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Prerequisites

A first course in Algebraic Number Theory (for number fields): integers, ideals, ab-
solute values, class groups, units, Dirichlet’s Theorem, behaviour of primes in Galois
extensions, basic theory of Cyclotomic fields. See e.g. [F-T], [Lal, [Wa]

Acquaintance with main theorems of (abelian) class-field theory in terms of ideals:
Mainly ray-class groups/fields and the Artin map. See e.g. [La] or (especially) appendix
to [Wal

Basic understanding of representation theory of finite groups over a field F of char-
acteristic 0, almost exclusively abelian groups, mostly F = C. For the latter, deeper
understanding of characters, orthogonality relations, idempotents, eigenspaces (iso-
typic parts) of modules, connection with the ring/module theory of the group-ring etc.
See e.g. [F-T], [Se]

Basic familiarity with Riemann zeta-function and Dirichlet L-functions (definitions,
Euler product and acquaintance with the functional equation will probably suffice.
Some knowledge of equivalents for Dedekind zeta-function and Hecke L-functions help-
ful). See e.g. [F-T], [La], [Wal, article by Martinet in [Fr]

General Algebra: Basic theory of rings and modules. Tensor product and exterior
powers over commutative rings. Group-rings.

Basic notions of complex analysis (analytic continuation, Dirichlet series, Gamma func-
tion)

Knowledge of p-adic numbers and very basic p-adic analysis. See e.g. [Wa, Ch. 5], [Ko]



1 Motivation: L-functions of Cyclotomic Fields

1.1 Some Definitions
Let (== exp(2mi/f) for f € Z»,
Set Ky :=Q((y) and Gy := Gal(K;/Q).
Gy = (Z/fz)”

O < @

where 0,((y) = (f.

Identify character group (/J;c with Dirichlet characters modulo f i.e.
(x:Gr—=C") — (x: (Z/fZ)" = C)
For s € C, R(s) > 1, set

Lisy = 3 X

n>1 n
(n,f)=1
X\
06
pif p

1.2 Primitivity
Note that Ly(s, x) may be ‘“imprimitive’ i.e. there may exist f’ properly dividing f and
Dirichlet character x’ defined modulo f’ such that

X'(amod f) = x(a mod f) (1)
whenever (a, f) = 1.

In any case, there exists a unique minimal f’|f (the conductor of x denoted f,) and character
X' defined modulo f, satisfying (1) (called the primitive character associated to x, denoted

X)-
The usual primitive Dirichlet L-function L(s, x) is just

plfx

and so, since f, divides f, we have

@\
Lis.x) = I (1- 22 L(s, %) (2)
1(5:x n( D) 1s.x



For example

Lyt =TT (1= ) 2ol =TT (15, ) 0

plf plf

1.3 Analytic Facts about L(s,x) and L¢(s, x)

For the following analytic facts about primitive Dirichlet L-functions, see e.g. [Wa, Ch. 4]:

(PDL1) L(s, x) has a continuation to C that is analytic at all s € C (except for L(s, xo) =
((s) at s =1)
(PDL2) ords—1L(s, x) = 0 (except that ords—1 L(s, Xo) = ords=1((s) = —1)

(PDL3) L(s, ) is related to L(1 — s,x™') by a functional equation (also involving I'(s),
Gauss sums. . . )

For any Dirichlet character y modulo f we define

() = 1 if x(=1) =1 (say ‘x is even’) and x # Xo
T 0 it x(—1) = —1 (say ‘x is odd’) or if x = xo

Then the precise form of the functional equation plus (PDL2) gives :
(PDL4) Ords:OL(Sv )A() = Too()%)
Returning to L¢(s,x) for x € é\f Egs. (2)+(PDL1)+(PDL4) give:

Theorem 1.1 Suppose that x is a Dirichlet character modulo f then L¢(s,x) has a mero-
morphic continuation to C which is actually holomorphic except that ords—1L¢(s, xo) = —1.
Moreover

Ords:OLf(Sa X) - roo(X) + #{p : p|f7 p"/f)m X(ﬁ) = 1} (3)
Note: If y = xo then R.H.S. of (3) becomes simply #{p : p|f}.

