Introduction to the Abelian Stark Conjectures Outline Notes, Version of 9/12/04

D. Solomon

December 12, 2004

0 Prerequisites

- A first course in Algebraic Number Theory (for number fields): integers, ideals, absolute values, class groups, units, Dirichlet's Theorem, behaviour of primes in Galois extensions, basic theory of Cyclotomic fields. See *e.g.* [F-T], [La], [Wa]
- Acquaintance with main theorems of (abelian) class-field theory in terms of ideals: Mainly ray-class groups/fields and the Artin map. See *e.g.* [La] or (especially) appendix to [Wa]
- Basic understanding of representation theory of finite groups over a field F of characteristic 0, almost exclusively abelian groups, mostly F = C. For the latter, deeper understanding of characters, orthogonality relations, idempotents, eigenspaces (isotypic parts) of modules, connection with the ring/module theory of the group-ring etc. See e.g. [F-T], [Se]
- Basic familiarity with Riemann zeta-function and Dirichlet *L*-functions (definitions, Euler product and acquaintance with the functional equation will probably suffice. Some knowledge of equivalents for Dedekind zeta-function and Hecke *L*-functions helpful). See *e.g.* [F-T], [La], [Wa], article by Martinet in [Fr]
- General Algebra: Basic theory of rings and modules. Tensor product and exterior powers over commutative rings. Group-rings.
- Basic notions of complex analysis (analytic continuation, Dirichlet series, Gamma function)
- Knowledge of *p*-adic numbers and very basic *p*-adic analysis. See *e.g.* [Wa, Ch. 5], [Ko]

1 Motivation: *L*-functions of Cyclotomic Fields

1.1 Some Definitions

Let $\zeta_f := \exp(2\pi i/f)$ for $f \in \mathbb{Z}_{\geq 1}$ Set $K_f := \mathbb{Q}(\zeta_f)$ and $G_f := \operatorname{Gal}(K_f/\mathbb{Q}).$

$$\begin{array}{rcl} G_f &\cong & (\mathbb{Z}/f\mathbb{Z})^{\times} \\ \sigma_a &\longleftrightarrow & \bar{a} \end{array}$$

where $\sigma_a(\zeta_f) = \zeta_f^a$.

Identify character group \widehat{G}_f with Dirichlet characters modulo f i.e.

$$(\chi: G_f \to \mathbb{C}^{\times}) \longleftrightarrow (\chi: (\mathbb{Z}/f\mathbb{Z})^{\times} \to \mathbb{C}^{\times})$$

For $s \in \mathbb{C}$, $\Re(s) > 1$, set

$$L_f(s,\chi) = \sum_{\substack{n \ge 1\\(n,f)=1}} \frac{\chi(\bar{n})}{n^s}$$
$$= \prod_{p \nmid f} \left(1 - \frac{\chi(\bar{p})}{p^s}\right)^{-1}$$

1.2 Primitivity

Note that $L_f(s, \chi)$ may be 'imprimitive' i.e. there may exist f' properly dividing f and Dirichlet character χ' defined modulo f' such that

$$\chi'(\bar{a} \bmod f') = \chi(\bar{a} \bmod f) \tag{1}$$

whenever (a, f) = 1.

In any case, there exists a unique minimal f'|f (the conductor of χ denoted f_{χ}) and character χ' defined modulo f_{χ} satisfying (1) (called the *primitive character associated to* χ , denoted $\hat{\chi}$).

The usual primitive Dirichlet L-function $L(s, \hat{\chi})$ is just

$$\prod_{p \nmid f_{\chi}} \left(1 - \frac{\hat{\chi}(\bar{p})}{p^s} \right)^{-1} = L_{f_{\chi}}(s, \hat{\chi})$$

and so, since f_{χ} divides f, we have

$$L_f(s,\chi) = \prod_{\substack{p \nmid f_\chi\\p \mid f}} \left(1 - \frac{\hat{\chi}(\bar{p})}{p^s} \right) L(s,\hat{\chi})$$
(2)

For example

$$L_f(s,\chi_0) = \prod_{p|f} \left(1 - \frac{1}{p^s}\right) L(s,\hat{\chi}_0) = \prod_{p|f} \left(1 - \frac{1}{p^s}\right) \zeta(s)$$

1.3 Analytic Facts about $L(s, \hat{\chi})$ and $L_f(s, \chi)$

For the following analytic facts about primitive Dirichlet *L*-functions, see *e.g.* [Wa, Ch. 4]: (PDL1) $L(s, \hat{\chi})$ has a continuation to \mathbb{C} that is analytic at all $s \in \mathbb{C}$ (except for $L(s, \hat{\chi}_0) = \zeta(s)$ at s = 1)

(PDL2) $\operatorname{ord}_{s=1}L(s,\hat{\chi}) = 0$ (except that $\operatorname{ord}_{s=1}L(s,\hat{\chi}_0) = \operatorname{ord}_{s=1}\zeta(s) = -1$)

(PDL3) $L(s, \hat{\chi})$ is related to $L(1 - s, \hat{\chi}^{-1})$ by a functional equation (also involving $\Gamma(s)$, Gauss sums...)

For any Dirichlet character χ modulo f we define

$$r_{\infty}(\chi) := \begin{cases} 1 & \text{if } \chi(-\bar{1}) = 1 \text{ (say '}\chi \text{ is } even') \text{ and } \chi \neq \chi_0 \\ 0 & \text{if } \chi(-\bar{1}) = -1 \text{ (say '}\chi \text{ is } odd') \text{ or if } \chi = \chi_0 \end{cases}$$

Then the precise form of the functional equation plus (PDL2) gives :

(PDL4) $\operatorname{ord}_{s=0} L(s, \hat{\chi}) = r_{\infty}(\hat{\chi})$

Returning to $L_f(s, \chi)$ for $\chi \in \widehat{G_f}$: Eqs. (2)+(PDL1)+(PDL4) give:

Theorem 1.1 Suppose that χ is a Dirichlet character modulo f then $L_f(s, \chi)$ has a meromorphic continuation to \mathbb{C} which is actually holomorphic except that $\operatorname{ord}_{s=1}L_f(s, \chi_0) = -1$. Moreover

$$\operatorname{ord}_{s=0} L_f(s,\chi) = r_{\infty}(\chi) + \#\{p : p | f, \ p \nmid f_{\chi}, \ \hat{\chi}(\bar{p}) = 1\}$$
(3)

Note: If $\chi = \chi_0$ then R.H.S. of (3) becomes simply $\#\{p : p|f\}$.

1.4 Leading Terms at s = 0

Theorem 1.2 For any χ

$$L_f(0,\chi) = -\sum_{\substack{a=1\\(a,f)=1}}^f \left(\frac{a}{f} - \frac{1}{2}\right)\chi(\bar{a})$$
$$= -\sum_{\sigma_a \in G_f} \left(\left\langle\frac{a}{f}\right\rangle - \frac{1}{2}\right)\chi(\sigma_a)$$

Proof: see [Wa, Thm. 4.2] (assumption that χ primitive is not used). One can check directly R.H.S.=0 whenever χ is even and $\chi \neq \chi_0$ (or $\chi = \chi_0$ but f > 1), agreeing with (3).

