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1 Introduction

Let A,B,C ∈ Z be non-zero and p, q, r ∈ Z≥2. Consider the diophantine equa-
tion

Axp +Byq = Czr, gcd(x, y, z) = 1

in the unknown integers x, y, z. The gcd-condition is really there to avoid triv-
ialities. For example, from a + b = c it would follow, after multiplication by
a21b14c6, that

(a11b7c3)2 + (a7b5c2)3 = (a3b2c)7

thus providing us with infinitely many trivial solutions. There are three cases
to be distinguished.

1. The hyperbolic case
1
p

+
1
q

+
1
r
< 1.

In this case the number of solutions is at most finite, as shown in [DG,
Theorem 2].

2. The euclidean case
1
p

+
1
q

+
1
r

= 1.

A simple calculation shows that the set {p, q, r} equals one of {3, 3, 3}, {2, 4, 4}, {2, 3, 6}.
In this case the solution of the equation comes down to the determination
of rational points on twists of genus 1 curves over Q with j = 0, 1728.

3. The spherical case
1
p

+
1
q

+
1
r
> 1.

A simple calculation shown that the set {p, q, r} equals one of the following:
{2, 2, k} with k ≥ 2 or {2, 3,m} with m = 3, 4, 5. In this case there are
either no solutions or infinitely many. In the latter case the solutions are
given by a finite set of polynomial parametrisations of the equation, see
[Beu]
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A special case of interest is when A = B = C = 1. In many such cases the
solution set has been found. Here is a list of exponent triples of solved equa-
tions together with the non-trivial solutions, i.e. xyz 6= 0. We start with
the hyperbolic cases. The first case {n, n, n} is of course Wiles’s proof of Fer-
mat’s Last Theorem. As is well-known this proof is based on the proof of
the Shimura-Taniyama-Weil conjecture for stable elliptic curves. Later Breuil,
Conrad, Diamond and Taylor proved the full conjecture for any elliptic curve
in [BCDT]. In the following list the cases with variable n are all solved using
Wiles’s modular form approach, with possibly a few exceptions which are re-
solved using Chabauty’s method. The isolated cases in this table are all solved
using a Chabauty approach.

{n, n, n} and n ≥ 4. It has been shown by Wiles and Taylor [W],[TW]
that there are no non-trivial solutions (formerly Fermat’s Last Theorem).

(4, n, 4) and n ≥ 3. Darmon [D] showed there are no non-trivial solutions.

{n, n, 2} Darmon and Merel [DM] showed that there are no non-trivial
solutions when n is a prime ≥ 7, and Poonen showed this for n = 5, 6, 9.

{n, n, 3} Darmon and Merel [DM] showed that there are no non-trivial
solutions when n is a prime ≥ 7, Lucas (19th century) showed this for
n = 4 and Poonen for n = 5.

{3, 3, n} For 17 ≤ n ≤ 10000 it was shown by Kraus [Kr1] that there are
no non-trivial solutions. For n = 4, 5 this was shown by Bruin [Br2,3].

(2, n, 4) This can be dealt with by application of results from [BS]. There
are no non-trivial solutions.

(2, 4, n) Ellenberg [El] showed there are no non-trivial solutions when n ≥
211.

(2n, 2n, 5) Bennett [Ben] showed there are no non-trivial solutions when
n ≥ 7. The case n = 3 was proved by N.Bruin [Br3], n = 2 is elementary
[Ben] and n = 5 is follwos from Fermat’s last theorem.

{2, 4, 5} Solved by N.Bruin [Br2], the non-trivial solutions are 25+72 = 34,
35 + 114 = 1222.

{2, 3, 8} Solved by N.Bruin [Br1,Br2], the non-trivial solutions are 18 +
23 = 32, 438 + 962223 = 300429072, 338 + 15490342 = 156133.

{2, 3, 7} Solved by Poonen, Schaefer, Stoll (to be published), the non-
trivial solutions read 17+23 = 32, 27+173 = 712, 177+762713 = 210639282

and 92623 + 153122832 = 1137.

There are a two more solutions of hyperbolic type known: 1k+23 = 32, 73+132 =
29. Presumably these solutions, and the ones listed above, are the only solutions
in the hyperbolic case. The following conjecture was put forward by Tijdeman
and Zagier and is now also known as Beal’s conjecture:
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Conjecture 1.1 The diophantine equation

xp + yq = zr

in x, y, z ∈ Z with gcd(x, y, z) = 1, xyz 6= 0 and p, q, r ∈ Z≥3 has no solutions.

In the euclidean case it is well-known that the only non-trivial solutions arise
from the equality 16+23 = 22, as the elliptic curves x3+y3 = 1, y2 = x4+1, y2 =
x3 ± 1 contain only finitely many obvious rational points.
In the spherical cases the solution set is infinite. In the case {2, 2, k} this is
an exercise in number theory. The case {2, 3, 3} was solved by L.J.Mordell,
{2, 3, 4} by D.Zagier and {2, 3, 5} by J.Edwards [Ed] in 2004. The families of
solutions are listed in Appendix A (please read the explanation in the beginning
of Appendix A).

2 A sample solution

To illustrate the phenomena we encounter when solving the generalized Fermat
equation, we give a partial solution of x2 + y8 = z3. This equation lends itself
very well to a stepwise descent method.
First we solve x2 + u2 = z3. By factorisation on both sides over Z[i] we quickly
see that x+iu should be the cube of a gaussian integer, (a+bi)3. By comparison
of real and imaginary parts we get x = a3 − 3ab2, u = b(3a2 − b2). Note that
a, b should be relatively prime in order to ensure gcd(x, u, z) = 1.
Next we partly solve x2 + v4 = z3. This can be done by requiring that u,
as found in the previous equation should be a square, e.g. v2 = b(3a2 − b2).
The two factors on the right should be squares up to some factors ±3, since
their product is a square and a, b are relatively prime. We should explore all
possibilities, but in this partial solution we only continue with the possibility
b = −v2

1 , 3a2−b2 = −v2
2 . The latter equation can be rewritten as 3a2 = b2−v2

2 .
The right hand side factors as (b− v2)(b+ v2) and hence each factor is a square
up to a finite number of factors. Here several possibilities present themselves
again and we choose one, namely b − v2 = −6a2

1, b + v2 = −2a2
2 (and of

course a = 2a1a2). Summation of the two equalities and use of b = −v2
1 gives

us v2
1 − a2

2 = 3a2
1. Now the left hand side factors and we choose the possibility

v1−a2 = 6t2, v1+a2 = 2s2 (and of course a1 = 2st). Solving for v1 and a2 gives
v1 = s2 + 3t2 and a2 = s2 − 3t2. Hence a = 4st(s2 − 3t2) and b = −(s2 + 3t2)2.
Further straightforward computation gives us

v = (s2 + 3t2)(s4 − 18s2t2 + 9t4)
x = 4st(s2 − 3t2)(3s4 + 2s2t2 + 3t4)(s4 + 6s2t2 + 81t4)
z = (s4 − 2s2t2 + 9t4)(s4 + 30s2t2 + 9t4)

A might be clear now, this gives us an infinite set of integer solutions to the
equation x2 + v4 = z3. Had we followed all possibilities we would have found
more parametrised solutions to recover the full solution set in integers. For a
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full list see Appendix A, or Henri Cohen’s recent book [Co], wher one finds a
complete derivation of the above type.
Finally we solve x2 + y8 = z3. To that end we must solve

y2 = (s2 + 3t2)(s4 − 18s2t2 + 9t4).

After division by t6 and putting ξ = s/t, η = y/t3 we get

η2 = (ξ2 + 3)(ξ4 − 18ξ2 + 9),

i.e. we must determine the rational points on a genus two curve. To solve the
equation completely we must determine the rational points on several genus two
curves, namely those arising from the different parametrising solutions above.
To cut things short now, we can easily calculate that

z3

y8
=

(ξ4 − 2ξ2 + 9)3(ξ4 + 30ξ2 + 9)3

η8
.

Thus, any point z3/y8 coming from a solution of x2 + y8 = z3 is the image of
a rational point (ξ, η) on our genus two curve under the map just given. This
map is an example of a Galois cover map.
Had we followed all possibilities of the above argument, we would have obtained
a number of covering maps from a genus 2 curve to P1 which would have covered
the full set of values z3/y8 corresponding to all solutions of x2 + y8 = z3 in co-
prime integers x, y, z.
In this example the curves arose naturally as a result of a descent procedure.
In many cases, like x3 + y5 = z7 this descent is not so obvious any more and
we have to start by constructing covers of P1 by curves which have a suitable
ramification behaviour.