1.4 Leading Terms at s =0
Theorem 1.2 For any x

Li(0.x) = Xf; (3-3) @

a=1
a,f)=1

()

Proof: see [Wa, Thm. 4.2] (assumption that x primitive is not used). O
One can check directly R.H.S.=0 whenever x is even and x # xo (or x = xo but f > 1),



agreeing with (3).
(Harder: Check directly R.H.S.=0if 3p s.t. p|f, pt fy, x(p) =1.)

Theorem 1.3 If x is even and f > 1 (so that L;(0,x) =0) then

f
| o
Ly(0,x) = =5 D log|l—¢flx(a)

(a,f)=1

— —% > logloa(l = ¢f)lx(oa)

O'aEGf

Proof: If x is primitive: use [Wa, Thm. 4.9] for L;(1,x '), then the functional equation
(and ibid., Lemmas 4.7, 4.8). General case can be deduced from this using ‘norm relations’
for cyclotomic units, or proved directly, see [Ha, Lec. 3] or refs. on [Tate, p. 79]. a

Basic Aim of the Stark Conjectures: Formulate (and prove?) ‘qualitative analogues’ of
Theorems 1.2 and 1.3 when:

K¢/Q ~» Galois extension of number fields K/k with group G
X € é\f ~» group character of G i.e. character of cx. rep. of G
leading term of Ly(s,x) at s =0 ~~» leading term of Artin L-function Ly /xs(s,x) at s =0

Extensions and Variations: Replace s = 0 by s = 1; Replace number fields by function
fields; Replace L-functions by p-adic L-functions;. ..

Connections with: FExplicit Class Field Theory and Hilbert’s 12th Problem; Stickelberger’s
Theorem and Generalisations; Additive and Multiplicative Galois-Module Structure; Euler
Systems; K-Theory of K. ..

We shall consider almost exclusively the abelian case, i.e. Gal(K/k) is abelian.

2 The Function O/, 5(s)

2.1 Motivation and Definition

K /k Galois extension of number fields, G := Gal(K/k) abelian
CG = group-ring

X € G extends C-linearly to ring hom. y : CG — C

Note: in case K/k = K;/Q we can rewrite:

R.H.S. in Theorem 1.2 = x| — Z (<%> — %) Oq



1
R.H.S. in Theorem 1.3 = ¥y ~3 Z log |, (1 — {f)|og
O'GGGf
and parentheses contain elements of CG which are independent of x

Idea: In Theorem 1.2 use partial (-functions to express L.H.S. as x(#) for some § € CG
independent of x. Then Theorem is a determination of 6.

(Similarly for Theorem 1.3, but only even characters involved. .. )

To do this in the general case K/k:
Sram = Sram (K /k) := {(non-zero) prime ideals p < Oy : e, (K/k) > 1} = {p : p|f(K/k)}

Fix S finite set of places of k containing Sy., as well as S, = Su(k), the set of infnite
(archimedean) places of k.

Define
Is := {fractional ideals a of k supported away from S}

Thus I's C Ijk/ky and Artin map restricts to a surjection ok, 1 Is — G, a v 0q = 0 ik
For R(s) > 1 get an absolutely convergent sum in CG

Ok/ks(s) = Z Na*o!

aclg
a integral

So Okks(s) : {s: R(s) > 1} — CG is analytic.
The definition gives the following Basic Facts (currently only for R(s) > 1):

(©1) In terms of partial zeta-functions:

Oxsrs(s) = Cisms(s,9)g

geG

where (i s(-,9) - {s: R(s) > 1} — C is the partial zeta-function defined by

Cpms(s,g) == Y, Na™*

a€lg,0q=
a integral

(©2) Euler product in CG: Unique factorisation of fractional ideals gives

-1
0ot = [0 ot =T (1 es')

peZS n=0 pgZS




(©3) In terms of L-functions: Apply x~! for any y € G (also considered as a hom.
X:Is — G — C*) to get