(Harder: Check directly R.H.S.=0 if $\exists p \text{ s.t. } p \nmid f_{\chi}, \ \hat{\chi}(\bar{p}) = 1.$)

Theorem 1.3 If χ is even and f > 1 (so that $L_f(0, \chi) = 0$) then

$$L'_{f}(0,\chi) = -\frac{1}{2} \sum_{\substack{a=1\\(a,f)=1}}^{f} \log|1-\zeta_{f}^{a}|\chi(\bar{a})|$$
$$= -\frac{1}{2} \sum_{\sigma_{a}\in G_{f}} \log|\sigma_{a}(1-\zeta_{f})|\chi(\sigma_{a})|$$

Proof: If χ is primitive: use [Wa, Thm. 4.9] for $L_f(1, \chi^{-1})$, then the functional equation (and *ibid.*, Lemmas 4.7, 4.8). General case can be deduced from this using 'norm relations' for cyclotomic units, or proved directly, see [Ha, Lec. 3] or refs. on [Tate, p. 79].

Basic Aim of the Stark Conjectures: Formulate (and prove?) 'qualitative analogues' of Theorems 1.2 and 1.3 when:

 $K_f/\mathbb{Q} \quad \rightsquigarrow \quad \text{Galois extension of number fields } K/k \text{ with group } G$ $\chi \in \widehat{G_f} \quad \rightsquigarrow \quad \text{group character of } G \text{ i.e. character of } \text{cx. rep. of } G$ leading term of $L_f(s,\chi)$ at $s = 0 \quad \rightsquigarrow \quad \text{leading term of Artin } L\text{-function } L_{K/k,S}(s,\chi) \text{ at } s = 0$

Extensions and Variations: Replace s = 0 by s = 1; Replace number fields by function fields; Replace L-functions by p-adic L-functions;...

Connections with: Explicit Class Field Theory and Hilbert's 12th Problem; Stickelberger's Theorem and Generalisations; Additive and Multiplicative Galois-Module Structure; Euler Systems; K-Theory of K;...

We shall consider almost exclusively the *abelian* case, *i.e.* Gal(K/k) is *abelian*.

2 The Function $\Theta_{K/k,S}(s)$

2.1 Motivation and Definition

K/k Galois extension of number fields, G := Gal(K/k) abelian

 $\mathbb{C}G = \text{group-ring}$

 $\chi \in \widehat{G}$ extends \mathbb{C} -linearly to ring hom. $\chi : \mathbb{C}G \to \mathbb{C}$

Note: in case $K/k = K_f/\mathbb{Q}$ we can rewrite:

R.H.S. in Theorem 1.2 =
$$\chi \left(-\sum_{\sigma_a \in G_f} \left(\left\langle \frac{a}{f} \right\rangle - \frac{1}{2} \right) \sigma_a \right)$$

R.H.S. in Theorem 1.3 =
$$\chi \left(-\frac{1}{2} \sum_{\sigma_a \in G_f} \log |\sigma_a(1-\zeta_f)| \sigma_a \right)$$

and parentheses contain elements of $\mathbb{C}G$ which are independent of χ

Idea: In Theorem 1.2 use *partial* ζ -functions to express L.H.S. as $\chi(\theta)$ for some $\theta \in \mathbb{C}G_f$ independent of χ . Then Theorem is a determination of θ .

(Similarly for Theorem 1.3, but only even characters involved...)

To do this in the general case K/k:

$$S_{\text{ram}} = S_{\text{ram}}(K/k) := \{ (\text{non-zero}) \text{ prime ideals } \mathfrak{p} \triangleleft \mathcal{O}_k : e_{\mathfrak{p}}(K/k) > 1 \} = \{ \mathfrak{p} : \mathfrak{p} | \mathfrak{f}(K/k) \}$$

Fix S finite set of *places* of k containing S_{ram} as well as $S_{\infty} = S_{\infty}(k)$, the set of infnite (archimedean) places of k.

Define

 $I_S := \{ \text{fractional ideals } \mathfrak{a} \text{ of } k \text{ supported away from } S \}$

Thus $I_S \subset I_{\mathfrak{f}(K/k)}$ and Artin map restricts to a surjection $\sigma_{K/k} : I_S \to G$, $\mathfrak{a} \mapsto \sigma_{\mathfrak{a}} = \sigma_{\mathfrak{a},K/k}$ For $\Re(s) > 1$ get an absolutely convergent sum in $\mathbb{C}G$

$$\Theta_{K/k,S}(s) := \sum_{\substack{\mathfrak{a} \in I_S \\ \mathfrak{a} \text{ integral}}} N\mathfrak{a}^{-s}\sigma_{\mathfrak{a}}^{-1}$$

So $\Theta_{K/k,S}(s) : \{s : \Re(s) > 1\} \to \mathbb{C}G$ is analytic.

The definition gives the following Basic Facts (currently only for $\Re(s) > 1$): (Θ 1) In terms of partial zeta-functions:

$$\Theta_{K/k,S}(s) = \sum_{g \in G} \zeta_{K/k,S}(s,g)g^{-1}$$

where $\zeta_{K/k,S}(\cdot,g): \{s: \Re(s) > 1\} \to \mathbb{C}$ is the partial zeta-function defined by

$$\zeta_{K/k,S}(s,g) := \sum_{\substack{\mathfrak{a} \in I_S, \sigma_{\mathfrak{a}} = g\\ \mathfrak{a} \text{ integral}}} N\mathfrak{a}^{-s}$$

(Θ 2) Euler product in $\mathbb{C}G$: Unique factorisation of fractional ideals gives

$$\Theta_{K/k,S}(s) = \prod_{\mathfrak{p} \notin S} \sum_{n=0}^{\infty} (N\mathfrak{p}^n)^{-s} \sigma_{\mathfrak{p}^n}^{-1} = \prod_{\mathfrak{p} \notin S} \left(1 - \frac{1}{N\mathfrak{p}^s} \sigma_{\mathfrak{p}}^{-1} \right)^{-1}$$

(Θ **3**) In terms of *L*-functions: Apply χ^{-1} for any $\chi \in \widehat{G}$ (also considered as a hom. $\chi : I_S \to G \to \mathbb{C}^{\times}$) to get

$$\chi^{-1}\left(\Theta_{K/k,S}(s)\right) = \prod_{\mathfrak{p}\notin S} \left(1 - \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s}\right)^{-1} =: L_{K/k,S}(s,\chi)$$

(thus $L_{K/k,S}(s,\chi)$ is a not-necessarily-primitive Hecke *L*-function). In other words, setting $e_{\chi} = \sum_{g \in G} \chi(g) g^{-1}$ (idempotent of $\mathbb{C}G$) we have, for $\Re(s) > 1$:

$$\Theta_{K/k,S}(s) = \sum_{\chi \in \widehat{G}} \chi^{-1}(\Theta_{K/k,S}(s))e_{\chi^{-1}}$$
$$= \sum_{\chi \in \widehat{G}} L_{K/k,S}(s,\chi)e_{\chi^{-1}}$$
(4)

2.2 Example: $K/k = K_f/\mathbb{Q}, G = G_f$

Let

$$S_f := \{ p\mathbb{Z} : p|f\} \cup \{\infty\} \supset S_{\operatorname{ram}} \cup S_{\infty}$$

(inclusion is an equality unless $f \equiv 2 \pmod{4}$).