3 Galois covers of P1

In all approaches to the solution of the (generalised) Fermat equations one uses
Galois covers in one form or another.
First we recall a few facts from the theory of algebraic curves and their function
fields. For a more complete introduction we recommend Chapter II of Silver-
man’s book [Si]. Let K be a field of characteristic zero and X a complete,
smooth and geometrically irreducible curve X defined over K. In the function
field K(X) we consider a non-constant element which we denote by φ. Note
that K(X) is now a finite extension of the field K(φ). The degree of this ex-
tension is also called the degree of the map φ. Let P ∈ X(K) (by X(L) we
denote the L-rational points of X, where L is a field extension of K). Assuming
for the moment φ(P ) 6= ∞ we call the vanishing order of φ − φ(P ) at P the
ramification index of φ at P . Notation: eP . In case φ(P ) = ∞ we take for eP

the vanishing order of 1/φ at P . If eP > 1 we call P a ramification point of φ.
The image φ(P ) under φ of a ramification point P is called branch point. The
set of branch points is called the branch set or branch locus. We now recall the
Riemann-Hurwitz formula
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Theorem 3.1 With the notation above let N be the degree of the map φ and
g(X) the geometric genus of X. Then,

2g(X)− 2 = −2N +
∑

P∈X(K)

(eP − 1).

As we have eP = 1 for all points of X except finitely many, the sum on the right
is in fact a finite sum.
We call the map given by φ a geometric Galois cover if the extensionK(X)/K(φ)
is a Galois extension of fields. The Galois group G is a subgroup of the auto-
morphism group (over K) of X and is called the covering group. Note that the
extension K(X)/K(φ) need not be Galois. If it is we call the cover simply a
Galois cover. For a geometric Galois cover the ramification indices of all points
above a given branch point are the same. In particular we shall be interested
in geometric Galois covers whose branch locus is 0, 1,∞. These are examples
of so-called Belyi maps. An immediate consequence of the Riemann-Hurwitz
theorem is the following.

Corollary 3.2 . Let X → P1 be a geometric Galois cover whose branch locus
is contained in the set 0, 1,∞. Suppose that above these points the ramification
indices are p, q, r. Suppose the degree of the cover is N . Then

2g(X)− 2 = N

(
1− 1

p
− 1
q
− 1
r

)
.

In particular we see that if 1/p + 1/q + 1/r > 1, then g(X) = 0 and when
1/p+ 1/q + 1/r < 1 we have g(X) ≥ 2.
Here we list a series of geometric Galois covers that will occur in the sequel. We
start with X = P1. The finite subgroups of AutQ(P1) have been classified by
Felix Klein. Up to conjugation they are given by

1. The cyclic group of order N

2. The dihedral group of order 2N

3. The tetrahedral group of order 12

4. The octahedral group of order 24

5. The icosahedral group of order 60

When we consider P1 as a sphere, each of these examples correspond to the finite
rotation groups of the sphere. Here we describe them in some more detail, where
z denotes a standard coordinate on P1. We cannot go into all the fascinating
details of the Klein groups. For an extensive discussion we recommend Chapter
I of Klein’s original book [Kl].
Cyclic group. This group is generated by z 7→ ζNz where ζN is a primitive
N -th root of unity. The corresponding cover is given by z 7→ zN .
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Dihedral group. This is generated by the cyclic group given above and z 7→
1/z. The cover is given by

z 7→ 1
2

(
zN +

1
zN

)
.

Tetrahedral group. Let ω be a primitive cube root of unity. Consider the
subgroup Γ3 of SL(2,C) generated by

1√
−3

(
1 2ωj

ω−j −1

)
(j = 0, 1, 2) and

(
ω 0
0 ω−1

)
.

Then the tetrahedral group is the subgroup of PSL(2,C) given by Γ3/±1. The
covering map is given by

z 7→
(

4(z3 − 1)
z4 + 8z

)3

.

F.Klein’s (semi)-invariants of Γ3 are

f = −4y(x3 − y3)

H = −x4 − 8xy3

t = −x6 + 20x3y3 + 8y6

with fundamental relation t2 +H3 = f3.
Octahedral group. Consider the group Γ4 generated by(

ζ8 0
0 ζ−1

8

)
,

(
0 1
−1 0

)
,

1√
2

(
ζ8 −ζ−1

8

ζ8 ζ−1
8

)
.

Then the octahedral group is the subgroup of PSL(2,C) given by Γ4/± 1. The
cover is given by

z 7→ (z8 + 14z4 + 1)3

108(z(z4 − 1))4
.

F.Klein’s (semi)-invariants are

f = 36xy(x4 − y4)

H = −36(x8 + y8 + 14x4y4)

t = 216(x12 + y12 − 33(x4y8 + x8y4)

with fundamental relation t2 +H3 = −3f4.
Icosahedral group. Consider the group Γ5 generated by

−Id,
(
ζ5 0
0 ζ−1

5

)
,

1√
5

(
ζ5 − ζ4

5 −ζ2
5 + ζ3

5

−ζ2
5 + ζ3

5 −ζ5 + ζ4
5

)
.
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Then the icosahedral group is the subgroup of PSL(2,C) given by Γ5/±1. The
cover is given by

z 7→ (−z20 + 228z15 − 494z10 − 228z5 − 1)3

1728z5(z10 + 11z5 − 1)5
.

F.Klein’s (semi)-invariants are

f = 123xy(x10 + 11x5y5 − y10)

H = 124(−x20 − y20 + 228(x15y5 − x5y10)− 494x10y10)

t = 126(x30 + y30 + 522(x25y5 − x5y25)− 10005x20y10 − x10y20))

with the fundamental relation t2 +H3 = f5.
In the last three examples the forms f,H, t have the additional property that

H =
1

k2(k − 1)2

∣∣∣∣ fxx fxy

fxy fyy

∣∣∣∣ , t =
1

2k(k − 2)

∣∣∣∣ fx fy

Hx Hy

∣∣∣∣ ,
where k is the degree of f . These relations will become important later on.
Furthermore in all three examples the branch locus is given by the points
0, 1,∞ ∈ P1. The ramification indices above these points are 3, r, 2 where
r = 3, 4 or 5 depending on the group Γr

Now we turn to the case when the genus of X is at least 2 and list a number of
examples.

1. X : xn + yn = zn and covering map (x : y : z) 7→ (x/z)n. This map has
degree n2 and the group is given by al elements (x : y : z) 7→ (ζx : ζ ′y : z)
where ζ, ζ ′ are n-th roots of unity. The branch locus is given by 0, 1,∞
with ramification indices n, n, n.

2. Let p and q be integers ≥ 3 and let X be given by the projective equations

p−1∑
i=0

ζik
p x

q
i = 0 (k = 1, 2, . . . , p− 2).

Consider the covering map

(x0 : x1 : . . . : xp−1) 7→
(
∑p−1

i=0 x
q
i )

p∏p−1
i=0 x

q
i

.

This has Galois group of order pqp−1 generated by multiplication of the
coordinates xi by a q-th root of unity and the cyclic permutation of the
coordinates (x0 : x1 : . . . : xp−1) 7→ (x1 : x2 : . . . : xp−1 : x0). Notice also
that for points on X we have the relation

(
p−1∑
i=0

xq
i )

p + (
p−1∑
i=0

ζ−i
p xq

i )
p = (

p−1∏
i=0

xi)q.

The map has branch locus 0, 1,∞ and ramification indices p, p, q.
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3. Let n ≥ 2 and letX be the complete modular curveX(n). We consider the
natural map X(n) → X(1) = P1 using the J-function on X(n). More ex-
plicitly, Consider the modular J-function on the complex upper half plane
H. This map gives us the quotient map J : H → C with respect to the
group PSL(2,Z). It ramifies above the points J = 0, 1 with ramification
indices 3 and 2 respectively. Let

Γ(n) = {M ∈ SL(2,Z) | M ≡ Id (mod n)}.

Then Γ(n) is a normal subgroup of SL(2,Z) and the quotient of H by Γ(n)
is denoted by Y (n). Since Γ(n) contains no elliptic elements, the cover
H → Y (n) is unramified. Furthermore J factors over Y (n) to a finite map
J : Y (n) → C. If we now complete the curves by adding the cusps to Y (n)
and ∞ to C, we get J : X(n) → P1 where X(n) is the completion of Y (n).
This map ramifies of order n above ∞. So the ramification indices above
0, 1,∞ are 3, 2, n. The covering group is PSL(2,Z/nZ). When n = 3, 4, 5
we recover the tetrahedral, octahedral and icosahedral covering again.

4. Let n be odd, X = X(2n) and consider the natural map to X(2) = P1.
This has ramification indices n, n, n above 0, 1,∞ and no others. The
covering group is PSL(2,Z/nZ).

5. Let n be odd and let X be the completed modular curve corresponding to
the modular group Γ(n)∩ Γ0(2). Then the natural map X → X0(2) = P1

is a geometric Galois cover ramified above 0, 1,∞ with ramification indices
n, n, 2. The covering group is again PSL(2,Z/nZ)

6. Similarly, when n is not divisible by 3 we consider the modular group
Γ(n)∩Γ0(3) and take for X the associated complete modular curve. Then
X → X0(3) gives us a geometric Galois cover ramified above 0, 1,∞ with
ramification indices n, n, 3. The covering group is PSL(2,Z/nZ).