X_1 (@K/kz,S(S)> = H (1 - >]<\§£5)) = LK/k,S(37X)

pgs

(thus Lk/r.s(s,x) is a not-necessarily-primitive Hecke L-function).
In other words, setting e, = > . x(¢9)g~" (idempotent of CG) we have, for R(s) > 1:
Ok/ks(s) = Z X (Ox/ms(s))ey

XEG

= Z Lirs(s; X)ex-1 (4)
x€G
2.2 Example: K/k=K;/Q, G =Gy
Let
Sp=ApZ : p|f} U{oo} D Sram U Seo
(inclusion is an equality unless f =2 (mod 4)).
If n > 1 then the integral ideal nZ lies in Ig, iff (n, f) =1 in which case
Onz,Kp/Q = 0n 10 Gy

(explicit Class Field Theory over Q). So, in terms of zeta-functions:

Ok, /0.5, (s E Ci; /0.5, (8, 0a)0,
O'aEGf
where
1 1
CKf/Q,Sf(87O-a> — g E = E E
n>1 n>1
(n,f)=l,on=0qa n=a (mod f)

(f~* x ((s,{(a/f)), Hurwitz {-function)
Also, for any y € é\f, fact (©3) gives

o\ -1
- x(P)
O 0, (0) = Ly 500 =TT (1= 2} (s,
pif
for R(s) > 1 thus in terms of L-functions:
®Kf/Q75f<S) = Z Ly (s, x)ey-
Naer

Thus Theorem 1.1 gives a meromorphic continuation Ok, /g s, : C — CGy and



Theorem 2.1

Orcs/as(0) = = Y (<?> . %) -

O'aGGf

ProOF Suffices to show x'(L.H.S.) = x"'(R.H.S.) for all x € G;. But

X 'Ok, 0s,(0) = Lk, /qs,0,x)

by Theorem 1.2. a

2.3 Analytic Facts about L/ s(s,x) and O g

We need meromorphic continuation of these functions and behaviour at s = 0 in the general
case K/k, G, S.

Let m = f3 = m(K/k) = f(K/k)3(K/k) be a cycle and use the Artin map to identify x € G
with a character of the ray-class group of k modulo m i.e. x : Clu(k) — C*. (See ‘Basic
Facts and Notations’)

Just as for L (s, x), we reduce the treatment of L/ g(s, x) to the primitive case:

3 unique minimal cycle m(x) = f(x)3(x) dividing m (the conductor of x) and character

X : Clny (k) — C* (the primitive character associated with x) s.t. x factors through x via
the hom. Clyn(k) — Clingy) (k).

Note: Let K, := K*X so x factors through Gal(K,/k). Then m(y) = m(K, /k). ..

Thus x defines hom. X : If,) — C* and the usual primitive Hecke L-function is

pH(x)

On the other hand Ij,) D I; D Ig and |74 = X so, by defn. in (©3):

Liwsto0 = T (1= 32 2650 )

pes
ptF ()

The following ‘well-known’ facts about primitive Hecke L-functions generalise (PDL1)-
(PDL4):

(PHL1) L(s,x) has a continuation to C that is analytic at all s € C (except for L(s, xo) =
Ck(s) at s =1)



(PHL2) ords—; L(s, x) = 0 (except that ords—1L(s, x0) = ords—1(x(s) = —1)

(PHL3) L(s,x) is related to L(1—s, ¥ ') by a functional equation. (This involves a I'-type
factor for each v € So.(k), Gauss sums. ..) For more details see [Tate, §1.3] or [Ha, Lecture

2]).

