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Abstract. This is an introduction to classical descent theory, in the context of abelian
varieties over number fields.

1. Further reading

We begin by suggesting reference for readers who want to see more details than are pre-
sented in this article.

Here are some references for group cohomology, roughly in order of increasing depth:
Appendix B to [Sil99], the articles by Atiyah & Wall and Gruenberg in [CF86], and the
books [Ser79] and [Ser02].

Here are some references for the Mordell-Weil Theorem, and for the Selmer and Shafarevich-
Tate groups, again roughly in order of increasing depth: Chapters 8 and 10 of [Sil99], the
book [Ser97], the “Abelian varieties” article by Milne in [CS86], and the book [Mil86].

Also, many of these topics are covered in lecture notes of courses given by Milne, available
at www.jmilne.org at no cost.

2. Group cohomology: H0

Let G be a profinite group. Let A be a (discrete, left) G-module. This means that A is
an abelian group on which G acts, and that the map G × A → A is continuous when A is
given the discrete topology. Define AG and H0(G, A) by

AG = H0(G, A) := { a ∈ A : ga = a for all g ∈ G }.
The subgroup AG is known as the subgroup of G-invariants of A.

The following example demonstrates why this concept is important to us. Let k be a
number field. Let G = Gk := Gal(k/k) be the absolute Galois group of k. Let A be an
abelian variety1 over k. Then Gk acts on the abelian group A(k). The abbreviation H0(k,A)
is commonly used for H0(Gk, A(k)). By Galois theory, H0(k, A) = A(k), where A(k) is the
group of k-rational points on A, also known as the Mordell-Weil group of A.

Mordell-Weil Theorem. The group A(k) is a finitely generated abelian group.

In other words A(k) ' Zr ⊕ T , where r is a nonnegative integer, and T is a finite abelian
group. The integer r is called the rank of A over k. The group T is called the torsion
subgroup, because it consists of the set of elements of A(k) of finite order. There exists an
algorithm for computing T in theory, and this algorithm is practical at least when A is an
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elliptic curve. There is no such algorithm currently known for computing r, even in theory.
More precisely, there is a candidate for an algorithm, based on ideas to be discussed later
in this article, but it terminates only if the p-primary part of a certain group X(A) is finite
for some prime p.

Given an abelian group B and a positive integer m, use the abbreviation B/m for B/mB.
The Mordell-Weil Theorem implies the following.

Weak Mordell-Weil Theorem. If m ≥ 2, then A(k)/m is finite.

The only known proof of the Mordell-Weil Theorem involves combining the Weak Mordell-
Weil Theorem (one m ≥ 2 suffices) with the theory of height functions. If one can determine
the size of A(k)/m for some integer m ≥ 2, then one can determine the rank of A(k).

3. Group cohomology: Hi for all i ≥ 0

Suppose that

0→ A→ B → C → 0

is an exact sequence of G-modules. This means that the morphisms respect the G-actions,
and that it is exact as a sequence of abelian groups. Then there is an exact sequence

(1) 0→ AG → BG → CG

but one cannot always append → 0 to the right end. In other words, the functor A 7→ AG is
only left exact. To help understand what happens past the right end, we have the following:

Theorem 1. There exists a collection of functors Hi(G,−) for i ≥ 0 such that for every
exact sequence

0→ A→ B → C → 0

of G-modules, the sequence (1) extends to a long exact sequence

0→H0(G, A)→ H0(G, B)→ H0(G, C)→
H1(G, A)→ H1(G, B)→ H1(G, C)→
H2(G, A)→ · · · ,

functorially with respect to the exact sequence.

“Functorially” means that given a morphism of exact sequences, that is, a commutative
diagram such as

0 −−−→ A −−−→ B −−−→ C −−−→ 0y y y
0 −−−→ A′ −−−→ B′ −−−→ C ′ −−−→ 0,

there is a morphism of the associated long exact sequences; that is, the diagram

0 −−−→ H0(G, A) −−−→ H0(G, B) −−−→ H0(G, C) −−−→ H1(G, A) −−−→ . . .y y y y
0 −−−→ H0(G, A′) −−−→ H0(G, B′) −−−→ H0(G, C ′) −−−→ H1(G, A′) −−−→ . . .

commutes.
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One way to define Hi(G, A) is to first define i-cochains, i-cocyles, and i-coboundaries, and
then to set

Hi(G, A) =
{i-cocycles}

{i-coboundaries}
.