If $n \ge 1$ then the integral ideal $n\mathbb{Z}$ lies in I_{S_f} iff (n, f) = 1 in which case

$$\sigma_{n\mathbb{Z},K_f/\mathbb{Q}} = \sigma_n \quad \text{in } G_f$$

(explicit Class Field Theory over \mathbb{Q}). So, in terms of zeta-functions:

$$\Theta_{K_f/\mathbb{Q},S_f}(s) = \sum_{\sigma_a \in G_f} \zeta_{K_f/\mathbb{Q},S_f}(s,\sigma_a)\sigma_a^{-1}$$

where

$$\zeta_{K_f/\mathbb{Q},S_f}(s,\sigma_a) = \sum_{\substack{n \ge 1\\(n,f)=1,\sigma_n=\sigma_a}} \frac{1}{n^s} = \sum_{\substack{n \ge 1\\n \equiv a \pmod{f}}} \frac{1}{n^s}$$

 $(f^{-s} \times \zeta(s, \langle a/f \rangle),$ Hurwitz ζ -function) Also, for any $\chi \in \widehat{G_f}$, fact (Θ 3) gives

$$\chi^{-1}(\Theta_{K_f/\mathbb{Q},S_f}(s)) = L_{K_f/\mathbb{Q},S_f}(s,\chi) = \prod_{p \nmid f} \left(1 - \frac{\chi(\bar{p})}{p^s}\right)^{-1} = L_f(s,\chi)$$

for $\Re(s) > 1$ thus in terms of *L*-functions:

$$\Theta_{K_f/\mathbb{Q},S_f}(s) = \sum_{\chi \in \widehat{G_f}} L_f(s,\chi) e_{\chi^{-1}}$$

Thus Theorem 1.1 gives a meromorphic continuation $\Theta_{K_f/\mathbb{Q},S_f}:\mathbb{C}\to\mathbb{C}G_f$ and

Theorem 2.1

$$\Theta_{K_f/\mathbb{Q},S_f}(0) = -\sum_{\sigma_a \in G_f} \left(\left\langle \frac{a}{f} \right\rangle - \frac{1}{2} \right) \sigma_a^{-1}$$

PROOF Suffices to show $\chi^{-1}(L.H.S.) = \chi^{-1}(R.H.S.)$ for all $\chi \in G_f$. But

$$\chi^{-1}(\Theta_{K_f/\mathbb{Q},S_f}(0)) = L_{K_f/\mathbb{Q},S_f}(0,\chi)$$

= $L_f(0,\chi)$
= $\chi^{-1}\left(-\sum_{\sigma_a \in G_f} \left(\left\langle \frac{a}{f} \right\rangle - \frac{1}{2}\right)\sigma_a^{-1}\right)$

by Theorem 1.2.

2.3 Analytic Facts about $L_{K/k,S}(s,\chi)$ and $\Theta_{K/k,S}(s,\chi)$

We need meromorphic continuation of these functions and behaviour at s = 0 in the general case K/k, G, S.

Let $\mathfrak{m} = \mathfrak{f}\mathfrak{z} = \mathfrak{m}(K/k) = \mathfrak{f}(K/k)\mathfrak{z}(K/k)$ be a cycle and use the Artin map to identify $\chi \in \widehat{G}$ with a character of the *ray-class group* of k modulo \mathfrak{m} *i.e.* $\chi : \operatorname{Cl}_{\mathfrak{m}}(k) \to \mathbb{C}^{\times}$. (See 'Basic Facts and Notations')

Just as for $L_f(s, \chi)$, we reduce the treatment of $L_{K/k,S}(s, \chi)$ to the primitive case:

 \exists unique minimal cycle $\mathfrak{m}(\chi) = \mathfrak{f}(\chi)\mathfrak{z}(\chi)$ dividing \mathfrak{m} (the conductor of χ) and character $\hat{\chi} : \operatorname{Cl}_{\mathfrak{m}(\chi)}(k) \to \mathbb{C}^{\times}$ (the primitive character associated with χ) s.t. χ factors through $\hat{\chi}$ via the hom. $\operatorname{Cl}_{\mathfrak{m}(\chi)}(k) \to \operatorname{Cl}_{\mathfrak{m}(\chi)}(k)$.

Note: Let $K_{\chi} := K^{\ker \chi}$ so χ factors through $\operatorname{Gal}(K_{\chi}/k)$. Then $\mathfrak{m}(\chi) = \mathfrak{m}(K_{\chi}/k)$...

Thus $\hat{\chi}$ defines hom. $\hat{\chi}: I_{\mathfrak{f}(\chi)} \to \mathbb{C}^{\times}$ and the usual *primitive* Hecke *L*-function is

$$L(s,\hat{\chi}) = \prod_{\mathfrak{p} \nmid \mathfrak{f}(\chi)} \left(1 - \frac{\hat{\chi}(\mathfrak{p})}{N \mathfrak{p}^s} \right)^{-1}$$

On the other hand $I_{\mathfrak{f}(\chi)} \supset I_{\mathfrak{f}} \supset I_S$ and $\hat{\chi}|_{I_S} = \chi$ so, by defn. in (Θ 3):

$$L_{K/k,S}(s,\chi) = \prod_{\substack{\mathfrak{p} \in S\\ \mathfrak{p} \nmid \mathfrak{f}(\chi)}} \left(1 - \frac{\hat{\chi}(\mathfrak{p})}{N\mathfrak{p}^s} \right) L(s,\hat{\chi})$$
(5)

The following 'well-known' facts about primitive Hecke L-functions generalise (PDL1)–(PDL4):

(PHL1) $L(s, \hat{\chi})$ has a continuation to \mathbb{C} that is analytic at all $s \in \mathbb{C}$ (except for $L(s, \hat{\chi}_0) = \zeta_k(s)$ at s = 1)

(PHL2) $\operatorname{ord}_{s=1}L(s, \hat{\chi}) = 0$ (except that $\operatorname{ord}_{s=1}L(s, \hat{\chi}_0) = \operatorname{ord}_{s=1}\zeta_k(s) = -1$)

(PHL3) $L(s, \hat{\chi})$ is related to $L(1-s, \hat{\chi}^{-1})$ by a functional equation. (This involves a Γ -type factor for each $v \in S_{\infty}(k)$, Gauss sums...) For more details see [Tate, §1.3] or [Ha, Lecture 2]).

(PHL4) The precise form of the functional equation plus (PHL2) gives :

$$\operatorname{ord}_{s=0} L(s, \hat{\chi}) = r_{\infty}(\hat{\chi})$$

where

$$r_{\infty}(\chi) := \begin{cases} \#\{v \text{ real place of } k : v \nmid \mathfrak{z}(\chi)\} & \text{if } \chi \neq \chi_0 \\ \#\{v \text{ real place of } k : v \nmid \mathfrak{z}(\chi_0) = \varnothing\} - 1 = r_1(k) - 1 & \text{if } \chi = \chi_0 \end{cases}$$

Returning to $\chi \in \widehat{G}$: For any finite set T of places of k, let

$$r_T(\chi) := \begin{cases} \#\{v \in T : \chi(D_v(K/k)) = \{1\}\} & \text{if } \chi \neq \chi_0 \\ \#\{v \in T : \chi(D_v(K/k)) = \{1\}\} - 1 = \#T - 1 & \text{if } \chi = \chi_0 \end{cases}$$

Theorem 2.2 If S contains $S_{\text{ram}} \cup S_{\infty}$ and $\chi \in \widehat{G}$ then $L_{K/k,S}(s,\chi)$ has a meromorphic continuation to \mathbb{C} (holomorphic except for $\chi = \chi_0$ at s = 1). Moreover

$$\operatorname{ord}_{s=0} L_{K/k,S}(s,\chi) = r_S(\chi)$$

PROOF Eqs. (5)+(**PHL1**)+(**PHL4**) give the meromorphic continuation of $L_{K/k,S}(s,\chi)$ and the formula

$$\operatorname{ord}_{s=0} L_{K/k,S}(s,\chi) = r_{\infty}(\hat{\chi}) + \# \{ \mathfrak{p} \in S : \mathfrak{p} \nmid \mathfrak{f}(\chi) \text{ and } \hat{\chi}(\mathfrak{p}) = 1 \}$$

But a real place v doesn't divide $\mathfrak{z}(\chi)$ iff it remains real in K_{χ} iff $\chi(D_v(K/k)) = \{1\}$. Similarly, $\mathfrak{p} \nmid \mathfrak{f}(\chi)$ satisfies $\hat{\chi}(\mathfrak{p}) = 1$ iff $\hat{\chi}(D_v(K_{\chi}/k)) = \{1\}$ iff $\chi(D_v(K/k)) = \{1\}$. The result follows.