(PHLA4) The precise form of the functional equation plus (PHL2) gives :
ords—oL(s, X) = re0(X)

where

| #{vreal place of k : v{3(x)} if x # xo
reo(X) 1= #{v real place of k : v13(x0) =2} —1=ri(k)—1 if x = xo

Returning to x € G: For any finite set T of places of k, let

et = { H{r €T DAL = (1) it £ 0
T e e T DU/ = (U} = 1= #T =1 ifx =

Theorem 2.2 If S contains Sram U Ss and x € G then Lkk,s(s,x) has a meromorphic
continuation to C (holomorphic except for x = xo at s =1). Moreover

ords—oLg/k,5(5,X) = 75(X)

Proor Egs. (5)+(PHL1)+(PHL4) give the meromorphic continuation of L (s, x) and
the formula

ords—oL/k.s(s,X) = reo(X) +#{p € 5 : p1§(x) and x(p) = 1}

But a real place v doesn’t divide 3(x) iff it remains real in K, iff x(D,(K/k)) = {1}.
Similarly, p 1 f(x) satisfies x(p) = 1 iff x(D,(K,/k)) = {1} iff x(D,(K/k)) = {1}. The

result follows. O

. From equation (4) we get

Corollary 2.1 O/ s(s) can be continued to a function C — CG that is analytic except at
s=1. O

Consider the following hypothesis on a set .S D Siam U Sy and an integer r» > 0:

H(S,r) (1) S contains at least r places that split (completely) in K, and
ok (i) #S>r+1

To say that v ‘splits completely’ is equivalent to D,(K/k) = {1} so H(S,r) = rg(x) >
rVx € G, so



Corollary 2.2 Suppose H(S,r) holds, then there exists @ggk,sm) € RG (unique) s.t.
Ok/ks(s) = @9;@5(0)8’” +o(s") inCG ass—0
(i.e. H(S,r) = Ok ,5(s) has at least an rth order zero at s =0).

PROOF Since rg(x) > r Vx € é\, Equation (4) and the Theorem imply the existence of

@(7”)
K/k,S
whole of R (since meromorphic on C) from which it follows that @g}k 5(0) actually lies in
RG. O
Notes:
1dr

(i) @g)/k,s(o) = 24 |,—0Ok/k,s. (Warning: Note the implied factor of % in this notation.)

(0) in CG. Now the definition shows that © ;g is real valued on R.; hence on the

(ii) Ok/k,s(s) can have an rth order zero at s = 0 without H(S,r)...

3 Stark Conjectures at s =0

K /k finite abelian extension of number fields
G = Gal(K/k), S a finite set of places of k, S D Ss U Sram
Idea for an rth order Stark Conjecture at s =0 (r > 0):

Assume H(S,r) and make conjecture about the form of @g)/k’s(O)

3.1 Basic Zeroth Order Conjecture
#S > 150 H(S,0) is always satisfied. So what is ©{), <(0) = Or,5(0)?
Theorem 2.1 answers this for K/k = K¢/Q, S = S;. One generalisation is

Theorem 3.1 (Siegel-Klingen, Shintani)

Ok/ks(0) € QG

Thus the ‘Basic Zeroth Order Stark Conjecture at s = 0’ is a theorem!

Note: Theorem 3.1 is non-trivial= O/ 5(0) # 0 = H(S, 1) fails =

(i) S contains no place splitting in K, or

(ii) S = {v} for some v splitting in K.

Case (i) :

then S, contains no place splitting in K so k is totally real, K 1is totally complex. In this

9



case the element O/ s(0) € QG still contains a lot of interesting information.
Case (ii) (less interesting, because x (O /k,s(0)) = 0 for x # xo):
then Soo = {v}, Ssam =@ =k =Q=K or k=Q(v—D),K C Hy

3.2 Basic First Order Conjecture
Assume that H(S,1) holds, i.e.
Jv € § splitting in K and |S| > 2
Motivating Example: K/k = K; /Q for f € Z, f > 1 where
K = Q¢+ ¢ ') = Qcos(2r/f))
Take S = Sy ={pZ : p|f} U{oo} as before (minimal unless f =2 (mod 4) or f =<4)
K;{ is the maximal real subfield of Ky so that the real place v = oo : QQ — R C C splits in
}(+
i
Since also f > 1, hypothesis H(S,1) is satisfied.
The restriction map Gy — G := Gal(K; /Q) yields an isomorphism