When i = 1, a 1-cocycle is a continuous function ξ : G → A such that ξgh = ξg + gξh for
all g, h ∈ G. (Here ξg := ξ(g) ∈ A.) And a 1-coboundary is a function G → A of the
form g 7→ ga − a determined by some a ∈ A. For the origins of these funny expressions,
their generalizations to i > 1, and other constructions of the functors Hi(G,−) making the
theorem true, see the article of Atiyah and Wall in [CF86]. In some sense, however, the
characterization given by the theorem is more important than the actual definition.

If G acts trivially on A, then H1(G, A) = Homconts(G, A), the group of continuous homo-
morphisms from G to A. In general, if G is any profinite group, A is any G-module, and
i ≥ 1, then Hi(G, A) is a torsion abelian group, which means that each element has finite

order. Hilbert’s Theorem 90 states that if k is a perfect field, then H1(Gk, k
∗
) = 0. (This

holds even if k is not perfect, but then one usually replaces k by the separable closure ks,
and writes Gk = Gal(ks/k).)

Exercise . Use Hilbert’s Theorem 90 to show that if m is an integer not divisible by the
characteristic of k, and µm denotes the group of mth roots of unity, then H1(Gk, µm) '
k∗/k∗m.

4. Restriction

If H ⊆ G is a closed subgroup, and A is a G-module, then A can also be considered as an
H-module, and there exist restriction homomorphisms

Hi(G, A)
Res−→ Hi(H, A)

for each i ≥ 0. On H0, Res is simply the inclusion AG ↪→ AH . On H1, Res maps the class of
the 1-cocycle ξ : G→ A to the class of ξ|H : H → A.

For us, the following special case will be important. Let k be a number field. Let kv denote
the completion of k at a place v. If we identify k with the algebraic closure of k inside kv,
then we have an injection

Gv := Gal(kv/kv) ↪→ Gk := Gal(k/k)

σ 7→ σ|k
whose image is a decomposition group at v. Let A be an abelian variety over k. The
composition

H1(k,A) := H1(Gk, A(k))
Res−→ H1(Gv, A(k))→ H1(Gv, A(kv)) =: H1(kv, A)

is denoted Resv.

5. Twists (also known as k-forms)

“Twists of an object over a field are classified by H1 of its automorphism group over the
algebraic closure.” This is not a theorem, because we have not and will not make completely
precise what we mean by an object. It is only a vague principle, but nevertheless it holds in
many common situations in arithmetic geometry.

We now elaborate a little (but still not being completely precise). Let k be a perfect field.
Let V be an object over k, for example a variety equipped with some extra structure defined
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over k. We assume that the objects form a category, and that there is a notion of base
extension: that is, given an object V over k and a field extension L of k, there should be an
associated object VL over L. A twist or k-form of V is an object W over k such that there
exists a (structure-preserving) isomorphism Wk ' Vk of objects over k. Then there is an
injection

{twists of V } ↪→ H1(Gk, Aut(Vk))

that in many situations is a bijection. Where we write “twists of V ” we identify two twists
if they are isomorphic over k. The group Aut(Vk) is the group of automorphisms of Vk as
an object over k. This group may be nonabelian, hence not a Gk-module, but it turns out
that the definition of H1 can be generalized [Ser02, I.§5], to define H1(Gk, Aut(Vk)) not as a
group, but as a pointed set (i.e., a set equipped with a special “zero element”).

The injection is defined as follows. Suppose that W is a twist of V over k. Fix an
isomorphism φ : Wk → Vk. Then for g ∈ Gk, we apply g to obtain another isomorphism
gφ : Wk → Vk. Then the 1-cocycle g 7→ gφ ◦ φ−1 ∈ Aut(Vk) represents an element of
H1(Gk, Aut(Vk)).