4 Lifting points

Let φ : X → P1 be a geometric Galois cover defined over a number field K and
whose degree is N . For any point a ∈ P1(K) the points in the inverse image
φ−1(a) generate a finite Galois extension L of K of degree at most N . In the
following we explicitly determine the set of primes of K that ramify in L.
Let π be any finite prime of K. We extend it to a valuation of K. We represent
points of P1(K) as points in K ∪∞. We define the π-adic intersection number
on P1 by

Iπ(a, b) =

 ordπ(a− b) if ordπ(a), ordπ(b) ≥ 0
ordπ(1/a− 1/b) if ordπ(1/a), ordπ(1/b) ≥ 0

0 otherwise

The following theorem is a weak version of a theorem proved in [Bec].
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Theorem 4.1 (S.Beckmann) Let X → P1 be a Galois cover defined over a
number field K and with covering group G. Let a1, . . . , ar ∈ K ∪∞ be the set
of branch points. There is finite set of primes, which we denote by Sbad, with
the following properties. For any point q ∈ K not equal to any ai we have

1. the finite primes of K that ramify in K(φ−1(q)) are contained in the set
S = Sbad ∪ Sq, where Sq is the set of primes π at which q meets a branch
point ai π-adically.

2. if π 6∈ Sbad and q meets the branchpoint ai π-adically, then π ramifies
of order e where e is the denominator of Iπ(q, ai)/ei and where ei is the
ramification index above ai.

In [Bec] we find a stronger statement which explicitly gives us Sbad. If the group
G is simple or if the covering is given by a good model, then Sbad is the union
of the primes dividing the order of G and the primes for which distinct branch
points have positive intersection.
By a good model we mean the following. Let O be the ring of integers of K.
Consider the extension K(X)/K(x) as before. Let O[X] be the integral closure
of O[x] in K(X). We say that we have a good model if every prime π of O, for
which the prime ideal π[x] ramifies in O[X], belongs to Sbad.
We are now able to give a proof of the following result.

Theorem 4.2 Let φ : X → P1 be a geometric Galois cover which ramifies
of order p, q, r above the points 0, 1,∞ respectively, and which has no further
ramification. Suppose that the cover is defined over the number field K. Then
there exists a finite extension L of K such that φ−1(Aap/Ccr) ⊂ X(L) for every
triple (a, b, c) that satisfies

Aap +Bbq = Ccr, gcd(a, b, c) = 1.

Here X(L) denotes the set of L-rational points on X.

Proof. If necessary we replace K by a finite extension so that φ becomes a
Galois cover. Consider the field M generated over K by the coordinates of the
points in φ−1(Aap/Ccr). We now apply Beckmann’s Theorem. We let SABC be
the set of primes dividing ABC. Let π be a prime of K not dividing abc and not
in Sbad ∪ SABC . Then the point Aap/Ccr doesn’t reduce to 0, 1 or ∞ modulo
π. To see that it does not reduce to 1 notice that Aap

Ccr − 1 = −Bbq

Ccr . Hence π is
unramified in M/K. Suppose now that π 6∈ Sbad∪SABC and π divides a. Then
the intersection number Iπ(Aap/Ccr, 0) is a positive multiple of p. This is a
consequence of the fact that gcd(a, b, c) = 1. Since the cover ramifies of order p
above zero, part 2 of Beckmann’s theorem implies that π has ramification order
1, i.e. no ramification. Similarly, if π divides b or c and is not in Sbad ∪ SABC ,
then π is unramified in M/K. So we find that the coordinates of a point in
φ−1(Aap/Ccr) are in a number field of degree at most N , the degree of the
cover, and a fixed set of ramified primes. There are only finitely many such
fields and for L we can take their compositum.
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qed

We can now prove Theorem 2 in [DG]

Theorem 4.3 (Darmon-Granville) Suppose 1/p+1/q+1/r < 1 and A,B,C ∈
Z with ABC 6= 0. Then the number of solutions to

Axp +Byq = Czr, gcd(x, y, z) = 1

is finite.

Proof. We begin by the construction of a curve X and a geometric Galois
cover X → P1 of Belyi-type, i.e it ramifies only above the points 0, 1,∞. A
possible way of doing this is via the Riemann existence theorem. According
to a theorem of A.Weil this cover can then be defined over a number field K.
By the Riemann-Hurwitz theorem we know that 1/p + 1/q + 1/r < 1 implies
g(X) ≥ 2. Beckmann’s theorem implies that there is a number field L such that
for any solution (a, b, c) we have φ−1(Aap/Ccr) ⊂ X(L). By Faltings’ theorem
(formerly Mordell’s conjecture) we know that X(L) is finite. Hence our equation
has finitely many solutions.

qed

5 Galois cocycles

Let K be a number field and L a finite Galois extension. Let G be a finite
group with a Gal(L/K) Galois action Gal(L/K) → Aut(G). A 1-cocycle is a
map ξ : Gal(L/K) → G, mapping σ 7→ ξσ, such that

ξστ = ξσσ(ξτ )

for all σ, τ ∈ Gal(L/K). Two cocycles ξ, ζ are called cohomologous if there exists
h ∈ G such that

ζσ = h−1ξσσ(h).

The set of cocycles modulo this equivalence relation is called the first Galois
cohomology set of Gal(L/K) in G. Notation H1(Gal(L/K), G).
An important use of the first cohomology is the description of twists of algebraic
varieties V , when G = Aut(V ). To fix ideas, let X be a smooth connected
algebraic curve defined over K. Any curve X ′ defined over K together with an
isomorphism ψ : X → X ′, which is defined over K, is called a twist of X. In
particular, when the twist map ψ is defined over a finite galois extension L of
K, we call our twist an L-twist. Let ψ : X → X ′ be such an L-twist. Then,
for any σ ∈ Gal(L/K) the composite map ψ−1σ(ψ) is an automorphism of X
defined over L. One easily checks that

σ 7→ ψ−1σ(ψ)

is a Galois cocycle in H1(Gal(L/K),AutL(X)). Namely,

ψ−1στ(ψ) = ψ−1σ(ψ)σ(ψ−1τ(ψ)).
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Two L-twists ψ1 : X → X ′ and ψ2 : X → X ′′ are called equivalent is there
exist h ∈ AutL(X) and an isomorphism g : X ′ → X ′′ defined over K such that
ψ2 = g ◦ ψ1 ◦ h. Denote the set of classes of L-twists by Twist(X,L/K). Then
we have

Theorem 5.1 The map ψ 7→ (σ 7→ ψ−1σ(ψ)) gives a well-defined map from
Twist(X,L/K) to H1(Gal(L/K),AutL(X)). Moreover, this map is a bijection.

More explicitly, if we have a 1-cocycle ξ : Gal(L/K) → AutL(X), then it is
possible to find an L-twist ψ : X → X ′ such that ξσ = ψ−1σ(ξ) for all σ ∈
Gal(L/K). We now apply this to our diophantine equation.

Theorem 5.2 Let A,B,C, p, q, r be as in the introduction. By Sol we denote
the set of numbers Aap/Ccr for all a, c belonging to triples of integers (a, b, c)
that satisfy

Aap +Bbq = Ccr, gcd(a, b, c) = 1, abc 6= 0

Let φ : X → P1 be a geometric Galois cover of Belyi-type which ramifies above
0, 1,∞ of order p, q, r respectively. Suppose it is defined over a number field K.
Then there exist finitely many twists ψi : X → Xi, i = 1, 2, . . . , r, defined over
K, such that

1. each map φ ◦ ψ−1 : Xi → P1 is defined over K.

2. Sol ⊂ ∪r
i=1φ ◦ ψ

−1
i )(Xi(K)).

3. The sets φ ◦ ψ−1
i (Xi(K)) intersect in a subset of 0, 1,∞.

Proof. According to Theorem 4.2 there is a finite Galois extension L such that
φ−1(Sol) ⊂ X(L). We assume that G is also defined over L. Take any point
Q ∈ Sol and let P ∈ X(L) be such that φ(P ) = Q. Since φ is a geometric
Galois cover, for any σ ∈ Gal(L/K) there exists a unique gσ ∈ G such that
σ(P ) = gσ(P ). Notice that

gστ (P ) = σ(τ(P )) = σ(gτ (P )) = σ(gτ )(σ(P )) = σ(gτ )gσ(P ).

Hence gστ = σ(gτ )gσ and so we see that

σ 7→ g−1
σ

is a Gal(L/K) cocycle in H1(Gal(L/K), G). Consider the twist ψ : X → X ′

that corresponds to this cocycle. This means that g−1
σ = ψ−1σ(ψ) for all σ ∈

Gal(L/K). Hence

σ(ψ(P )) = σ(ψ)(σ(P )) = ψg−1
σ gσ(P ) = ψ(P ).

In other words ψ(P ) is fixed under Gal(L/K) and hence ψ(P ) ∈ X ′(K). Fur-
thermore, for any σ ∈ Gal(L/K) we have

σ(φ ◦ ψ−1) = φ ◦ σ(ψ)−1 = φ ◦ gσ ◦ ψ−1 = φ ◦ ψ−1.
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Hence φ ◦ ψ−1 is defined over K. Since Q = φ(P ), we see that Q is contained
in φ ◦ ψ−1(X ′(K)).
To every class inH1(Gal(L/K), G) we choose a twist and sinceH1(Gal(L/K), G)
is finite, we get a finite number of twists ψi : X → Xi with i = 1, 2, . . . , r. Part
one of our Theorem follows.
To see the disjointness, suppose φ ◦ ψ−1

1 (X1(K)) and φ ◦ ψ−1
2 (X2(K)) have

a point Q ∈ P1(K), Q 6= 0, 1,∞ in common. For i = 1, 2 choose a point
Pi ∈ Xi(K) such that Q = φ ◦ ψ−1

i (Pi). Then there exists k ∈ G such that
ψ−1

1 (P1) = k ◦ ψ−1
2 (P2). Let ξi be the cocycle to which we associated ψi. Then

application of any σ ∈ Gal(L/K) yields

ξ−1
1,σ ◦ ψ

−1
1 (P1) = σ(k) ◦ ξ−1

2,σψ
−1
2 (P2).