Gy = (Z/fz)</{x1}
Gulis [
Hence

G}L «—— {even Dirichlet characters y mod f}

and for any such character

O 05D = g 600 =TT (1-22) = L6590

i b
Thus x‘l(@gl/(@ Sf(O)) = L';(0,x) and we get the following analogue of Theorem 2.1:
f El
Theorem 3.2
1 _
Ok 5,0 = =5 D_ logloa(l = ¢p)l[oa] ™

0a€Gy

= 5 Y toglg((1— )1 -Gl

gEG?
(Last equality for f > 2 only.)

10



PROOF For first eq. suffices to show y ' (L.H.S.) = x " '(R.H.S.) for all x € é} This
follows as for Thm. 2.1 (using Thm. 1.3 in place of Thm. 1.2). If f > 2, second eq. follows
by pairing o, with o_,. O

Important Remark: (1 —(;)(1— Cf_l) is element of K;“X. Moreover it’s a unit away from
primes of K above those in Sy.

More precisely:
if f = pl, p prime, then it’s a unit away from the (unique) prime B of K ;[ above p (which it
generates).

If f#plit’s a genuine ‘cyclotomic unit’ in E(K}“) (See e.g. [Wa, Prop. 2.8].)
For any number field L and finite set T" of places we define the (group of) T"-units of L to be
Ur(L) == {ze€l” :|z|,=1YVwgT}
= {“elements of L* which are local units away from 77 }

where | - |, denotes the (normalised) absolute value associated to a place w. (The second
statement only makes sense if 7' D S (L).)

Thus Ug(L) = p(L) (roots of unity), Us_(r)(L) = Of = E(L) (unit group) and Ur(L) is
always f.g. (see below).

Often, but not always, one assumes T D So(L): If T'= Sy (L) U T’ then Up(L) = OF 7
Return to K/k, S, G as above and set Sk := {places w of K above those in S} D Sy (K)

Then Sk is stable under action of G on places. Since |gz|, = |z|,-14, follows that Us, (K)
is also G-stable so a f.g. module over ZG.

Henceforth we write Us(K) to mean Ug, (K).

Conjecture C'(K/k,S,1): The Basic First Order Stark Conjecture at s =0
Suppose K /k is abelian extension of number fields with Galois group G and S is a finite set
of places of k containing Ss U Sram.

Suppose H(S,1) is satisfied. Choose v in S splitting completely in K and a place w dividing
vin K.

Then there ezists € € Us(K) and o € Q such that

@%k,s(o) = Z log |gelwg ™ (6)

geG

Remark. Our Cyclotomic Example: Take K /k = K}L/Q, S = Spso H(S,1) is satisfied
as above. Take v =00: Q = R C C, w : KJT — R C C. If f > 2 then Theorem3.2 says
that (6) is satisfied with o« = —3, e = (1 — (f)(1 — CJTI)

Remark. Alternative Formulation of (6): In terms of partial zeta-functions:

Cress(0,9) = aloglgel, forall g€ G

11



Remark. Variation of w: Fix v and suppose a, ¢ satisfy Conj. for some w|v. Then
w'|v < w' = hw for some h € G = |gel|, = |ghe|w = a, he satisty Conj. for w'.

Remark. Variation of v: If S contains another splitting place v' # v then we shall see
that Conjecture is trivial unless S = {v,v'} in which case it follows from Analytic Class
Number Formula for &k (using either v or v’).

3.3 Basic rth Order Conjecture

How can we generalise the basic first order conjecture when H(S,r) holds? We need to know
more about Ug(K). ..