6. Torsors (also known as principal homogeneous spaces)

Let A be an abelian variety over a perfect field k. A homogeneous space of A over k is a
variety X over k equipped with a transitive action of A, that is, a morphism A × X → X
for which the induced action of A(k) on X(k) is transitive. A principal homogeneous space
of A over k is a homogeneous space X such that for each x1, x2 ∈ X(k) there is a unique
a ∈ A(k) mapping x1 to x2. Principal homogeneous spaces of A over k are also known as
k-torsors under A.

Let A denote the abelian variety A equipped with the additional structure of an A-action
given by the group law morphism A×A→ A. Then A is a k-torsor under A. Moreover, the
twists of A as a k-torsor under A are exactly the k-torsors under A. Let us apply the vague
principle of the previous section. The automorphisms of Ak are precisely the translation
maps Ak → Ak given by a 7→ a + b associated to each b ∈ A(k). It turns out that the
injection given by the vague principle for this situation is a bijection, so that we have

{k-torsors under A} ←→ H1(Gk, A(k)) =: H1(k, A).

A k-torsor X under A satisfying any of the following equivalent conditions is said to be
trivial:

(1) X ' A (as torsors)
(2) X(k) is nonempty.
(3) X corresponds to 0 ∈ H1(k,A).

It sometimes helps to visualize torsors with the following analogy: abelian varieties are to
torsors as vector spaces V are to affine translates of V (in some larger vector space W ).

Let X be a smooth, projective, geometrically integral curve of genus 1 over a field k. Let
E be its jacobian, which is an elliptic curve over k (that is, a one-dimensional abelian variety
over k, or equivalently, a genus 1 curve equipped with a k-rational point). Then X is a k-
torsor under E. Thus the classification of genus 1 curves over k reduces to the classification
of elliptic curves over k (the easy part) together with an understanding of H1(k,E) for each
elliptic curve over k (the hard part).

The group H1(k,A) classifying torsors under A is understood well for certain types of
fields k, and not so well for others:
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(1) If k is a finite field, then H1(k,A) = 0. This is a theorem of Lang, and it holds more
generally when A is any connected group variety over a finite field k.

(2) If kv is a local field (say, the completion of a number field at a place), then H1(kv, A) '
Homconts(A

∨(kv),Q/Z), where A∨ is the dual abelian variety. This fact is known as
Tate local duality.

(3) If k is a number field, H1(k, A) is big and difficult to understand. There is no
known algorithm that decides, given a k-torsor X under A, whether X corresponds
to 0 ∈ H1(k, A) (or equivalently, whether X(k) is nonempty). It has not even been
proved yet that there is an algorithm in the case where A is an elliptic curve over Q.

7. The Shafarevich-Tate group

From now on, we assume that k is a number field, and that A is an abelian variety over
k. Recall that there is a restriction map Resv : H1(k,A) → H1(kv, A) for each place v of k
(finite or infinite). If we identify elements of H1 with torsors, then Resv takes a k-torsor X
under A to the base extension X ×k kv. Define the Shafarevich-Tate group X(k, A) of A
over k as

ker

[
H1(k,A)

Res−→
∏

places v of k

H1(kv, A)

]
,

where Res =
∏

v Resv.
Call a k-torsor X under A locally trivial if it is in the kernel of every map Resv, or

equivalently if X(kv) is nonempty for every v. Then one can describe X(k,A) geometrically
as the set of isomorphism classes of locally trivial k-torsors X under A.

In general, given a smooth, projective, geometrically integral variety X over a number
field k, it is possible to compute a finite set S of places of k such that X(kv) is guaranteed
to be nonempty for v 6∈ S. (Sketch of proof: choose a model for X that is smooth over a
ring of S-integers in k for some S containing all the archimedean places, and enlarge S by
including enough of the small nonarchimedean primes that the Weil conjectures force the
mod v reduction to have points over the residue field for each of the large primes v 6∈ S.
Then Hensel’s Lemma lifts these points to points in X(kv).) Also, for each v ∈ S, one can
decide whether or not X(kv) is nonempty. (Sketch: for kv = C, X(kv) is automatically
nonempty. For kv = R, one can use elimination of quantifiers for semialgebraic sets. For kv

nonarchimedean, write down equations for X and clear denominators so that the coefficients
lie in the valuation ring of kv; search for solutions to the equations modulo higher and higher
powers of the maximal ideal; either one will eventually reach a power modulo which there
are no solutions, or one will find an approximate point that is so close v-adically that one
can use Hensel’s Lemma to lift it to an exact solution in kv.) Applying this to torsors shows
that there is an algorithm to test whether a k-torsor X under A is locally trivial. On the
other hand, it is not known how to decide whether a k-torsor X under A is trivial.

