(λ)

〉
H0(λ)

.

Remark 5.16. We emphasize that the symmetrized time delay is the only global
time delay existing in our framework. Indeed, as in the case of quantum waveguides
[51], the scattering process does preserve the total energy H0 but does not preserve
the longitudinal kinetic energy P 2⊗1 alone (rearrangements between the transverse
and longitudinal components of the energy occur during the scattering). This is in
agreement with the general criterion [45, Theorem 5.3] which, here, implies that
the unsymmetrized time delay with incoming state ϕ ∈ E exists if [P 2 ⊗ 1, S]ϕ = 0.
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Appendix

We prove in this section various mapping properties of the operators H0 and H .
We start with a rather elementary lemma on the position operator Q and the
momentum operator P in L2(R). Note that part of these results could also be
proved using traditional pseudodifferential calculus or commutator expansions as
in [25, 40].
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Lemma A.1. Take s, τ ≥ 0 and z ∈ C\[0,∞). Then, there exists a constant
c ≡ c(s, z) > 0 independent of τ such that

‖(P 2 + τ − z)〈Q〉−s(P 2 + τ − z)−1〈Q〉s‖B(L2(R)) ≤ c.

Proof. First, one observes that (P 2 + τ − z)〈Q〉−s(P 2 + τ − z)−1〈Q〉s belongs to
B(L2(R)) due standard properties of the weighted Sobolev spaces defined in terms
of 〈Q〉 and 〈P 〉 (see [4, Sec. 4.1]). Furthermore, one has on S (R) the equalities

(P 2 + τ − z)〈Q〉−s(P 2 + τ − z)−1〈Q〉s

= 1 + (P 2 + τ − z)[〈Q〉−s, (P 2 + τ − z)−1]〈Q〉s

= 1 + [P 2, 〈Q〉−s]〈P 〉−1〈Q〉s〈Q〉−s〈P 〉(P 2 + τ − z)−1〈Q〉s

= 1 +B〈Q〉−s〈P 〉(P 2 + τ − z)−1〈Q〉s,

with B := [P 2, 〈Q〉−s]〈P 〉−1〈Q〉s bounded and independent of τ . Therefore, in order
to prove the claim it is sufficient to show that the bounded operator 〈Q〉−s〈P 〉(P 2+
τ−z)−1〈Q〉s has its norm dominated by a constant independent of τ . This can easily
be done either by induction on s or by computing iteratively the commutator of
(P 2 + τ − z)−1 with 〈Q〉s. Details are left to the reader.

For the next proposition, we recall that H0 and Φ0 satisfy H0 = P 2⊗1+1⊗�Σ

and Φ0 = Q⊗ 1 in H0.

Proposition A.2. Let z ∈ C\[0,∞), then

(i) for any s ≥ 0 the operator 〈H0〉〈Φ0〉−s(H0 − z)−1〈Φ0〉s, defined on D(〈Φ0〉s),
is well-defined and extends continuously to an element of B(H0),

(ii) (H0 − z)−1 belongs to B(D(〈Φ0〉t),D(〈Φ0〉t)) for each t ∈ R,

(iii) one has the inclusion (H0 − z)−1(S (R) � C∞(Σ)) ⊂ (S (R) � C∞(Σ)).

Proof. (i) Let τj ∈ T . Then one has

‖〈P 2 + τj〉〈Q〉−s(P 2 + τj − z)−1〈Q〉s‖B(L2(R))

≤ ‖〈P 2 + τj〉(P 2 + τj − z)−1‖B(L2(R))

· ‖(P 2 + τj − z)〈Q〉−s(P 2 + τj − z)−1〈Q〉s‖B(L2(R))

≤ c

for some constant c > 0 independent of τj , due to Lemma A.1. Therefore, for each
N ∈ N the operator

FN :=
∑
j≤N

〈P 2 + τj〉〈Q〉−s(P 2 + τj − z)−1〈Q〉s ⊗ Pj ,

with Pj the orthogonal projection in L2(Σ) associated with τj , is bounded in H0.
Furthermore, a direct calculation using the fact that s-limN→∞

∑
j≤N (1⊗Pj) = 1

shows that the norm of FN is bounded by a constant independent of N and that the
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limit s-limN→∞ FN exists and is equal to 〈H0〉〈Φ0〉−s(H0−z)−1〈Φ0〉s on D(〈Φ0〉s).
This implies the claim.

(ii) This statement is a direct consequence of [4, Proposition 5.3.1], which can
be applied since H0 is of class C∞(Φ0).

(iii) Let ϕ ∈ S (R)�C∞(Σ). Then (H0 − z)−1ϕ is C∞ over R (respectively, Σ)
due to the commutation of (H0 − z)−1 with 〈P 〉−1 ⊗ 1 (respectively, 1 ⊗ 〈�Σ〉−1).
The fast decay of (H0 − z)−1ϕ in the R-coordinate follows from point (ii).