More generally, for L a number field and any T as above containing S (L), we define a
logarithmic ‘embedding’” L of Ur(L):

Lr : Upr(L) — RT:=PRw

weT

g€ = ZweT10g|E|ww

Let (RT")y be the kernel of the map R7" — R sending Z ayW to Z oy

weT weT
Thus (RT)g is a hyperplane in RT and the Product formula implies im(L7) C (RT)o.

Theorem 3.3 (Dirichlet’s Theorem for T-units) Suppose thatT contains Sy (L). Then
(1) ker(Lr) = p(K)
(i) im(Lr) is a lattice of full rank in (RT),.

PROOF (Sketch) It is easy to show (i) and that im(Lr) is discrete, hence a lattice. So
suffices to show rky(Ur(L)/u(K)) = #1 — 1. For T'= S, (L) this is classical Dirichlet. Now
use induction on #(7"\ Sx (L)), the finiteness of CI(L) etc.... O

Corollary 3.1 Ur(L) is isomorphic as an abelian group to Z#T=' @ p(L). Moreover Lr
extends by R-linearity to a map L7 : R ®z Ur(L) — RT sending Z o; ®¢g; to Z a; Lo(g;)

and giving an R-isomorphism of R @z Ur(L) onto (RT)y.
Return to the case K/k, S, G:

the G action on places makes RSk into a natural RG-module and

RSk = P | Drw | = PRIG/D(K/H) (7

veS \ wv veS

12



Notation: If M is a ZG-mod. and R a comm. ring, write RM for R ®7; M considered as
R-module and G-module so RG-module.

E.g. RUg(K) is an RG-module and Lg,. : RUg(K) — RSk is RG-linear restricting to RG-iso.
RUg(K) — (RSk)o. Thus we have an exact sequence of RG-modules

0 — RUs(K) — RSg — R — 0 (8)
(with trivial G-action on R).
Corollary 3.2 For all x € G
dime (e, CUs(K)) = rs(x) [= ords—oLi/,s(s, x) = ordse—ox ' (Ox/k,s5(5))]

PROOF Exercise: tensor (7) and (8) with C and apply a little character theory. O

In vague terms: the bigger the ‘rank’ of CUg(K), the higher the order of vanishing of
Ok /ks(5)

Now suppose H(S,r) holds and choose an (ordered) set V' = {vy,...,v.} C S such that v,
splits in K fori=1,...,r

We write S = VUV’ so that RSx = RVx @ RV}, (as RG-modules) and let 7y, denote the
projection from RSk to RVk with kernel RV.

We shall write Lg for the map Lg, and Lgy for the composite my o Lg:

Loy : RUs(K) £5 RS, =5 RV

Choose W = {wy,...,w,} C Vi such that w;|v; for each i.
Then RV is RG-free of rank r with the basis {wy, ..., w,} so for any x € RUg(K) we can

write uniquely
‘CS V Z >\wz

where A\, (z) € RG
One easily checks that A, : RUg(K) — RG is the unique RG-linear map satisfying

A (1 ®u Zlog\gu

geG

-1

wz

Taking rth exterior powers over the commutative ring RG gives an RG-linear map
AE&G‘C&V . /\%GRUs(K) — /\%GRVK = RG(’LUl VANIRAAN wr)

Since wy A ... Aw, is a free generator we can define a unique RG-linear ‘requlator’ Ry /i w :
NecRUs(K) — RG by ApoLsy(z) = Rgpw(x)(wi Ao Aw,).

13



Explicitly, every element of Ap RUg(K) is a finite sum of terms of form z; A ... A z, with
x; € RUg(K) and

R (@1 Ao Aay) = det( A, (25))F 2

Conjecture C(K/k,S,r): The Basic rth Order Stark Conjecture at s =0
Suppose K[k is abelian extension of number fields with Galois group G and S a is finite set
of places of k containing Ss U Sram-

Suppose H(S,r) is satisfied. Choose a set V = {vy,...v.} C S of places splitting completely
in K and a set W = {wy,...w,} C Vi with w;|v; V1.