From equation (4) we get

Corollary 2.1 $\Theta_{K/k,S}(s)$ can be continued to a function $\mathbb{C} \to \mathbb{C}G$ that is analytic except at s = 1.

Consider the following hypothesis on a set $S \supset S_{ram} \cup S_{\infty}$ and an integer $r \ge 0$:

$$H(S,r): \begin{cases} (i) & S \text{ contains at least } r \text{ places that split (completely) in } K, \text{ and} \\ (ii) & \#S \ge r+1 \end{cases}$$

To say that v 'splits completely' is equivalent to $D_v(K/k) = \{1\}$ so $H(S,r) \Rightarrow r_S(\chi) \ge r \ \forall \chi \in \widehat{G}$, so

Corollary 2.2 Suppose H(S,r) holds, then there exists $\Theta_{K/k,S}^{(r)}(0) \in \mathbb{R}G$ (unique) s.t.

$$\Theta_{K/k,S}(s) = \Theta_{K/k,S}^{(r)}(0)s^r + o(s^r) \quad in \ \mathbb{C}G \ as \ s \to 0$$

(i.e. $H(S, r) \Rightarrow \Theta_{K/k,S}(s)$ has at least an rth order zero at s = 0).

PROOF Since $r_S(\chi) \ge r \ \forall \chi \in \widehat{G}$, Equation (4) and the Theorem imply the existence of $\Theta_{K/k,S}^{(r)}(0)$ in $\mathbb{C}G$. Now the definition shows that $\Theta_{K/k,S}$ is real valued on $\mathbb{R}_{>1}$ hence on the whole of \mathbb{R} (since meromorphic on \mathbb{C}) from which it follows that $\Theta_{K/k,S}^{(r)}(0)$ actually lies in $\mathbb{R}G$.

Notes:

(i) $\Theta_{K/k,S}^{(r)}(0) = \frac{1}{r!} \frac{d^r}{ds^r}|_{s=0} \Theta_{K/k,S}$. (*Warning:* Note the implied factor of $\frac{1}{r!}$ in this notation.) (ii) $\Theta_{K/k,S}(s)$ can have an rth order zero at s = 0 without H(S, r)...

3 Stark Conjectures at s = 0

K/k finite abelian extension of number fields

 $G = \operatorname{Gal}(K/k),\,S$ a finite set of places of $k,\,S \supset S_\infty \cup S_{\operatorname{ram}}$

Idea for an *r*th order Stark Conjecture at s = 0 ($r \ge 0$):

Assume H(S, r) and make conjecture about the form of $\Theta_{K/k,S}^{(r)}(0)$

3.1 Basic Zeroth Order Conjecture

 $\#S \ge 1$ so H(S,0) is always satisfied. So what is $\Theta_{K/k,S}^{(0)}(0) = \Theta_{K/k,S}(0)$? Theorem 2.1 answers this for $K/k = K_f/\mathbb{Q}$, $S = S_f$. One generalisation is

Theorem 3.1 (Siegel-Klingen, Shintani)

$$\Theta_{K/k,S}(0) \in \mathbb{Q}G$$

Thus the 'Basic Zeroth Order Stark Conjecture at s = 0' is a theorem!

Note: Theorem 3.1 is non-trivial $\Rightarrow \Theta_{K/k,S}(0) \neq 0 \Rightarrow H(S,1)$ fails \Rightarrow

(i) S contains no place splitting in K, or

(ii) $S = \{v\}$ for some v splitting in K.

Case(i):

then S_{∞} contains no place splitting in K so k is totally real, K is totally complex. In this

case the element $\Theta_{K/k,S}(0) \in \mathbb{Q}G$ still contains a lot of interesting information. Case (ii) (less interesting, because $\chi(\Theta_{K/k,S}(0)) = 0$ for $\chi \neq \chi_0$):

then $S_{\infty} = \{v\}, S_{\text{ram}} = \emptyset \Rightarrow k = \mathbb{Q} = K \text{ or } k = \mathbb{Q}(\sqrt{-D}), K \subset H_k$

3.2 Basic First Order Conjecture

Assume that H(S, 1) holds, *i.e.*

 $\exists v \in S$ splitting in K and $|S| \ge 2$

Motivating Example: $K/k = K_f^+/\mathbb{Q}$ for $f \in \mathbb{Z}, f > 1$ where

$$K_f^+ := \mathbb{Q}(\zeta_f + \zeta_f^{-1}) = \mathbb{Q}(\cos(2\pi/f))$$

Take $S = S_f = \{p\mathbb{Z} : p|f\} \cup \{\infty\}$ as before (minimal unless $f \equiv 2 \pmod{4}$ or $f = \leq 4$) K_f^+ is the maximal real subfield of K_f so that the real place $v = \infty : \mathbb{Q} \hookrightarrow \mathbb{R} \subset \mathbb{C}$ splits in K_f^+ .

Since also f > 1, hypothesis H(S, 1) is satisfied.

The restriction map $G_f \to G_f^+ := \operatorname{Gal}(K_f^+/\mathbb{Q})$ yields an isomorphism

$$\begin{array}{rcl} G_f^+ &\cong & (\mathbb{Z}/f\mathbb{Z})^\times/\{\pm\bar{1}\}\\ \sigma_a|_{K_f^+} &\longleftrightarrow & [\bar{a}] \end{array}$$

Hence

$$\widehat{G_f^+} \longleftrightarrow \{even \text{ Dirichlet characters } \chi \mod f\}$$

and for any such character

$$\chi^{-1}(\Theta_{K_{f}^{+}/\mathbb{Q},S_{f}}(s)) = L_{K_{f}^{+}/\mathbb{Q},S_{f}}(s,\chi) = \prod_{p \nmid f} \left(1 - \frac{\chi(\bar{p})}{p^{s}}\right)^{-1} = L_{f}(s,\chi)$$

Thus $\chi^{-1}(\Theta_{K_f^+/\mathbb{Q},S_f}^{(1)}(0)) = L'_f(0,\chi)$ and we get the following analogue of Theorem 2.1:

Theorem 3.2

$$\Theta_{K_f^+/\mathbb{Q},S_f}^{(1)}(0) = -\frac{1}{2} \sum_{\sigma_a \in G_f} \log |\sigma_a(1-\zeta_f)| [\sigma_a]^{-1}$$
$$= -\frac{1}{2} \sum_{g \in G_f^+} \log |g((1-\zeta_f)(1-\zeta_f^{-1}))| g^{-1}$$

(Last equality for f > 2 only.)

PROOF For first eq. suffices to show $\chi^{-1}(L.H.S.) = \chi^{-1}(R.H.S.)$ for all $\chi \in \widehat{G}_f^+$. This follows as for Thm. 2.1 (using Thm. 1.3 in place of Thm. 1.2). If f > 2, second eq. follows by pairing σ_a with σ_{-a} .

Important Remark: $(1 - \zeta_f)(1 - \zeta_f^{-1})$ is element of $K_f^{+,\times}$. Moreover it's a unit away from primes of K above those in S_f .