Replacing the right hand side,

ξ−1
1,σ ◦ ψ

−1
1 (P1) = σ(k) ◦ ξ−1

2,σ ◦ k−1ψ−1
1 (P1).

Since ψ−1(P1) has trivial stabilizer in G we conclude that

ξ1,σ = k−1 ◦ ξ2,σ ◦ σ(k)

for all σ ∈ Gal(L/K). Hence ξ1, ξ2 are cohomologous and the twists X1, X2 are
equivalent.

qed

So to solve a generalised Fermat equation in the hyperbolic case it suffices to
determine the K-rational points on a finite set of curves of genus ≥ 2. It would
be nice if one could have K = Q. In fact this is how the equations with exponent
triples {2, 3, 7}, {2, 3, 8} and A = B = C = 1 were solved in [PSS] and [B1],[B2].
In the spherical cases {p, q, r} = {2, 3, 3}, {2, 3, 4}, {2, 3, 5} we have the Klein
covers of degree 12, 24, 60 respectively and X = P1. Hence the above theorem
implies that the solution set of a generalised Fermat equation in the spherical
case is given by a finite (possibly empty) set of rational functions P1 → P1

defined over Q.
In the following we shall carry out the program just sketched in detail for the
spherical case (2, 3, 5).

6 Invariant theory of binary forms

Here we give a very quick introduction following Hilbert’s lectures from 1897.
See [H]. In particular our approach will be very classical. The only difference
between Hilbert’s and our representation is that we use k instead of n for the
degree of the base form.
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6.1 Definition and first examples

Let K be an algebraically closed field of characteristic zero. Consider a form
f ∈ K[a,x] of the shape

f(a,x) =
k∑

i=0

(
k

i

)
aix

k−i
1 xi

2,

which we call the base form. We have two sets of polynomial variables, x =
(x1, x2) and a = (a0, . . . , ak). For historical reasons the number k is called the
order of f . The group GL(2,K) acts on polynomials in x1, x2 as follows. For
any g ∈ GL(2,K) we replace the column vector x = (x1, x2)t by the components
of the column vector g ·x. When we replace the variables x1, x2 in a polynomial
h in this way, we denote the new polynomial by h ◦ g.
Let C ∈ K[a,x]. We denote its dependence on a,x by writing it as C(f). The
polynomial C(f) is called a covariant of f if there exists an integer p ≥ 0 such
that

C(f ◦ g) = det(g)pC(f) ◦ g
for all g ∈ GL(2,K). We call p the weight of the covariant. A covariant which
depends only on the aj is called an invariant. I.e I(a) ∈ K[a] is called an
invariant of weight p if

I(f ◦ g) = det(g)pI(f)

for all g ∈ GL(2,C).
Since the action of g does not change degrees in the ai and xj we can restrict
our attention to covariants which are homogeneous in the aj and homogeneous
in the xi. When C(f) is such a bihomogeneous covariant, we call dega(C) the
degree of C and degx(C) the order of C. Notice that f itself is a covariant of
weight 0, order k and degree 1.
Here are two of our most important examples of covariants. First there is the
Hessian covariant H(f) defined by

H(f) =
1

k2(k − 1)2

∣∣∣∣ f11 f12
f21 f22

∣∣∣∣
where fij stands for partial differentiation with respect to xi and xj . It is a
matter of straightforward calculus to see that this is a covariant. Its weight is
2, the order is 2k − 4 and the degree is 2.
The other important covariant is the Jacobian determinant t(f) defined by

t(f) =
1

k − 2

∣∣∣∣ f1 f2
H1 H2

∣∣∣∣ .
Again it is straightforward to check that this is a covariant. Its weight is 3, its
order 3k − 6 and degree 3.

Remark 6.2 Let C be a covariant of f . When we specialise the variables
a0, . . . , ak to values in some ring R and we do this both in f and C(f) we
will still call the specialisation of C(f) a covariant of the specialised f .



F.Beukers, The diophantine equation Axp + Byq = Czr 14

6.3 Structure of covariants

Suppose we are given a bihomogeneous polynomial

C(f) =
m∑

j=0

(
m

i

)
Cj(a)xm−j

1 xj
2

We give necessary and sufficient condition for a form to be a covariant. Suppose
it is a covariant. Since GL(2,K) is generated by the matrices(

λ 0
0 1

)
,

(
0 1
1 0

)
,

(
1 ν
0 1

)
where λ ∈ K∗, ν ∈ K, it suffices to verify the covariant property of C only for
these matrices. First we take g to be the diagonal matrix with entries λ, 1. Then

g(x1) = λx1, g(x2) = x2.

Let Aar0
0 · · · ark

k x
m−j
1 xj

2 be a non-trivial term in C. In shorthand notation:
Aarxm−j

1 xj
2. The covariant property now implies that

λkr0+(k−1)r1+···+rk−1arxm−j
1 xj

2 = λp+m−jarxm−j
1 xj

2.

Hence
kr0 + (k − 1)r1 + · · ·+ rk−1 = p+m− j.

The covariant property with respect to
(

0 1
1 0

)
implies if Aar0

0 · · · ark

k x
m−j
1 xj

2

occurs as a non-trivial term, then so does (−1)pAar0
k · · · ark

0 x
m−j
2 xj

1. In partic-
ular, this observations together with previous one, leads to

r1 + 2r2 + · · · krk = p+ j

for any monomial. Addition of the two equalities gives us

k(r0 + r1 + · · ·+ rk) = 2p+m

Letting g be the degree (in a) of C we get

kg = 2p+m.

Finally we need to implement the covariant property with respect to
(

1 ν
0 1

)
.

It is a straightforward but slightly tedious job to show that we get

DC = x2
∂C

∂x1

where D is the differential operator

D = a0
∂

∂a1
+ 2a1

∂

∂a2
+ 3a2

∂

∂a3
+ · · ·+ nan−1

∂

∂an
.
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By the symmetry
(

0 1
1 0

)
we also get

∆C = x1
∂C

∂x2

where ∆ is the differential operator

∆ = an
∂

∂an−1
+ 2an−1

∂

∂an−2
+ · · ·+ na1

∂

∂a0
.

A particular consequence of the first equation is that

D(C0) = 0. (1)

The second equation implies that

C1 =
1
m

∆C0, C2 =
1

m(m− 1)
∆2C0, . . . Cm =

1
m!

∆mC0. (2)

In fact, these conditions turn out to be both necessary and sufficient. In the
following statement an isobaric polynomial in the aj is a polynomial such that
for all terms Aar0

0 · · · ark

k the sum r1 + 2r2 + 3r3 + · · ·+ krk has the same value.

Theorem 6.4 The bihomogeneous polynomial

C(f) =
m∑

j=0

(
m

i

)
Cj(a)xm−j

1 xj
2

is a covariant of weight p if and only if C0 is homogeneous of degree g, isobaric
of weight p, such that m = kg − 2p, and such that equations (1) and (2) are
satisfied.

In particular we have a very nice corollary characterising invariants.

Corollary 6.5 A homogeneous polynomial C(a) is an invariant of weight p if
and only if it has degree g and is isobaric of weight p such that kg = 2p and
such that the equation DC(a) = 0 is satisfied.

6.6 Further examples

First we give some examples of invariants and covariants for small k.

The case k = 2, f = a0x
2
1 + 2a1x1x2 + a2x

2
2.

The Hessian of f equals a0a2 − a2
1, the discriminant of f . It turns out that all

invariants are powers of the discriminant.

The case k = 3, f = a0x
3
1 + 3a1x

2
1x2 + 3a2x1x

2
2 + a3x

2
2.
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The Hessian now reads

H(f) = (a0a2 − a2
1)x

2
1 + (a0a3 − a1a2)x1x2 + (a1a3 − a2

2)x
2
2.

There is also the Jacobian covariant

t(f) = (a2
0a3 − 3a0a1a2 + 2a3

1)x
3
1 + · · ·

The discriminant of f is an invariant,

D(f) = a2
0a

2
3 − 3a2

1a
2
2 + 4a3

1a3 + 4a0a
3
2 − 6a0a1a2a3.

The powers of D form a full system of invariants. We have the classical relation

4H3 + t2 = Df2.

The case k = 4, f = a0x
4
1 + 4a1x

3
1x2 + 6a2x

2
1x

2
2 + 4a3x1x

3
2 + a4x

4
2.

We have the Hessian and Jacobian covariants H(f), t(f) as before. The ring of
invariants is generated by

I2 = a0a4 − 4a1a3 + 3a2
2

I3 = a0a2a4 − a0a
2
3 − a2

1a4 + 2a1a2a3 − a3
2

We have the classical relation

t(f)2 = −4H(f)3 + I2H(f)f2 − I3f
3.