Then there exists n € N\og QUs(K) C Agg RUs(K) such that

0)1.5(0) = Ry (n) 9)

Remark. Variation of W: Fix V and suppose 7 satisfies the conjecture with the choice
W = {w,...,w.}. Let W = {w],...,w.} be another choice. Then w} = h;w; for some
h; € G for all i 50 Ay (h) = Ay, (7) and we find Ryjpw(v) = Rijpw (b1 ... hex). Thus
hy ... h,n satisfies the conJecture with the choice W'.

Remark. Variation of V: Permuting the v; (and hence the w;) multiplies Ry (1) by %1
so +n still satisfies the conjecture.

This is the only variation possible unless S contains r 4 1 splitting places in which case the
conjecture can be shown to hold for any choice of V.

When r =1,V = {v} and W = {W}, we have n € /\}QGQUS( )=QUs(K),son=a®e
for some av € Q and € € Ug(K). Hence Rg/pw(n) = Auw(n) = a2|g€|wg So forr =1,

geG
C(K/k,S,r) indeed agrees with first order conjecture denoted C'(K/k,S,1) enunciated above.

3.4 Uniqueness of 7

In order to refine the conjecture (for example) we want to study the element n € Ay, QUs(K)
satisfying (9). However, is not in general unique, even if it exists. We explain a way to render
it unique by projecting onto a certain ‘eigenspace’ of Aéa QUs(K) as a QG-module:

Still in the set-up of C(K/k,S,r), we assume H(S,r) is satisfied and V', W are chosen as
above.

Then rg(x) > r for every x € G and we define

E eX and eg~, = E ey = Sir

rs(x)= rs(x)>r

14



Thus eg, is an idempotent, and the unique element of CG satisfying

(esy) = { 1 ifrg(x)

0 if rs(x) i 77: (10)

Set s = |S| > r+ 1 so that

S:{’Ul,...,UT}U{UT+1,...,US}IVUV/

Write D, for D,(K/k) C G. (So D, = {1} if v=0y,...,0,).
Let Np, = deDu g so that ﬁNDU is an idempotent of QG and

(goe) =0 o) 2 )

Lemma 3.1

H (1—ﬁNDv> if s>r+1 (sors(xoe) >r)
ey = veV’ . .

H (1—ﬁNDu)+€xo if s=r+1 (sors(xo) =7)

veV’

In particular, eg, lies in QG, hence also eg ;.

PROOF Exercise using (10) and definition of rg(x). O
Thus for any QG-module A we can define a QG-submodule A" by

AT — g A={ae A : egpa=a} =ker(eg,|A)

Remarks

e The map a — eg,a projects A onto AlST]

° 5, QG = QG and es>rQG are rings with identities the idempotents eg, and eg~,
respectively. Moreover QG is a product of rings QG x eg~,QG and acts on A9 via its
projection on QG

o If f: A — Bis a QG-hom. then the restriction of f to Al5"! defines a QG-homomorphism
for s AT 5 BIST In this way, 971 defines an exact functor from the category of QG-
modules to the category of QG") modules.

e Suppose A is embedded in a CG-module A. Then A5 is the intersection of A with the
sum of the x-eigenspaces e, A for those x s.t. rg(x) = r. Alternatively,

ac AP — eya =0 in A, for all y s.t. rg(x) >
Proposition 3.1 @g}kvs(O) lies in RG]
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PROOF Suppose rg(x) > r for some x € G then (working in CG):

€x9§9k,s(0) = X(@g};@sw))@x = Lg}k,s((), x)ey =0

by Thm. 2.2. a

Proposition 3.2 QUs(K)¥" is isomorphic to (QG™)™ over QG.