More precisely:

if $f = p^l$, p prime, then it's a unit away from the (unique) prime \mathfrak{P} of K_f^+ above p (which it generates).

If $f \neq p^l$ it's a genuine 'cyclotomic unit' in $E(K_f^+)$. (See e.g. [Wa, Prop. 2.8].)

For any number field L and finite set T of places we define the (group of) T-units of L to be

 $U_T(L) := \{ x \in L^{\times} : |x|_w = 1 \forall w \notin T \}$ = {"elements of L^{\times} which are local units away from T" }

where $|\cdot|_w$ denotes the (normalised) absolute value associated to a place w. (The second statement only makes sense if $T \supset S_{\infty}(L)$.)

Thus $U_{\emptyset}(L) = \mu(L)$ (roots of unity), $U_{S_{\infty}(L)}(L) = \mathcal{O}_{L}^{\times} = E(L)$ (unit group) and $U_{T}(L)$ is always f.g. (see below).

Often, but not always, one assumes $T \supset S_{\infty}(L)$: If $T = S_{\infty}(L) \stackrel{\cdot}{\cup} T'$ then $U_T(L) = \mathcal{O}_{L,T'}^{\times}$.

Return to K/k, S, G as above and set $S_K := \{ \text{places } w \text{ of } K \text{ above those in } S \} \supset S_{\infty}(K)$

Then S_K is stable under action of G on places. Since $|gx|_w = |x|_{g^{-1}w}$, follows that $U_{S_K}(K)$ is also G-stable so a f.g. module over $\mathbb{Z}G$.

Henceforth we write $U_S(K)$ to mean $U_{S_K}(K)$.

Conjecture C(K/k, S, 1): The Basic First Order Stark Conjecture at s = 0Suppose K/k is abelian extension of number fields with Galois group G and S is a finite set of places of k containing $S_{\infty} \cup S_{ram}$.

Suppose H(S, 1) is satisfied. Choose v in S splitting completely in K and a place w dividing v in K.

Then there exists $\varepsilon \in U_S(K)$ and $\alpha \in \mathbb{Q}$ such that

$$\Theta_{K/k,S}^{(1)}(0) = \alpha \sum_{g \in G} \log |g\varepsilon|_w g^{-1}$$
(6)

Remark. Our Cyclotomic Example: Take $K/k = K_f^+/\mathbb{Q}$, $S = S_f$ so H(S, 1) is satisfied as above. Take $v = \infty : \mathbb{Q} \hookrightarrow \mathbb{R} \subset \mathbb{C}$, $w : K_f^+ \hookrightarrow \mathbb{R} \subset \mathbb{C}$. If f > 2 then Theorem3.2 says that (6) is satisfied with $\alpha = -\frac{1}{2}$, $\varepsilon = (1 - \zeta_f)(1 - \zeta_f^{-1})$

Remark. Alternative Formulation of (6): In terms of partial zeta-functions:

$$\zeta'_{K/k,S}(0,g) = \alpha \log |g\varepsilon|_w \quad \text{for all } g \in G$$

Remark. Variation of w: Fix v and suppose α , ε satisfy Conj. for some w|v. Then $w'|v \Leftrightarrow w' = hw$ for some $h \in G \Rightarrow |g\varepsilon|_w = |gh\varepsilon|_{w'} \Rightarrow \alpha, h\varepsilon$ satisfy Conj. for w'.

Remark. Variation of v: If S contains another splitting place $v' \neq v$ then we shall see that Conjecture is trivial unless $S = \{v, v'\}$ in which case it follows from Analytic Class Number Formula for k (using either v or v').

3.3 Basic *r*th Order Conjecture

How can we generalise the basic first order conjecture when H(S, r) holds? We need to know more about $U_S(K)$...

More generally, for L a number field and any T as above containing $S_{\infty}(L)$, we define a logarithmic 'embedding' \mathcal{L}_T of $U_T(L)$:

$$\mathcal{L}_T : U_T(L) \longrightarrow \mathbb{R}T := \bigoplus_{w \in T} \mathbb{R}w$$
$$\varepsilon \longmapsto \sum_{w \in T} \log |\varepsilon|_w w$$

Let $(\mathbb{R}T)_0$ be the kernel of the map $\mathbb{R}T \to \mathbb{R}$ sending $\sum_{w \in T} a_w w$ to $\sum_{w \in T} a_w$

Thus $(\mathbb{R}T)_0$ is a hyperplane in $\mathbb{R}T$ and the Product formula implies $\operatorname{im}(\mathcal{L}_T) \subset (\mathbb{R}T)_0$.

Theorem 3.3 (Dirichlet's Theorem for *T***-units)** Suppose that *T* contains $S_{\infty}(L)$. Then (*i*) ker(\mathcal{L}_T) = $\mu(K)$

(*ii*) im(\mathcal{L}_T) is a lattice of full rank in ($\mathbb{R}T$)₀.

PROOF (Sketch) It is easy to show (i) and that $\operatorname{im}(\mathcal{L}_T)$ is discrete, hence a lattice. So suffices to show $\operatorname{rk}_{\mathbb{Z}}(U_T(L)/\mu(K)) = \#T - 1$. For $T = S_{\infty}(L)$ this is classical Dirichlet. Now use induction on $\#(T \setminus S_{\infty}(L))$, the finiteness of $\operatorname{Cl}(L)$ etc....

Corollary 3.1 $U_T(L)$ is isomorphic as an abelian group to $\mathbb{Z}^{\#T-1} \oplus \mu(L)$. Moreover \mathcal{L}_T extends by \mathbb{R} -linearity to a map $\mathcal{L}_T : \mathbb{R} \otimes_{\mathbb{Z}} U_T(L) \to \mathbb{R}T$ sending $\sum_i \alpha_i \otimes \varepsilon_i$ to $\sum_i \alpha_i \mathcal{L}_T(\varepsilon_i)$ and giving an \mathbb{R} -isomorphism of $\mathbb{R} \otimes_{\mathbb{Z}} U_T(L)$ onto $(\mathbb{R}T)_0$.

Return to the case K/k, S, G:

the G action on places makes $\mathbb{R}S_K$ into a natural $\mathbb{R}G$ -module and

$$\mathbb{R}S_K = \bigoplus_{v \in S} \left(\bigoplus_{w|v} \mathbb{R}w \right) \cong \bigoplus_{v \in S} \mathbb{R}[G/D_v(K/k)]$$
(7)

Notation: If M is a $\mathbb{Z}G$ -mod. and R a comm. ring, write RM for $R \otimes_{\mathbb{Z}} M$ considered as R-module and G-module so RG-module.

E.g. $\mathbb{R}U_S(K)$ is an $\mathbb{R}G$ -module and $\mathcal{L}_{S_K} : \mathbb{R}U_S(K) \to \mathbb{R}S_K$ is $\mathbb{R}G$ -linear restricting to $\mathbb{R}G$ -iso. $\mathbb{R}U_S(K) \to (\mathbb{R}S_K)_0$. Thus we have an exact sequence of $\mathbb{R}G$ -modules

$$0 \to \mathbb{R}U_S(K) \longrightarrow \mathbb{R}S_K \longrightarrow \mathbb{R} \to 0 \tag{8}$$

(with trivial G-action on \mathbb{R}).

Corollary 3.2 For all $\chi \in \widehat{G}$

$$\dim_{\mathbb{C}}(e_{\chi}\mathbb{C}U_S(K)) = r_S(\chi) \left[= \operatorname{ord}_{s=0} L_{K/k,S}(s,\chi) = \operatorname{ord}_{s=0} \chi^{-1}(\Theta_{K/k,S}(s)) \right]$$

PROOF Exercise: tensor (7) and (8) with \mathbb{C} and apply a little character theory.