A general way to produce new covariants from old ones is the transvectant
construction. Letting C1, C2 be two covariants and r ∈ Z≥1 we define

(C1, C2)r =
(

(k − r)!
k!

)2

Ωr(C1(x1, x2)C2(x′1, x
′
2))|x′1=x1,x′2=x2

where
Ω =

∂

∂x1

∂

∂x′2
− ∂

∂x′1

∂

∂x2
.

The transvectants of f are defined by

τ2m =
1
2
(f, f)2m, τ2m+1(f) = (f, τ2m(f))1.

This is the sequence of transvectants we find in [H, Ch I.8]. They are covariants
of degrees 2 and 3 respectively with weights equal to the index n in τn. One
notes that H(f) = τ2(f), t(f) = τ3(f) and

H(f) = (a0a2 − a2
1)x

2k−4
1 + · · ·

t(f) = (a2
0a3 − 3a0a1a2 + 2a3

1)x
3k−6
1 + · · ·

τ4(f) = (a0a4 − 4a1a3 + 3a2
2)x

2k−8
1 + · · ·

τ6(f) = (a0a6 − 6a1a5 + 15a2a4 − 10a2
3)x

2k−12
1 + · · ·

The following theorem will be crucial to us.
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Theorem 6.7 (Gordan, 1887) The fourth transvectant τ4(f) of a non-trivial
form f with k ≥ 4 is identically zero if and only if f is GL(2,K)-equivalent to
one of the following forms

1. xk
1 or xk−1

1 x2 (degenerate case)

2. x2(x3
1 + x3

2) (tetrahedral case)

3. x1x2(x4
1 + x4

2) (octahedral case)

4. x1x2(x10
1 − 11x5

1x
5
2 − x10

2 ) (icosahedral case)

So the vanishing of τ4(f) forces f to be one of the Klein forms if f is not
degenerate.
Because of its importance we give a proof of this theorem. First of all a straight-
forward computation shows that τ4(f) vanishes for all forms in the list. We now
show the converse statement. Let f be a form with τ4(f) = 0. Very explicitly
we have

τ4(f) =
2n−8∑
r=0

Drx
2n−r
1 xr

2

where

Dr =
∑

i+j=r

(
n− 4
i

)(
n− 4
j

)
(aiaj+4 − 4ai+1aj+3 + 3ai+2aj+2).

We use the equations D0 = 0, D1 = 0, D2 = 0, . . . to recursively determine the
coefficients aj . Suppose our f is not equivalent to xk

1 . Then f should have a
zero of order ≤ k/2. By application of a GL(2,K) substitution, we can see to
it that this zero becomes x2 = 0. In particular, a0 = 0.
First suppose that a1 = 0. Choose t > 1 minimal so that at 6= 0. We have that
t ≤ k/2 because x2 = 0 is a zero of order ≤ k/2. Now note that for all t ≤ k−2,

D2t−4 = 3
(
k − 4
t− 2

)2

a2
t + · · ·

where the omitted terms all contain a factor ai with i < t. Since ai = 0 for all
i < t it follows from D2t−4 = 0 that at = 0, a contradiction. So a1 cannot be
zero.
Now suppose, after normalisation if necessary, that a1 = 1. By application of a
shift x1 → x1 + νx2, x2 → x2 we can see to it that a2 = 0. We now determine
the remaning ai recursively using the equations

D0 = a0a4 − 4a1a3 + a2
2 = 0

Dr = · · ·+ k

r

k − 4
r − 1

(
r − 4 +

12
k

)
a1ar+3 + · · · = 0 (r ≥ 1)

where the omitted terms all contain a0 or an ai with 2 ≤ i ≤ r+2. If the factor
r − 4 + 12/k does not vanish for any r we get that a3 = a4 = . . . = ak = 0
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and we are in the case xk−1
1 x2. So we need that k divides 12 and 4 > 12/k.

Hence k = 4, 6 or 12. Take k = 12, the other cases being similar. We get
that a2 = a3 = . . . = a5 = 0 and choose a6 6= 0. By scaling we can see to it
that a6 = −11. Recursive solution of D4 = D5 = . . . = D9 = 0 shows that
a7 = . . . = a10 = a12 = 0 and a11 = −1. Hence f = x1x2(x10

1 − 11x5
1x

5
2 − x10

2 ).

7 Mordell’s approach

As an example of the use of invariant theory in solving diophantine equations
we present Mordell’s method to solve the equation

x2 = −y3 +A2yz
2 +A3z

3 (3)

in integers x, y, z with gcd(x, y, z) = 1. Mordell’s idea is to exploit the relation

t(f)2 = −4H(f)3 + I2H(f)f2 − I3f
3

for quartic forms f . Given a solution x, y, z with z 6= 0 he constructs a quartic
form f with invariants I2(f) = 4A2, I3(f) = 4A3 and such that f(1, 0) =
z,H(1, 0) = y, t(1, 0) = 2x. When we write f in our standard form, this amounts
to solving

(i) z = a0

(ii) y = a0a2 − a2
1

(iii) 2x = a2
0a3 − 3a0a1a2 + 2a3

1

(iv) 4A2 = a0a4 − 4a1a3 + 3a2
2

(v) 4A3 = a0a2a4 − a0a
2
3 − a2

1a4 + 2a1a2a3 − a3
2

We start by setting a0 = z. From (3) it follows that x2 ≡ −y3(modz2). Hence
−(xy−1)2 ≡ y(modz2). Now choose a1 integral so that a1 ≡ −xy−1(modz2).
Then y + a2

1 is divisible by z = a0 and we can determine a2 from equation (ii).
Rewrite the equation (iii) as

z2a3 = 2x+ 3a1y + a3
1.

To solve this, the right hand side should be divisible by z2. This is indeed the
case as follows from

2x+ 3a1y + a3
1 ≡ 2x+ 3(−xy−1)y + (−xy−1)3 ≡ −x(y3 + x2)y−3(modz2)

and from equation (3).
We now determine a4 from equation (iv). With this value of a4, equation (v) is
automatically satisfied because of (3). We now see from equations (iv) and (v)
that both a0a4 = za4 and (a0a2 − a2

1)a4 = ya4 are integer. Since z and y are
relatively prime this implies that a4 is an integer.
Thus we know that to any solution of (3) we have a quartic form f with pre-
scribed invariants 4A1, 4A2 such that f(1, 0) = z,H(1, 0) = y, t(1, 0) = 2x. Of
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course other specialisations of f,H, t will provide us with an infinity of solutions
to 3. Since the number of SL(2,Z)-classes of such forms is finite, we get a finite
number of parametrising solutions of (3) that give the complete solution set.
Notice that I2 is the fouth transvectant of f . If this vanishes and if I3 = 4 we
get the identity t2 = −4H3 − 4f3. This is exactly the case for which Mordell
provides a full solution set in [Mo, Chapter 25].

8 Edwards’s approach

The main idea in Edwards’s paper [Ed] is to mimick Mordell’s technique to solve
the diophantine equation

x2 + y3 = dz5 (4)

in coprime integers x, y, z. Here d is a given non-zero integer. Let

f̃(x1, x2) = 123x1x2(x10
1 − 11x5

1x
5
2 − x10

2 )

be the icosahedral form of F.Klein. Letting H̃ and t̃ be its Hessian and Jacobian
covariants, we get

(t̃/2)2 + H̃3 = f̃5. (5)

Definition 8.1 Let d be a non-zero integer. By C5(d) we denote the set of
GL(2,Q)-transforms of f̃ which are of the form

f(x1, x2) =
12∑

i=0

(
12
i

)
aix

12−i
1 xi

2,

such that

1. a0, . . . , a5, 7a6, a7, . . . , a12 ∈ Z for all i.

2.
(t(f)/2)2 +H(f)3 = df5. (6)

where H(f) and t(f) are the Hessian and Jacobian covariants of f .

Notice that a6 is preceded by a 7 in this definition (and in all formulas to come).
It turns out that the space of dodecahedral forms with a0, . . . , a5, 7a6, a7, . . . , a12 ∈
Z is stable under SL(2,Z). From now on, when we speak of integer solutions,
we will mean these variables to be integral.
Because of the covariant property it follows from (5) that for any g ∈ GL(2,Q)
we have for f := f̃ ◦ g the identity

(t(f)/2)2 +H(f)3 = det(g)6f5.

So by taking det(g)6 = d we can see to it that we get parametrisations of
x2 + y3 = dz5.
Our first goal is to prove the following theorem.



F.Beukers, The diophantine equation Axp + Byq = Czr 20

Theorem 8.2 Let d be a non-zero integer. Let x, y, z ∈ Z be a coprime solution
of x2 + y3 = dz5. Then there exists a form f ∈ C5(d) such that

f(1, 0) = z, H(f)(1, 0) = y, t(f)(1, 0) = 2x. (7)

Proof . In what follows we shall write a form
12∑

i=0

(
12
i

)
aix

12−i
1 xi

2

in the shape
[a0, a1, . . . , a12].

When z = 0, we have x = ±1 and y = −1. We can immediately write down the
corresponding forms f . They read

[0,±1, 0, 0, 0, 0,−144d/7, 0, 0, 0, 0,∓(144d)2, 0].