A variety X over a number field k is said to violate the Hasse principle if X(kv) is nonempty
for all v but X(k) is empty. Then a k-torsor X under A violates the Hasse principle if and
only if it corresponds to a nonzero element of X(k,A). For example, suppose that X is the
projective plane curve over Q defined by the homogeneous equation 3x3+4y3+5z3 = 0. The
genus of X is (3− 1)(3− 2)/2 = 1. Clearly X(R) is nonempty, and using Hensel’s Lemma,
it is easy to show that X(Qp) is nonempty for each prime p. On the other hand, with some
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work one can show that X(Q) is empty, so X violates the Hasse principle. Thus, if E is the
jacobian of X, then X represents a nonzero element of X(Q, E).

Conjecture. For every number field k and every abelian variety A over k, the group X(k,A)
is finite.

This conjecture has been proved in some special cases, for instance if A is an elliptic curve
over Q and the L-function of A over Q has a zero of order at most 1 at s = 1.

Remark. There is an analogy between abelian varieties and unit groups. Let Ok denote the
ring of algebraic integers in k. Then H0(k,O∗

k
) is the group of units in the ring of integers of

k. Dirichet’s Unit Theorem states that this group is finitely generated; this can be viewed
as the analogue of the Mordell-Weil Theorem, which states that H0(k, A) = A(k) is finitely
generated.

For each nonarchimedean place v of k, extend the v-adic absolute value | |v to kv, and let
Okv

be the (non-discrete) valuation ring {α ∈ kv : |α|v ≤ 1 }. For each archimedean place v

of k, let Okv
= kv. Then

ker

[
H1(k,O∗

k
)

Res−→
∏

v

H1(kv,O∗
kv

)

]
' Cl(k),

the class group of k. This suggests that X(k,A) is an analogue of Cl(k). The finiteness of
Cl(k) can be proved using the geometry of numbers (e.g., Minkowski’s theorem on lattice
points in convex symmetric regions). Is there a geometry of numbers approach to proving
the finiteness of X(k,A)?

8. The Selmer group

Fix an integer m ≥ 2. For any abelian group B, let Bm denote the kernel of the
multiplication-by-m map B → B. Suppose that A is an abelian variety over a perfect
field k. Then the m-torsion subgroup of A is the Gk-module Am := A(k)m. The long exact
sequence associated to

0→ Am → A(k)
m→ A(k)→ 0

is
0→ A(k)m → A(k)

m→ A(k)→ H1(k,Am)→ H1(k,A)
m→ H1(k,A),

from which we extract the top row of

(2) 0 // A(k)

m
//

��

H1(k, Am)
ρ //

Res

��

ρ̃

&&

H1(k,A)m
//

Res

��

0

0 //
∏

v

A(kv)

m
//
∏

v

H1(kv, Am) //
∏

v

H1(kv, A)m // 0.

The bottom row is the product of the analogous sequences over each completion kv. The first
vertical map is induced by the inclusions A(k) ↪→ A(kv) for each v, and the other vertical
maps are restriction maps. The diagonal dotted map ρ̃ is the composition in either direction.
The diagram commutes.

If we could prove that H1(k,Am) were finite, then (2) would show that A(k)/m is finite
too, and we would have proved the Weak Mordell-Weil Theorem. But unfortunately, it turns
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out that H1(k, Am) is infinite whenever A is nonzero. Therefore we must bound the image
of A(k)/m in H1(k,Am) by using (2) to see that this image equals ker(ρ). Unfortunately, it
is not known how to decide, given an element of H1(k,Am), whether its image in H1(k,A)m

is zero or not, just as it is not known how to decide whether a general element of H1(k,A)
is zero or not. Therefore we instead bound ker(ρ) by the larger group ker(ρ̃): this helps,
since given ξ ∈ H1(k,Am), we can decide whether ξ ∈ ker(ρ̃) as follows: compute a torsor X
representing its image in H1(k,A), and use the method discussed in the previous section to
test whether X is locally trivial.