In vague terms: the bigger the 'rank' of $\mathbb{C}U_S(K)$, the higher the order of vanishing of $\Theta_{K/k,S}(s)$

Now suppose H(S, r) holds and choose an (ordered) set $V = \{v_1, \ldots, v_r\} \subset S$ such that v_i splits in K for $i = 1, \ldots, r$.

We write $S = V \cup V'$ so that $\mathbb{R}S_K = \mathbb{R}V_K \oplus \mathbb{R}V'_K$ (as $\mathbb{R}G$ -modules) and let π_V denote the projection from $\mathbb{R}S_K$ to $\mathbb{R}V_K$ with kernel $\mathbb{R}V'_K$.

We shall write \mathcal{L}_S for the map \mathcal{L}_{S_K} and $\mathcal{L}_{S,V}$ for the composite $\pi_V \circ \mathcal{L}_S$:

$$\mathcal{L}_{S,V}: \mathbb{R}U_S(K) \xrightarrow{\mathcal{L}_S} \mathbb{R}S_K \xrightarrow{\pi_V} \mathbb{R}V_K$$

Choose $W = \{w_1, \ldots, w_r\} \subset V_K$ such that $w_i | v_i$ for each *i*.

Then $\mathbb{R}V_K$ is $\mathbb{R}G$ -free of rank r with the basis $\{w_1, \ldots, w_r\}$ so for any $x \in \mathbb{R}U_S(K)$ we can write uniquely

$$\mathcal{L}_{S,V}(x) = \sum_{i=1}^{r} \lambda_{w_i}(x) w_i$$

where $\lambda_{w_i}(x) \in \mathbb{R}G$

One easily checks that $\lambda_{w_i} : \mathbb{R}U_S(K) \to \mathbb{R}G$ is the unique $\mathbb{R}G$ -linear map satisfying

$$\lambda_{w_i}(1 \otimes u) = \sum_{g \in G} \log |gu|_{w_i} g^{-1}$$

Taking rth exterior powers over the commutative ring $\mathbb{R}G$ gives an $\mathbb{R}G$ -linear map

$$\bigwedge_{\mathbb{R}G}^{r} \mathcal{L}_{S,V} : \bigwedge_{\mathbb{R}G}^{r} \mathbb{R}U_{S}(K) \longrightarrow \bigwedge_{\mathbb{R}G}^{r} \mathbb{R}V_{K} = \mathbb{R}G(w_{1} \wedge \ldots \wedge w_{r})$$

Since $w_1 \wedge \ldots \wedge w_r$ is a *free* generator we can define a unique $\mathbb{R}G$ -linear 'regulator' $R_{K/k,W}$: $\bigwedge_{\mathbb{R}G}^r \mathbb{R}U_S(K) \to \mathbb{R}G$ by $\bigwedge_{\mathbb{R}G}^r \mathcal{L}_{S,V}(x) = R_{K/k,W}(x)(w_1 \wedge \ldots \wedge w_r).$ Explicitly, every element of $\bigwedge_{\mathbb{R}G}^r \mathbb{R}U_S(K)$ is a finite sum of terms of form $x_1 \wedge \ldots \wedge x_r$ with $x_i \in \mathbb{R}U_S(K)$ and

$$R_{K/k,W}(x_1 \wedge \ldots \wedge x_r) = \det(\lambda_{w_i}(x_j))_{i,j=1}^r$$

Conjecture C(K/k, S, r): The Basic *r*th Order Stark Conjecture at s = 0Suppose K/k is abelian extension of number fields with Galois group G and S a is finite set of places of k containing $S_{\infty} \cup S_{ram}$.

Suppose H(S,r) is satisfied. Choose a set $V = \{v_1, \ldots v_r\} \subset S$ of places splitting completely in K and a set $W = \{w_1, \ldots w_r\} \subset V_K$ with $w_i | v_i \forall i$.

Then there exists $\eta \in \bigwedge_{\mathbb{Q}G}^r \mathbb{Q}U_S(K) \subset \bigwedge_{\mathbb{R}G}^r \mathbb{R}U_S(K)$ such that

$$\Theta_{K/k,S}^{(r)}(0) = R_{K/k,W}(\eta) \tag{9}$$

Remark. Variation of W: Fix V and suppose η satisfies the conjecture with the choice $W = \{w_1, \ldots, w_r\}$. Let $W' = \{w'_1, \ldots, w'_r\}$ be another choice. Then $w'_i = h_i w_i$ for some $h_i \in G$ for all i so $\lambda_{w'_i}(hx) = \lambda_{w_i}(x)$ and we find $R_{K/k,W}(x) = R_{K/k,W'}(h_1 \ldots h_r x)$. Thus $h_1 \ldots h_r \eta$ satisfies the conjecture with the choice W'.

Remark. Variation of V: Permuting the v_i (and hence the w_i) multiplies $R_{K/k}(\eta)$ by ± 1 so $\pm \eta$ still satisfies the conjecture.

This is the only variation possible unless S contains r + 1 splitting places in which case the conjecture can be shown to hold for any choice of V.

When r = 1, $V = \{v\}$ and $W = \{W\}$, we have $\eta \in \bigwedge_{\mathbb{Q}G}^{1} \mathbb{Q}U_{S}(K) = \mathbb{Q}U_{S}(K)$, so $\eta = \alpha \otimes \varepsilon$ for some $\alpha \in \mathbb{Q}$ and $\varepsilon \in U_{S}(K)$. Hence $R_{K/k,W}(\eta) = \lambda_{w}(\eta) = \alpha \sum_{g \in G} |g\varepsilon|_{w} g^{-1}$. So for r = 1, C(K/k, S, r) indeed agrees with first order conjecture denoted C(K/k, S, 1) enunciated above.

3.4 Uniqueness of η

In order to refine the conjecture (for example) we want to study the element $\eta \in \bigwedge_{\mathbb{Q}G}^r \mathbb{Q}U_S(K)$ satisfying (9). However, is not in general unique, even if it exists. We explain a way to render it unique by projecting onto a certain 'eigenspace' of $\bigwedge_{\mathbb{Q}G}^r \mathbb{Q}U_S(K)$ as a $\mathbb{Q}G$ -module:

Still in the set-up of C(K/k, S, r), we assume H(S, r) is satisfied and V, W are chosen as above.

Then $r_S(\chi) \ge r$ for every $\chi \in \widehat{G}$ and we define

$$e_{S,r} := \sum_{r_S(\chi)=r} e_{\chi}$$
 and $e_{S,>r} = \sum_{r_S(\chi)>r} e_{\chi} = 1 - e_{S,r}$

Thus $e_{S,r}$ is an idempotent, and the unique element of $\mathbb{C}G$ satisfying

$$\chi(e_{S,r}) = \begin{cases} 1 & \text{if } r_S(\chi) = r \\ 0 & \text{if } r_S(\chi) > r \end{cases}$$
(10)

Set $s = |S| \ge r + 1$ so that

$$S = \{v_1, \dots, v_r\} \stackrel{\cdot}{\cup} \{v_{r+1}, \dots, v_s\} = V \stackrel{\cdot}{\cup} V'$$

Write D_v for $D_v(K/k) \subset G$. (So $D_v = \{1\}$ if $v = v_1, \ldots, v_r$). Let $N_{D_v} := \sum_{g \in D_v} g$ so that $\frac{1}{\#D_v} N_{D_v}$ is an idempotent of $\mathbb{Q}G$ and

$$\chi\left(\frac{1}{\#D_v}N_{D_v}\right) = \begin{cases} 1 & \text{if } \chi(D_v) = \{1\}\\ 0 & \text{if } \chi(D_v) \neq \{1\} \end{cases}$$

Lemma 3.1

$$e_{S,r} = \begin{cases} \prod_{v \in V'} \left(1 - \frac{1}{\#D_v} N_{D_v} \right) & \text{if } s > r+1 \ (so \ r_S(\chi_0) > r) \\ \prod_{v \in V'} \left(1 - \frac{1}{\#D_v} N_{D_v} \right) + e_{\chi_0} & \text{if } s = r+1 \ (so \ r_S(\chi_0) = r) \end{cases}$$

In particular, $e_{S,r}$ lies in $\mathbb{Q}G$, hence also $e_{S,>r}$.