So from now on we can assume z 6= 0. We first prove our theorem without the
rationality properties of the ai. Determine α, β ∈ Q such that f̃(α, β) = z/d
and H̃(α, β) = y/d2. Determine γ, δ ∈ Q such that αδ − βγ = 1. Define

the dodecahedral form f by f = df̃ ◦ g, where g =
(
α γ
β δ

)
. Then, because

H(f) = H(df̃ ◦g) = d2H(f̃)◦g and t(f) = t(df̃ ◦g) = d3t(f̃)◦g we find that (6)
is satisfied for our choice of f . Moreover, f(1, 0) = df̃(α, β) = z and similarly
H(f)(1, 0) = y. From x2 + y3 = dz5 and (6) it follows that t(f)(1, 0) = ±2x. In
case t(f)(1, 0) = −2x we take a new f equal to the old f(ix1, ix2). This does
not change f,H but it does change t by a minus sign. We have found a solution
f for the equations (6) and (7). Notice that if f(x1, x2) is a solution, then so is
f(x1 + λx2, x2) for any λ ∈ Q. So we still have some freedom in the choice of
f . Thus far everything has been done over Q. Our claim is that we can choose
λ in such a way that the coefficients ai satisfy the rationality and integrality
properties of the ai required by f being in C5(d).
Equations (7) gives us the following equations in ai

z = a0

y = a0a2 − a2
1

2x = a2
0a3 − 3a0a1a2 + 2a3

1

precisely the same as in Mordell. We also need explicitly given necessary condi-
tions on the ai for f to be equivalent to f̃ . These are given by the vanishing of the
fourth transvectant according to Gordan’s theorem. So we get the Di = 0 where
the Di, i = 0, 1, . . . , 12 are the coefficients of τ4(f). In Appendix B, at the very
end we have reproduced the explicit equations Di = 0 for i = 0, . . . , 9. Then
we must take a0 = z. For a1 we have complete freedom because of the freedom
in λ above. We set a1 equal to a number in the residue class −xy−1(modz5).
From H(1, 0) = y and t(1, 0) = 2x it follows that

a0a2 ≡ y + (xy−1)2 ≡ −dz5y−2 ≡ 0(modz5)
a2
0a3 ≡ −x(x2 + y3)y−3 ≡ −dxz5y−3 ≡ 0(modz5)
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From this we observe that a2 and a3 are integers divisible by z4 and z3 respec-
tively. We can now determine a4, a5, . . . recursively. Start with

0 = D0/1 = a0a4 − 4a1a3 + 3a2
2.

Hence a0a4 is an integer divisible by z3. Hence a4 is an integer divisble by z2.
Similarly it follows from D1 = 0 that a5 is an integer divisible by z and from
D2 = 0 it follows that 7a6 ∈ Z. In

D3/56 = 0 = a0a7 − 6a2a5 + 5a3a4

a small miracle happens. There is no term a1a6 and we can now see that a0a7

is an integer divisble by z5. Hence a7 is divisible by z4. The equation

D4/14 = 0 = 5a0a8 + 12a1a7 − 6a2(7a6)− 20a3a5 + 45a2
4

poses a small problem because of the coefficient 5 in front of a0a8. However, by
elimination of a6, a7 from D4 = D3 = D2 = 0 we obtain

a2
0a8 = 12a4a3a1 + 18a4a

2
2 − 24a2

3a2 + 4a5a3a0 − 9a2
4a0.

Now it follows that a8 is an integer divisible by z3. Continuing with D5 = D6 =
D7 = 0 we find that a9, a10, a11 are integers as well. From D8 = D9 = 0 we see
that a0a12 and a1a12 are integers. Because a0, a1 are coprime, we conclude that
a12 is integral.

qed

Up to a shift x1 → x1 + ax2, x2 → x2 the form f found in Theorem 8.2 is
unique.

Theorem 8.3 Let d, x, y, z be as in Theorem 8.2. Let f1, f2 ∈ C5(d) be such
that

f1(1, 0) = f2(1, 0) = z, H1(1, 0) = H2(1, 0) = y, t1(1, 0) = t2(1, 0) = 2x.

Then there exists an integer q such that f1(x1, x2) = f2(x1 + qx2, x2).

Proof. Notice that if f(x1, x2) has coefficients a0, a1, a2, . . ., then for any num-
ber q the form f(x1 + qx2, x2) has coefficients a0, a1 + qa0, a2 + 2qa1 + q2a0, . . ..
We distinguish two cases. First of all suppose that z = 0. Then, automatically,
y = −1, x = ±1. From the proof of Theorem 8.2 it follows that a0 = 0, a1 =
∓1. From D4 = a0a4 − 4a1a3 + 3a2

2 = 0 we see that a2 is even. Hence by a
substition of the form (x1, x2) → (x1 + qx2, x2) we can see to it that a2 = 0.
The remaining ai are now uniquely determined from the equations Di = 0 and
the extra equation R1 = 0 (see Appendix B). This latter equation arises from
the identity τ6(f) = 360df and it fixes the proper normalisation of a6.
Now suppose that z 6= 0. We should have a0 = z. From D4 = a0a4 − 4a1a3 +
3a2

2 = 0 it follows that a2 is even if a0 is even. We can now dedude from
the equations H(1, 0) = y, t(1, 0) = 2x that a1 ≡ −xy−1(modz). So by a
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substitution (x1, x2) → (x1 + qx2, x2) we can see to it that 0 ≤ a1 < |z|. This
determines a1 uniquely. The remaining ai are now determined uniquely as well
by the equations H(1, 0) = y, t(1, 0) = 2x and Di = 0.

qed

Corollary 8.4 Let d, x, y, z be as in Theorem 8.2. Suppose we have f1, f2 ∈
C5(d) and integers a1, b1, a2, b2 such that

z = f1(a1, b1) = f2(a2, b2)
y = H1(a1, b1) = H2(a2, b2)

2x = t1(a1, b1) = t2(a2, b2)

Then f1 and f2 are SL(2,Z)-equivalent. Moreover, if the last equation reads

t1(a1, b1) = 2x t2(a2, b2) = −2x

then f1 and f2 are GL(2,Z)-equivalent.

Proof. Choose c1, d1 ∈ Z such that a1d1 − b1c1 = 1 and put g1 =
(
a1 b1
c1 d1

)
.

Then f1 ◦ g1 is a form in C5(d) which specialises together with its covariants at
the point (1, 0) to the solution x, y, z. We can choose g2 ∈ SL(2,Z) similarly.
According to Theorem 8.2 the forms f1 ◦ g1 and f2 ◦ g2 are SL(2,Z) equivalent.
This shows the first part of our Corollary.
To show the second part, choose a g ∈ GL(2,Z) with determinant −1. Let
f ′ = f ◦ g. Then H(f ′) = H(f) ◦ g and t(f ′) = −t(f) ◦ g because H has even
weight and t has odd weight. According to the first part of our Corollary, f ′2
and f1 are SL(2,Z)-equivalent.

qed

We have now seen that all coprime solutions to x2 + y3 = dz5 arise from
parametrisations using forms from C5(d) and their covariants. It remains to
show that C5(d) consists of a finite number of SL(2,Z)-orbits and, if possible,
compute these orbits.

9 Reduction of binary forms

Also in this section we follow the approach in [Ed], but with a few simplications.
Consider a form f ∈ R[x1, x2] of degree k ≥ 3 in x1, x2. We assume once and
for all that it has distinct zeros. Choose a factorisation over C,

f =
k∏

i=1

(νix1 − µix2).

There is some ambiguity in the normalisation of the linear factors for the mo-
ment, but this will be cleared. For any t1, . . . , tk ∈ R>0 define φ = φ(f, t)
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by

φ(f, t) =
k∑

i=1

t2i (νix1 − µix2)(νix1 − µix2).

This is a real quadratic form which is positive definite since its values for real
(x1, x2) 6= (0, 0) are strictly positive. Strictly speaking φ also depends on the
particular factorisation of f we have chosen. Let us write φ(f, t) = Px2

1 −
2Qx1x2 +Rx2

2 and let δ(f, t) = PR−Q2 be its determinant.

Lemma 9.1 For any g ∈ GL(2,R) we have

φ(f ◦ g, t) = φ(f, t) ◦ g and δ(f ◦ g, t) = det(g)2δ(f, t).

Proof. Note that the second is a consequence of the first, while the first is
immediate from the definitions.

qed

We define the Hermite determinant of f as

Θ(f) := min
t:

∏
i ti=1

δ(f, t)k/2.

Note that this minimum does not depend on the particular normalisation in the
factorisation in f . In [CS, Lemma 4.2] it is shown that the minimum is assumed
at a uniquely determined point, which we denote by t0. The representative
point of f is the point z0 ∈ H such that φ(f, t0)(z0, 1) = 0. Note also that
this representative point is independent of the normalisation of the µi, νi. If the
representative point of f is in the standard fundamental domain |z| ≥ 1,−1/2 ≤
<(z) ≤ 1/2 we call f Hermite reduced.

Theorem 9.2 Let f be a real form of degree k ≥ 3 and distinct roots. Then,
for any g ∈ GL(2,R) we have

1. Θ(f ◦ g) = det(g)kΘ(f).

2. If z0 is the representative point of f and z1 = g−1(z0) (fractional linear
transform) then the representative point of f ◦g is given by z1 if det(g) > 0
and z1 if det(g) < 0.