The m-Selmer group Selm(A/k) is defined as ker(ρ̃), or equivalently as the set of ξ ∈
H1(k,Am) whose restriction Resv ∈ H1(kv, Am) is in the image of A(kv)

m
→ H1(kv, Am) for

every v. If we apply the Snake Lemma to

0 // A(k)

m
//

��

H1(k,Am) //

ρ̃

��

H1(k,A)m
//

Res

��

0

0 // 0 //
∏

v

H1(kv, A)m

∏
v

H1(kv, A)m // 0,

the first half of the snake (i.e., the sequence of kernels of the vertical maps) is the fundamental
exact sequence

(3) 0→ A(k)

m
→ Selm(A/k)→Xm → 0,

where X := X(k, A). In particular, the image of A(k)/m in H1(k, Am) is contained in
Selm(A/k).

9. Computing the Selmer group

Theorem 2. The group Selm(A/k) is finite and computable (in theory).

This, together with (3), implies both the Weak Mordell-Weil Theorem and the finiteness
of the m-torsion in X.

Corollary 3. The groups A(k)/m and Xm are finite (but not necessarily computable).

The reason that A(k)/m and Xm cannot be immediately computed from Selm(A/k) is that
one still cannot decide how much of Selm(A/k) in (3) comes from A(k)/m, or equivalently
how much of Selm(A/k) maps to 0 in Xm. Knowledge of the size of either A(k)/m or Xm

could be used to deduce the size of the other, however.
We will sketch the proof of Theorem 2, but first we need a few definitions. Let kunr

v denote
the maximal unramified extension of kv in kv. Let Iv := Gal(kv/k

unr
v ) ⊆ Gal(kv/kv) be the

inertia group at v. An element ξ ∈ H1(kv, Am) or ξ ∈ H1(k,Am) is called unramified at v if
and only if it restricts to 0 in H1(kunr

v , Am) = H1(Iv, Am).

Brief sketch of proof of Theorem 2. Let S be a finite set of places of k containing

• the archimedean places,
• the finite primes where A has bad reduction, and
• the finite primes dividing m.
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Recall that Selm(A/k) is the subgroup of ξ ∈ H1(k,Am) satisfying a local condition at each
v, namely that ξ should map to 0 in H1(kv, A)m. We will first impose the conditions at the
infinitely many v 6∈ S, and then impose the conditions at the finitely many v ∈ S. The proof
boils down to the following facts.

(1) For v 6∈ S, an element ξ maps to 0 in H1(kv, A)m if and only if ξ is unramified at v.
Thus if we define

H1(k, Am; S) := { ξ ∈ H1(k,Am) : ξ is unramified at all v 6∈ S },

then

Selm(A/k) = { ξ ∈ H1(k,Am; S) : ξ maps to 0 in H1(kv, A)m for all v ∈ S }.

(2) The group H1(k,Am; S) is finite and computable. The proof of this involves the
Dirichlet Unit Theorem and the finiteness of Cl(L) for some finite extensions L of k.

(3) Given ξ ∈ H1(k,Am; S) there exists an algorithm for constructing a torsor X repre-
senting the image of ξ in H1(k,A). Then, as discussed in earlier sections, we can test
whether ξ maps to 0 in H1(kv, A)m, by testing whether X(kv) is nonempty for each
v ∈ S.

�

The process of computing the Selmer group and using it to bound A(k)/m is known as
descent, because as a very special case it includes Fermat’s “infinite descent” method for
solving diophantine equations such as x4 + y4 = z2. (Integer solutions to this equation give
rational points on the genus 1 curve X4 + 1 = Z2; after choosing a rational point as origin,
it becomes an elliptic curve of rank zero, as a Selmer group computation shows.)