ProoOF Since QG-modules are defined up to iso. by their character which is invariant under

C ® _, it suffices show that CUg(K)%" = (CGI™) over CG. But for any x € @G, Cor. 3.2
gives dime (e, CUgs(K)!5™) = 7 if rg(x ) = r, otherwise = 0. The same is obviously true of
dime (e, (CGE™™) so the result follows. O

Remark Similar reasoning shows more generally that QUg(K) is isomorphic over QG to
ker(QSk — Q) because the isomorphism holds over RG after applying ®¢gR, by (8)

Definition (Warning: this is nonstandard!) We shall say that a solution n € g, QUs(K)
of C(K/k,S,r) is canonical iff it lies in (AéGQUS(K)) 151 = Noe(QUs(K NS
Proposition 3.3 If n is any solution of C(K/k,S,r) then es,n is a canonical solution.

PROOF Rgjiw(es,n) = esyRi/pw(n) = €s7r@§§)/k,s(0) = @%)/k ¢(0) by Prop. 3.1 O

We shall next show that a canonical solution is unique. The RG-injection Lg : RUg(K) —
RSk gives rise to

S,r o S,r S,r S,r
L5 RU(K)1ST — RSET = Ry @ RS
If w e Vi divides v € V' then D, fixes w and it follows from Lemma 3.1 that

0 fs>r+1 1
RY 0 ifs=r+1(s0 V' ={u.}) 1

RV’[}?)T] — 6577‘va,< — {
Now recall that Lgy = 7y 0 Lg: RUs(K) — RV, so
,Cg?:";] = Wg,r} o ‘CEJ’] : RUS(K)[S,T] . RVI[(S’T]

Proposition 3.4

(i) If s > r+1 then EE‘; = £§,r}.

(i) If s > 7+ 1 and € € Ug(K) is such that 1 ® ¢ € QUg(K)!" then in fact e € Uy (K).
(iii) In any case EE";] : RUg (K57 — RVIP™ is an isomorphism.
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PROOF 1If s > 7+ 1 then (11) shows that RSE™ = RV¥") on which 7y is the identity,
proving (i). For (ii), 1 ® ¢ € QUs(K)¥" implies L5(1 ® €) lies in RSE T RVi by the
above. Hence ¢ € Uy (K). For (iii), Prop. 3.2 implies RUs(K)!S" 2 (RGIS7)r = RyIE7 1y

[S,7]

the splitting assumption. So it suffices to prove that £ S"; is injective. But Lg, hence E[SS’T],

is injective and im(£5") Nker 777 = RSK)ET ARV = {0}, by (11). O

Taking exterior powers in (iii), we find that Ag,L S\; maps Apg(RUs(K)¥) = (ApoRUs(K))15]
isomorphically onto ARG(RVI[{S T]) = (ApcRVi)E = RGP (wy A ... Aw,) and so

Corollary 3.3 Rg/w restricts to an isomorphism /\%GRUS(K)[S’T] — RG]
Consequently:
Corollary 3.4 There exists at most one canonical solution of C(K/k,S,r).

Remark: To summarise: If 7 is any solution of C(K/k,S,r), then eg,n is the unique
canonical solution.

It is a remarkable (7) fact that in the cases where C(K/k, S,r) is proven, the ‘naturally
occurring’ solution is also usually the canonical solution.

Remark: Since QG and @G[Sﬂ are products of fields, it follows from Prop. 3.2 that every
element 7 € (AgeQUs(K))!" /\TQGWT (QUs(K)9) can be written as 71 A ... A 1, with
z; € QUg(K)S"1Vi. We can write z; as + ®5Z with n; € Z>; and 1®¢; € QUs(K ) 57l (which
implies ¢; € Uy (K) if s >r+1, by Prop ‘3.4 (ii)). In any case, putting n =ny ...n, € Z>1,
we have

1
77:5(1@)51)/\...(1@&)

Of course, this expression is not unique (even though 7 is). Nevertheless, the condition (9)
that 1 be a canonical solution of C'(K/k,S,r) can now be written explicitly as follows

T 1 ; 1 _ |
G(Kik S( ) E det()\wi(l & Ej))i,jzl E det ( E log |gf‘:j|wig 1) (12)
g€eG “j=1
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