Proof. From δ(f ◦ g, t) = det(g)2δ(f, t) it follows that

Θ(f ◦ g) = min∏
ti=1

δ(f ◦ g, t)k/2

= |det(g)|k min∏
ti=1

δ(f, t)k/2

= |det(g)|kΘ(f)

Let t0 be the point t where the minimum is attained. Then from φ(f ◦ g, t0) =
φ(f, t0) ◦ g it follows that

φ(f ◦ g, t0)(z1, 1) = (φ(f, t0) ◦ g)(z1, 1)
= |γz1 + δ|2φ(f, t0)(z0, 1)
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where g =
(
α β
γ δ

)
. Hence z1 is a zero of the quadratic form φ(f ◦g, t0). When

det(g) > 0 this lies in the upper half plane, so it is the representing point of
f ◦ g. When det(g) < 0 however, the conjugate zero z1 lies in H.

qed

Theorem 9.3 Let f be a real from of degree k ≥ 3 and distinct roots with
factorisation f =

∏
i(νix−µiy). Let z0 = x+ iy its representative point. Then,

Θ(f) =
(
k

2y

)k k∏
i=1

(|νix− µi|2 + |νiy|2).

This Theorem allows us to compute the Hermite determinant of the form f̃(x1, x2) =
123x1x2(x10

1 − x5
1x

5
2 − x10

2 ). Notice that f̃(x1, x2) = f̃(x2,−x1). Let z0 be the
representing point of f̃(x1, x2). Then, by covariance, the representing point
of f̃(x2,−x1) is −1/z0. But by the invariance of the form f̃ we should have
z0 = −1/z0. Thus we conclude that z0 = i. Using our Theorem it is straight-
forward to verify that Θ(f̃) = 22431855.

Theorem 9.4 Let f ∈ C5(d). Then

Θ(f) = 22431855|d|2.

Proof. There exists an element g ∈ GL(2,C) such that f = f̃ ◦ g. In [Ed]
it is shown that we can assume g ∈ GL(2,R). From the covariance of the
representing point we have

Θ(f) = |det(g)|12Θ(f̃).

(Using the SL(2,C)-reduction theory developed in [CS] one deduces that this fol-
lows also without the assumption g ∈ GL(2,R)). We also have that |det(g)|6 =
d(f)/d(f̃) and we know that d(f̃) = 1. Hence we conclude

Θ(f) = |d|2Θ(f̃)

and our Theorem follows.
qed

The next theorem gives us upper bounds for the coeffcients of Hermite reduced
forms.

Theorem 9.5 Let

f =
k∑

i=1

(
k

i

)
aix

k−i
1 xi

2

be a real, Hermite reduced form of degree k. Then for all i+ j ≤ k we have

|aiaj | ≤
(

4
3k2

)k/2

Θ(f).
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Proof. Let z0 ∈ H be the representing point of f and write z0 = x + iy. Let
t1, . . . , tk be the components of the vector t that minimizes δ(f, t). We shall
show that for all r,

|ar|2 ≤
|z0|2r

(ky)k
Θ(f).

Recalling that y ≥
√

3
2 max(|z0|, 1) when z0 is in the standard fundamental

domain of SL(2,Z), the proof of our Theorem then follows from this inequality.
We abbreviate Θ(f) by Θ. Let, as before, f =

∏k
i=1(νix1 − µix2). We know

that there exist δ > 0 and ti > 0 such that

f =
√

Θ
δk/4

∏
(tiνix1 − tiµix2)

and δ is the determinant PR−Q2 of the quadratic form

Px2
1 − 2Qx1x2 +Rx2

2 =
k∑

i=1

t2i (νix1 − µix2)(νix1 − µix2).

Note that
P =

∑
t2i |νi|2, R =

∑
t2i |µi|2.

This form also equals P (x1− zx2)(x1− zx2). Hence, when we write z = x+ iy,

Q = xP, R = P |z|2, δ = P 2y2.

Choose bi, ci ∈ C such that
√
Pbi = νiti and

√
Rci = −µiti. Then

∑
|bi|2 =∑

|ci|2 = 1 and also

f =
√

Θ
1

yk/2

∏
(bix1 + ci|z0|x2)(bix1 + ci|z0|x2).

Comparison of the r-th coefficients yields(
k

r

)
ar =

(
|z0|r

yk/2

)
(
∑

#S=k−r

bScS′)
√

Θ.

Here the summation is over all subsets S of 1, . . . , k of cardinality k− r, and S′

is the complement of S. Furthermore bS denotes the product of all bi, i ∈ S.
We first use Schwarz’s inequality ∑

#S=k−r

bScS′

2

≤

 ∑
#S=k−r

|bS |2
 ∑

#S=k−r

|cS′ |2
 .

Finally use the generalised AM/GM inequality to obtain

∑
#S=k−r

|bS |2 ≤
(

k

k − r

)(
1
k

∑
i

|bi|2
)k−r

=
(
k

r

)
1

kk−r
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and similarly ∑
#S=k−r

|cS′ |2 ≤
(
k

r

)
1
kr
.

Combining all inequalities yields the desired estimate for |ar|.
qed

Using the estimate of Θ(f) for any Hermite reduced f ∈ C5(d) we obtain the
following consequence.

Corollary 9.6 Let f ∈ C5(d) and suppose f is Hermite reduced. Let a0, . . . , a12

be its coefficients. Then, for every i, j with i+ j ≤ 12 we have

|aiaj | ≤ 21255|d|2.

In particular, |ai| ≤ 1600
√

5|d| for every i ≤ 6.

10 An algorithm to solve x2 + y3 = dz5

Let d be any non-zero integer. We have seen in the previous two sections that
all coprime solutions x, y, z to x2 + y3 = dz5 arise as specialisation to integers
of a form f ∈ C5(d) and its Hessian and Jacobian covariant. To determine
the set C5(d) it suffices to determine the SL(2,Z)-orbits within C5(d). More
particularly, it suffices to determine the Hermite reduced forms in C5(d).
Here is an algorithm to find the Hermite reduced forms with a0 6= 0.

1. Let B = 1600
√

5|d|.

2. For all a0, a1, a2 ∈ Z with |ai| ≤ B and a0 6= 0 we do the following.

(a) Let Z = a0, Y = a0a2 − a2
1.

(b) Determine the at most two solutions a3 of X = ±
√
−Y 3 − dZ5 and

a2
0a3 − 3a0a1a2 + 2a3

1 = 2X

(c) Compute a4, . . . , a12 from the equations defining C5(d).

(d) If all a3, . . . , 7a6, . . . , a12 are integers and if they satisfy the bounds
of Corollary 9.6 then we output the form [a0, . . . , a12].

When a0 we follow a similar procedure, but now we can assume a1 6= 0. The
values of a3, a4, . . . follow from the equations D4 = 0, D5 = 0, . . ..
We have now a finite set F of forms in C5(d). We like to keep only the Hermite
reduced ones. For that we determine the representing point z(f) ∈ H for each
f ∈ H. This can be a tedious computation, but we use the following observation.
Every form f ∈ C5(d) is GL(2,R)-equivalent to x1x2(x10

1 − 11x5
1x

5
2 − x10

2 ). The
latter form has four real roots, hence any form in C5(d) has four real roots.
Let f1 be the factor of f consisting of the four real linear factors of f . Then,
by standard arguments as explained in [CS], it turns out that the representing
point of f is the same as that of f1. For the latter there are standard formulas.



F.Beukers, The diophantine equation Axp + Byq = Czr 27

We delete from F the non-Hermite reduced forms. We are now left with a full
set of representatives of the SL(2,Z)-orbits in C5(d).
In the final listing it saves space to look at GL(2,Z)-orbits in C5(d). Suppose
we have a form f which, together with its covariants H(f), t(f)/2 represents a
set S of solutions to x2 + y3 = dz5. Let g ∈ GL(2,Z) and det(g). Then, by the
covariant property we have H(f ◦ g) = H(f) and t(f ◦ g) = −t(f). So the form
f ◦ g represents the set {(−x, y, z)|(x, y, z) ∈ S} of solutions.
Of course we also delete those f from F that do not give rise to coprime solutions.

11 Appendix A: Parametrizing X2 + Y 3 ± Zr = 0

This section has been taken directly from Johnny Edwards’s paper [Ed]. It gives
complete parametrizations to X2 +Y 3±Zr = 0 for r = 3, 4, 5. In the tables we
list the forms

f =
k∑

i=0

(
k

i

)
aix

k−i
1 xi

2

by the corresponding vector

[a0, a1, . . . , ak]

where k = 4, 6, 12 if r = 3, 4, 5 respectively. From this form we can compute the
covariant forms

H =
1

k2(k − 1)2

∣∣∣∣ f11 f12
f21 f22

∣∣∣∣ , g =
1

2k(k − 2)

∣∣∣∣ f1 f2
H1 H2

∣∣∣∣ .
Here fij means ∂2f

∂xi∂xj
etc. The forms then satisfy g2 +H3 ± fr = 0 and each

give infinitely many integer primitive solutions of the corresponding diophan-
tine equation by specialisation of the polynomial variables. Moreover, solution
sets given by different parametrisations are disjoint, and their union is the full
solution set. To keep the lists as short as possible, we identify the parametriza-
tions identifying ±X. If the corresponding GL(2,Z) class of f breaks into two
SL(2,Z) classes these are really 2 distinct parametrizations.
The case r = 3 was already done by Mordell in [Mo], Chapter 25 using a syzygy
from invariant theory. The cases r = 4 were done by Zagier and quoted in [Beu],
appendix A. The r = 5 case is new and presented in [Ed].