Lemma A.3. Let z ∈ C\σ(H), m ∈ N and s ∈ [0, 2m]. Then, the operator
〈A〉s(H − z)−m〈Φ〉−s belongs to B(H).

Proof. (i) We start by proving the boundedness of 〈A〉2m(H − z)−m〈Φ〉−2m.
Consider the family of multiplication operators χn ∈ B(H) defined in the proof

of Lemma 4.4. Then s-limn→∞ χn = 1, and one has for each ϕ ∈ C∞
c (M) and

n ∈ N∗ that χn(H − z)−m〈Φ〉−1ϕ ∈ C∞
c (M) due to Lemma 3.2. Therefore,

[(H − z)−m, 〈Φ〉−1]ϕ = 〈Φ〉−1(H − z)−m[(H − z)m, 〈Φ〉](H − z)−m〈Φ〉−1ϕ

= lim
n→∞〈Φ〉−1(H − z)−m[(H − z)m, 〈Φ〉]χn(H − z)−m〈Φ〉−1ϕ,

= lim
n→∞〈Φ〉−1(H − z)−mL2m−1χn(H − z)−m〈Φ〉−1ϕ,

with L2m−1 a differential operator of order 2m − 1 on C∞
c (M) with coefficients

in C∞
b (M) (with respect on M∞ to the basis ∂/∂ρj). Now, L2m−1 extends con-

tinuously to a bounded operator (denoted similarly) from H2m−1(M) to H by
[48, Lemma 1.6]. So, (H − z)−mL2m−1 ∈ B(H) and L2m−1(H − z)−m ∈ B(H),
which implies

[(H − z)−m, 〈Φ〉−1]ϕ = 〈Φ〉−1(H − z)−mL2m−1(H − z)−m〈Φ〉−1ϕ

and

(H − z)−m〈Φ〉−1ϕ = 〈Φ〉−1(H − z)−m + [(H − z)−m, 〈Φ〉−1]ϕ

= 〈Φ〉−1(H − z)−m{1 + L2m−1(H − z)−m〈Φ〉−1}ϕ.

Obviously, one can reproduce those computations to calculate (H − z)−m〈Φ〉−kϕ
for any k = 1, 2, . . . , 2m. The result for k = 2m is the following: There exists an
operator B2m ∈ B(H) and a sequence {B(n)

2m} ⊂ B(H) with (i) B(n)
2mC

∞
c (M) ⊂

C∞
c (M) and (ii) s-limn→∞B

(n)
2m = B2m on C∞

c (M) such that

(H − z)−m〈Φ〉−2mϕ = 〈Φ〉−2m(H − z)−mB2mϕ

for each ϕ ∈ C∞
c (M). In particular, one has χk(H−z)−mB(n)

2mϕ ∈ C∞
c (M) for each

k, n ∈ N∗ and ϕ ∈ C∞
c (M), and

(H − z)−m〈Φ〉−2mϕ = lim
k→∞

lim
n→∞(A+ i)−2m(A+ i)2m〈Φ〉−2mχk(H − z)−mB(n)

2mϕ

= lim
k→∞

lim
n→∞(A+ i)−2mL2mχk(H − z)−mB(n)

2mϕ, (A.1)

1350003-37



March 13, 2013 14:45 WSPC/S0129-055X 148-RMP J070-1350003

S. Richard & R. Tiedra de Aldecoa

with L2m a differential operator of order 2m on C∞
c (M) with coefficients in C∞

b (M).
Now, the extension (denoted similarly) of L2m to an element of B(H2m(M),H)
satisfies (A+ i)−2mL2m ∈ B(H) and L2m(H− z)−m ∈ B(H). Therefore, one infers
from (A.1) that

(H − z)−m〈Φ〉−2mϕ = (A+ i)−2mL2m(H − z)−mB2mϕ = (A+ i)−2mBϕ,

with B := L2m(H − z)−mB2m ∈ B(H). Since all operators are bounded, this last
equality extends to all ϕ ∈ H. So, the operator 〈A〉2m(H − z)−m〈Φ〉−2m can be
written as the product of two bounded operators:

〈A〉2m(H − z)−m〈Φ〉−2m ≡ 〈A〉2m(A+ i)−2m ·B.

(ii) LetR1 := 〈Φ〉−2m,X := (H−z̄)−m andR2 := 〈A〉2m. Then, point (i) implies
that the closure of R1XR2 � D(R2) belongs to B(H). Since R1, R2 are positive
invertible self-adjoint operators with R1 ∈ B(H), and X ∈ B(H), one can apply
interpolation (see, for example, [3, Proposition 6.17]) to infer that Rν2X∗Rν1 ∈ B(H)
for all ν ∈ [0, 1]. However, this implies nothing else but the desired inclusion; namely,
〈A〉s(H − z)−m〈Φ〉−s ∈ B(H) for all s ∈ [0, 2m].
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