PROOF Exercise using (10) and definition of $r_S(\chi)$.

Thus for any $\mathbb{Q}G$ -module A we can define a $\mathbb{Q}G$ -submodule $A^{[S,r]}$ by

$$A^{[S,r]} = e_{S,r}A = \{a \in A : e_{S,r}a = a\} = \ker(e_{S,>r}|A)$$

Remarks

• The map $a \mapsto e_{S,r}a$ projects A onto $A^{[S,r]}$

• $e_{S,r}\mathbb{Q}G = \mathbb{Q}G^{[S,r]}$ and $e_{S,>r}\mathbb{Q}G$ are rings with identities the idempotents $e_{S,r}$ and $e_{S,>r}$ respectively. Moreover $\mathbb{Q}G$ is a product of rings $\mathbb{Q}G^{[S,r]} \times e_{S,>r}\mathbb{Q}G$ and acts on $A^{[S,r]}$ via its projection on $\mathbb{Q}G^{[S,r]}$.

• If $f: A \to B$ is a $\mathbb{Q}G$ -hom. then the restriction of f to $A^{[S,r]}$ defines a $\mathbb{Q}G$ -homomorphism $f^{[S,r]}: A^{[S,r]} \to B^{[S,r]}$. In this way, $_^{[S,r]}$ defines an exact functor from the category of $\mathbb{Q}G$ -modules to the category of $\mathbb{Q}G^{[S,r]}$ modules.

• Suppose A is embedded in a $\mathbb{C}G$ -module \tilde{A} . Then $A^{[S,r]}$ is the intersection of A with the sum of the χ -eigenspaces $e_{\chi}\tilde{A}$ for those χ s.t. $r_{S}(\chi) = r$. Alternatively,

$$a \in A^{[S,r]} \iff e_{\chi}a = 0$$
 in A, for all χ s.t. $r_S(\chi) > r$

Proposition 3.1 $\Theta_{K/k,S}^{(r)}(0)$ lies in $\mathbb{R}G^{[S,r]}$

PROOF Suppose $r_S(\chi) > r$ for some $\chi \in \widehat{G}$ then (working in $\mathbb{C}G$):

$$e_{\chi}\Theta_{K/k,S}^{(r)}(0) = \chi(\Theta_{K/k,S}^{(r)}(0))e_{\chi} = L_{K/k,S}^{(r)}(0,\chi)e_{\chi} = 0$$

by Thm. 2.2.

Proposition 3.2 $\mathbb{Q}U_S(K)^{[S,r]}$ is isomorphic to $(\mathbb{Q}G^{[S,r]})^r$ over $\mathbb{Q}G$.

PROOF Since $\mathbb{Q}G$ -modules are defined up to iso. by their character which is invariant under $\mathbb{C} \otimes_{-}$, it suffices show that $\mathbb{C}U_{S}(K)^{[S,r]} \cong (\mathbb{C}G^{[S,r]})^{r}$ over $\mathbb{C}G$. But for any $\chi \in \widehat{G}$, Cor. 3.2 gives $\dim_{\mathbb{C}}(e_{\chi}\mathbb{C}U_{S}(K)^{[S,r]}) = r$ if $r_{S}(\chi) = r$, otherwise = 0. The same is obviously true of $\dim_{\mathbb{C}}(e_{\chi}(\mathbb{C}G^{[S,r]})^{r})$ so the result follows. \Box

Remark Similar reasoning shows more generally that $\mathbb{Q}U_S(K)$ is isomorphic over $\mathbb{Q}G$ to $\ker(\mathbb{Q}S_K \to \mathbb{Q})$ because the isomorphism holds over $\mathbb{R}G$ after applying $\otimes_{\mathbb{Q}}\mathbb{R}$, by (8)

Definition (*Warning:* this is nonstandard!) We shall say that a solution $\eta \in \bigwedge_{\mathbb{Q}G}^{r} \mathbb{Q}U_{S}(K)$ of C(K/k, S, r) is canonical iff it lies in $\left(\bigwedge_{\mathbb{Q}G}^{r} \mathbb{Q}U_{S}(K)\right)^{[S,r]} = \bigwedge_{\mathbb{Q}G}^{r} (\mathbb{Q}U_{S}(K)^{[S,r]}).$

Proposition 3.3 If η is any solution of C(K/k, S, r) then $e_{S,r}\eta$ is a canonical solution.

PROOF $R_{K/k,W}(e_{S,r}\eta) = e_{S,r}R_{K/k,W}(\eta) = e_{S,r}\Theta_{K/k,S}^{(r)}(0) = \Theta_{K/k,S}^{(r)}(0)$ by Prop. 3.1 We shall next show that a canonical solution is unique. The $\mathbb{R}G$ -injection $\mathcal{L}_S : \mathbb{R}U_S(K) \to \mathbb{R}S_K$ gives rise to

$$\mathcal{L}_{S}^{[S,r]}: \mathbb{R}U_{S}(K)^{[S,r]} \longrightarrow \mathbb{R}S_{K}^{[S,r]} = \mathbb{R}V_{K}^{[S,r]} \oplus \mathbb{R}V_{K}'^{[S,r]}$$

If $w \in V'_K$ divides $v \in V'$ then D_v fixes w and it follows from Lemma 3.1 that

$$\mathbb{R}V'_{K}^{[S,r]} = e_{S,r}\mathbb{R}V'_{K} = \begin{cases} 0 & \text{if } s > r+1\\ \mathbb{R}\sum_{w \mid v_{r+1}} w & \text{if } s = r+1 \text{ (so } V' = \{v_{r+1}\}) \end{cases}$$
(11)

Now recall that $\mathcal{L}_{S,V} = \pi_V \circ \mathcal{L}_S : \mathbb{R}U_S(K) \longrightarrow \mathbb{R}V_K$, so

$$\mathcal{L}_{S,V}^{[S,r]} = \pi_V^{[S,r]} \circ \mathcal{L}_S^{[S,r]} : \mathbb{R}U_S(K)^{[S,r]} \longrightarrow \mathbb{R}V_K^{[S,r]}$$

Proposition 3.4

(i) If s > r + 1 then $\mathcal{L}_{S,V}^{[S,r]} = \mathcal{L}_S^{[S,r]}$. (ii) If s > r + 1 and $\varepsilon \in U_S(K)$ is such that $1 \otimes \varepsilon \in \mathbb{Q}U_S(K)^{[S,r]}$ then in fact $\varepsilon \in U_V(K)$. (iii) In any case $\mathcal{L}_{S,V}^{[S,r]} : \mathbb{R}U_S(K)^{[S,r]} \to \mathbb{R}V_K^{[S,r]}$ is an isomorphism.