Complete Parametrization of X2 + Y 3 + Z3 = 0

A1 = [0, 1, 0, 0,−4]
A2 = [−1, 0, 0, 2, 0]
B1 = [−2,−1, 0,−1,−2]
B2 = [−1, 1, 1, 1,−1]
C1 = [−1, 0,−1, 0, 3]
C2 = [1, 0,−1, 0,−3]
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In Mordell’s book [Mo] he further shortens the list by assuming that Z is odd.
This means that A1, B1 can be omitted. However, Mordell gives 5 parametriza-
tions: A2, B2, C1, C2 and f = [−1,−2,−4,−6, 0] According to [Ed] the 5th
should be superfluous. It turns out that f(x1 − 2x2, x2) is A2
In [Beu], on page 78, parametrizations obtained by interchanging Y and Z are
identified.

Complete Parametrization of X2 + Y 3 ± Z4 = 0

These two equations were solved by Zagier and quoted in [Beu]. In [Co] there
is a complete solution according to classical lines and the lines followed by
Zagier. To keep the lists short we identify ±X and ±Z. This means every
parametrization in the list is shorthand for ±f(x1,±x2). The first ± is the ±Z.

The equation X2 + Y 3 + Z4 = 0:

f1 = [0, 1, 0, 0, 0,−12, 0]
f2 = [0, 3, 0, 0, 0,−4, 0]
f3 = [−1, 0, 1, 0, 3, 0,−27]
f4 = [−3,−4,−1, 0, 1, 4, 3]

The equation X2 + Y 3 − Z4 = 0:

f1 = [0, 1, 0, 0, 0, 12, 0]
f2 = [0, 3, 0, 0, 0, 4, 0]
f3 = [−1, 0, 0, 2, 0, 0, 32]
f4 = [−1, 0,−1, 0, 3, 0, 27]
f5 = [−1, 1, 1, 1,−1, 5, 17]
f6 = [−5,−1, 1, 3, 3, 3, 9]
f7 = [−7,−1, 2, 4, 4, 4, 8]

Complete Parametrization of X2 + Y 3 + Z5 = 0

Beukers in [Beu] was able to produce parametrizations, though his method was
unable to produce a complete set. If we identify ±X, we have the following
complete set:

f1 = [0, 1, 0, 0, 0, 0,−144/7, 0, 0, 0, 0,−20736, 0]
f2 = [−1, 0, 0,−2, 0, 0, 80/7, 0, 0, 640, 0, 0,−102400]
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f3 = [−1, 0,−1, 0, 3, 0, 45/7, 0, 135, 0,−2025, 0,−91125]
f4 = [1, 0,−1, 0,−3, 0, 45/7, 0,−135, 0,−2025, 0, 91125]
f5 = [−1, 1, 1, 1,−1, 5,−25/7,−35,−65,−215, 1025,−7975,−57025]
f6 = [3, 1,−2, 0,−4,−4, 24/7, 16,−80,−48,−928,−2176, 27072]
f7 = [−10, 1, 4, 7, 2, 5, 80/7,−5,−50,−215,−100,−625,−10150]
f8 = [−19,−5,−8,−2, 8, 8, 80/7, 16, 64, 64,−256,−640,−5632]
f9 = [−7,−22,−13,−6,−3,−6,−207/7,−54,−63,−54, 27, 1242, 4293]
f10 = [−25, 0, 0,−10, 0, 0, 80/7, 0, 0, 128, 0, 0,−4096]
f11 = [6,−31,−32,−24,−16,−8,−144/7,−64,−128,−192,−256, 256, 3072]
f12 = [−64,−32,−32,−32,−16, 8, 248/7, 64, 124, 262, 374, 122,−2353]
f13 = [−64,−64,−32,−16,−16,−32,−424/7,−76,−68,−28, 134, 859, 2207]
f14 = [−25,−50,−25,−10,−5,−10,−235/7,−50,−49,−34, 31, 614, 1763]
f15 = [55, 29,−7,−3,−9,−15,−81/7, 9,−9,−27,−135,−459, 567]
f16 = [−81,−27,−27,−27,−9, 9, 171/7, 33, 63, 141, 149,−67,−1657]
f17 = [−125, 0,−25, 0, 15, 0, 45/7, 0, 27, 0,−81, 0,−729]
f18 = [125, 0,−25, 0,−15, 0, 45/7, 0,−27, 0,−81, 0, 729]
f19 = [−162,−27, 0, 27, 18, 9, 108/7, 15, 6,−51,−88,−93,−710]
f20 = [0, 81, 0, 0, 0, 0,−144/7, 0, 0, 0, 0,−256, 0]
f21 = [−185,−12, 31, 44, 27, 20, 157/7, 12,−17,−76,−105,−148,−701]
f22 = [100, 125, 50, 15, 0,−15,−270/7,−45,−36,−27,−54,−297,−648]
f23 = [192, 32,−32, 0,−16,−8, 24/7, 8,−20,−6,−58,−68, 423]
f24 = [−395,−153,−92,−26, 24, 40, 304/7, 48, 64, 64, 0,−128,−512]
f25 = [−537,−205,−133,−123,−89,−41, 45/7, 41, 71, 123, 187, 205,−57]
f26 = [359, 141,−1,−21,−33,−39,−207/7,−9,−9,−27,−81,−189,−81]
f27 = [295,−17,−55,−25,−25,−5, 31/7,−5,−25,−25,−55,−17, 295]

The GL(2,Z) classes of the 27 forms split into 2 distinct SL(2,Z) classes, unless
f = f3, f4, f17, f18, f27. This means that the above list becomes 49 parametriza-
tions if we do not identify ±X.

12 Appendix B: fourth transvectants

In this appendix, again reproduced from [Ed], we reproduce the equations sat-
isfied by f of any form satisfying g2 + H3 + dfr = 0, where r, g,H are as in
Appendix A. These equations are obtained by setting the fourth transvectant
of f equal to zero and a further equation to specify scaling. The expressions Di

are the coefficients of the fourth transvectant τ4(f) =
∑2k−8

i=0 Dix
r−i
1 xi

2. Note
that in all cases to any such form there corresponds a solution X,Y, Z of the
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equation X2 + Y 3 + dZr = 0 by evaluation f,H, g at (1, 0),

Z = a0

Y = a0a2 − a2
1

2X = a2
0a3 − 3a0a1a2 + 2a3

1

The tetrahedral case r = 3

0 = a0a4 − 4a1a3 + 3a2
2

−4d = a0a2a4 + 2a1a2a3 − a3
2 − a0a

2
3 − a2

1a4

The octahedral case r = 4

D0/1 : 0 = a4a0 − 4a3a1 + 3a2
2

D1/2 : 0 = a0a5 − 3a1a4 + 2a3a2

D2/1 : 0 = a0a6 − 9a2a4 + 8a2
3

D3/2 : 0 = a1a6 − 3a2a5 + 2a3a4

−72d = a0a6 − 6a1a5 + 15a2a4 − 10a2
3

The last equation is obtained from τ6(f) = 72d.

The icosahedral case r = 5

D0/1 : 0 = a0a4 − 4a1a3 + 3a2
2

D1/8 : 0 = a0a5 − 3a1a4 + 2a3a2

D2/4 : 0 = a0(7a6)− 12a1a5 − 15a2a4 + 20a2
3

D3/56 : 0 = a0a7 − 6a2a5 + 5a3a4

D4/14 : 0 = 5a0a8 + 12a1a7 − 6a2(7a6)− 20a3a5 + 45a2
4

D5/56 : 0 = a0a9 + 6a1a8 − 6a2a7 − 4a3(7a6) + 27a4a5

D6/28 : 0 = a0a10 + 12a1a9 + 12a2a8 − 76a3a7 − 3a4(7a6) + 27a4a5

D7/8 : 0 = a0a11 + 24a1a10 + 90a2a9 − 130a3a8 − 405a4a7 + 60a5(7a6)
D8/1 : 0 = a0a12 + 60a1a11 + 534a2a10 + 380a3a9 − 3195a4a8

−720a5a7 + 60(7a6)2

D9/8 : 0 = a1a12 + 24a2a11 + 90a3a10 − 130a4a9 − 405a5a8 + 60(7a6)2

By elimination of a6, a7 from D2 = D3 = D4 = 0 we get

D∗
4 : a3

0a8 = 12a4a3a1a0 + 18a4a
2
2a0 − 24a2

3a2a0 + 4a5a3a
2
0 − 9a2

4.
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From τ6(f) = 360df we get by comparison of the coefficients of x12
1 and x11

1 x2,

R0/1 : 360da0 = a0(7a6)− 42a1a5 + 105a2a4 − 70a2
3

R1/6 : 720da1 = 7a0a7 − 5a1(7a6) + 63a2a5 − 35a3a4
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