	-	

PROOF If s > r + 1 then (11) shows that $\mathbb{R}S_K^{[S,r]} = \mathbb{R}V_K^{[S,r]}$ on which π_V is the identity, proving (i). For (ii), $1 \otimes \varepsilon \in \mathbb{Q}U_S(K)^{[S,r]}$ implies $\mathcal{L}_S(1 \otimes \varepsilon)$ lies in $\mathbb{R}S_K^{[S,r]} \subset \mathbb{R}V_K$ by the above. Hence $\varepsilon \in U_V(K)$. For (iii), Prop. 3.2 implies $\mathbb{R}U_S(K)^{[S,r]} \cong (\mathbb{R}G^{[S,r]})^r \cong \mathbb{R}V_K^{[S,r]}$ by the splitting assumption. So it suffices to prove that $\mathcal{L}_{S,V}^{[S,r]}$ is injective. But \mathcal{L}_S , hence $\mathcal{L}_S^{[S,r]}$, is injective and $\operatorname{im}(\mathcal{L}_S^{[S,r]}) \cap \ker \pi_V^{[S,r]} = (\mathbb{R}S_K)_0^{[S,r]} \cap \mathbb{R}V_K^{[S,r]} = \{0\}$, by (11).

Taking exterior powers in (iii), we find that $\bigwedge_{\mathbb{R}G}^r \mathcal{L}_{S,V}^{[S,r]}$ maps $\bigwedge_{\mathbb{R}G}^r (\mathbb{R}U_S(K)^{[S,r]}) = (\bigwedge_{\mathbb{R}G}^r \mathbb{R}U_S(K))^{[S,r]}$ isomorphically onto $\bigwedge_{\mathbb{R}G}^r (\mathbb{R}V_K^{[S,r]}) = (\bigwedge_{\mathbb{R}G}^r \mathbb{R}V_K)^{[S,r]} = \mathbb{R}G^{[S,r]}(w_1 \wedge \ldots \wedge w_r)$ and so

Corollary 3.3 $R_{K/k,W}$ restricts to an isomorphism $\bigwedge_{\mathbb{R}G}^{r} \mathbb{R}U_{S}(K)^{[S,r]} \to \mathbb{R}G^{[S,r]}$

Consequently:

Corollary 3.4 There exists at most one canonical solution of C(K/k, S, r).

Remark: To summarise: If η is any solution of C(K/k, S, r), then $e_{S,r}\eta$ is the unique canonical solution.

It is a remarkable (?) fact that in the cases where C(K/k, S, r) is proven, the 'naturally occurring' solution is also usually the canonical solution.

Remark: Since $\mathbb{Q}G$ and $\mathbb{Q}G^{[S,r]}$ are products of fields, it follows from Prop. 3.2 that every element $\eta \in (\bigwedge_{\mathbb{Q}G}^{r} \mathbb{Q}U_{S}(K))^{[S,r]} = \bigwedge_{\mathbb{Q}G^{[S,r]}}^{r} (\mathbb{Q}U_{S}(K)^{[S,r]})$ can be written as $x_{1} \wedge \ldots \wedge x_{r}$, with $x_{i} \in \mathbb{Q}U_{S}(K)^{[S,r]} \forall i$. We can write x_{i} as $\frac{1}{n_{i}} \otimes \varepsilon_{i}$ with $n_{i} \in \mathbb{Z}_{\geq 1}$ and $1 \otimes \varepsilon_{i} \in \mathbb{Q}U_{S}(K)^{[S,r]}$ (which implies $\varepsilon_{i} \in U_{V}(K)$ if s > r + 1, by Prop. 3.4 (ii)). In any case, putting $n = n_{1} \ldots n_{r} \in \mathbb{Z}_{\geq 1}$, we have

$$\eta = \frac{1}{n} (1 \otimes \varepsilon_1) \wedge \dots (1 \otimes \varepsilon_r)$$

Of course, this expression is not unique (even though η is). Nevertheless, the condition (9) that η be a canonical solution of C(K/k, S, r) can now be written explicitly as follows

$$\Theta_{K/k,S}^{(r)}(0) = \frac{1}{n} \det(\lambda_{w_i}(1 \otimes \varepsilon_j))_{i,j=1}^r = \frac{1}{n} \det\left(\sum_{g \in G} \log|g\varepsilon_j|_{w_i}g^{-1}\right)_{i,j=1}^r$$
(12)

References

- [B-P-S-S] D. Burns, C. Popescu, J. Sands, D. Solomon, 'Stark's Conjectures: Recent Work and New Directions', (Proceedings of Baltimore conference, 2002) Contemporary Mathematics, vol. 358, Amer. Math. Soc., 2004.
- [Bu] D. Burns, Congruences between Derivatives of Abelian L-Functions at s = 0, preprint, 2004.
- [Fr] A .Fröhlich (ed.), 'Algebraic number fields (L-functions and Galois properties)', Proceedings of a Symposium, London, Academic Press, 1977.

- [F-T] A. Fröhlich and M. Taylor, 'Algebraic Number Theory'. Cambridge University Press, 1991.
- [Ha] D. Hayes 'Lecture notes on Stark's conjectures', available at http://www.math.umass.edu/~dhayes/lecs.html
- [Ko] N. Koblitz'*p*-Adic Numbers, *p*-Adic Numbers and Zeta-Functions', Springer-Verlag, New York, Berlin, Heidelberg, 1977 (GTM 58)
- [La] S. Lang, 'Algebraic number theory' 2nd ed, Springer-Verlag, New York, London, 1994, (GTM 110)
- [Po] C. Popescu, 'Base Change for Stark-Type Conjectures "over ℤ" ' J. Reine und Angew. Math., 542, 2002, p. 85-111.
- [R-S] X.-F. Roblot and D. Solomon, 'Verifying a p-adic Abelian Stark Conjecture at s = 1', Journal of Number Theory, **107**, (2004), p. 168-206.
- [Ru] K. Rubin, 'A Stark Conjecture "over Z" for Abelian L-functions with Multiple Zeros' Ann. Inst. Fourier 46, 1996, p. 33-62.
- [Se] J-P. Serre, 'Représentations Linéaires de Groupes Finis' Paris, Hermann, 1971 or the English translation 'Linear Representations of Finite Groups' GTM 42, Springer Verlag, 1977
- [Sh] T. Shintani, 'On Certain Ray-Class Invariants of Real Quadrtaic Fields', J. Math. Soc. Japan, 30, No. 1, (1978), p. 139-167.
- [So1] D. Solomon, 'Twisted Zeta-Functions and Abelian Stark Conjectures', Journal of Number Theory, 94, No. 1, (2002), p. 10-48.
- [So2] D. Solomon, 'On p-Adic Abelian Stark Conjectures at s = 1', Annales de L'Institut Fourier **52**, No. 2, (2002), p. 379-417.
- [So3] D. Solomon, 'On Twisted Zeta-Functions at s = 0 (and Partial Zeta-Functions at s = 1)', preprint, 2004.
- [St] H. Stark, '*L*-Functions at s = 1 I,II,III,IV', Advances in Mathematics, **7**, (1971), p. 301-343, **17**, (1975), p. 60-92, **22**, (1976), p. 64-84, **35**, (1980), p. 197-235.
- [Tate] J. Tate, 'Les Conjectures de Stark sur les Fonctions L d'Artin en s = 0', Birkhaüser, Boston, 1984.
- [Wa] L. Washington, 'Introduction to Cyclotomic Fields', 2nd Ed., Graduate Texts in Math. 83, Springer-Verlag, New York, 1996.