10. 2-descent on an elliptic curve with rational 2-torsion

In this section we show how to compute Sel2(A/k) in the case where A = E is an elliptic
curve over Q with E2 ⊆ E(Q). Then E has an equation

y2 = (x− e1)(x− e2)(x− e3)

where e1, e2, e3 ∈ Z are distinct. Let Pi = (ei, 0) ∈ E(Q) and let O denote the identity of E
(the point at infinity). Then

E2 = {O,P1, P2, P3} ' Z/2× Z/2 ' µ2 × µ2

as GQ-modules, with P1 ↔ (1,−1) and P2 ↔ (−1, 1). By Kummer Theory (the exercise
earlier in these notes, involving Hilbert’s Theorem 90), H1(Q, µ2) ' Q∗/Q∗2, so H1(Q, E2) '
(Q∗/Q∗2)⊕2. If p is a prime such that e1, e2, e3 are distinct modulo p, then E has good
reduction at p. Hence we may take as the set S of “bad places” in the previous section, the
set consisting of the archimedean place∞ and the primes dividing 2(e1−e2)(e2−e3)(e3−e1).
We then have the following facts (for the proof, see Chapter 10 of [Sil99]):

(1) If ξ ∈ H1(Q, E2) corresponds to the image of (a, b) in (Q∗/Q∗2)⊕2 (where a, b ∈ Q∗2),
then ξ is unramified at a prime p if and only if p is unramified in the quadratic
extensions Q(

√
a) and Q(

√
b) of Q.

(2) The composition

E(Q)→ E(Q)/2 ↪→ H1(Q, E2) ' (Q∗/Q∗2)⊕2
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maps a point (x, y) in E(Q) other than O,P1, P2 to (x − e1, x − e2) ∈ (Q∗/Q∗2)⊕2.
(More symmetrically, define a map from E(Q) to the subgroup of (Q∗/Q∗2)⊕3 where
the product of the three coordinates is 1 by sending (x, y) to (x−e1, x−e2, x−e3). This
formula makes no sense when (x, y) is one of the Pi, but two of the three coordinates
are nonzero, and one can determine what the third should be by the requirement
that the product be 1.)

(3) The image of (a, b) under

(Q∗/Q∗2)⊕2 ' H1(Q, E2)→ H1(Q, E)

corresponds to a torsor Xa,b birational to the curve defined by the equations x− e1 =
az2

1 , x − e2 = bz2
2 , x − e3 = abz2

3 in the variables x, z1, z2, z3. (This comes from the
fact that the field extension corresponding the the multiplication-by-2 map E → E
is obtained by adjoining

√
x− e1 and

√
x− e2 to the function field of E.)

It follows from (1) that ξ ∈ H1(Q, E2) is unramified outside S if and only if ξ is represented
by some pair (a, b) of elements in the subgroup 〈−1, S〉 of Q∗/Q∗2 generated by −1 and the
finite primes of S. Thus

Sel2(E/Q) ⊆ H1(Q, E2; S) ' 〈−1, S〉⊕2 ⊂ (Q∗/Q∗2)⊕2.

To decide which (a, b) ∈ 〈−1, S〉⊕2 actually belong to Sel2(E/Q), check whether Xa,b has
points over R and over Qp for all finite primes p ∈ S.

11. Example

Let E be the elliptic curve y2 = x3 − x over Q. Let r be the rank of E(Q). We will
compute r, Sel2(E/Q), and X(Q, E)2. Take e1 = −1, e2 = 0, e3 = 1. Then we may take
S = {∞, 2}. The homomorphism

E(Q)/2→ Sel2(E/Q) ⊆ H1(Q, E2; S) ' 〈−1, 2〉⊕2 ⊂ (Q∗/Q∗2)⊕2

maps

O 7→ (1, 1)

P1 = (−1, 0) 7→ (2,−1)

P2 = (0, 0) 7→ (1,−1)

P3 = (1, 0) 7→ (2, 1)

so at least these images are contained in Sel2(E/Q).
Now, for the other (a, b) ∈ 〈−1, 2〉⊕2 we must check whether Xa,b has points over R and

Q2. An affine piece of Xa,b is given by the equations

x + 1 = az2
1 , x = bz2

2 , x− 1 = abz2
3 ,

and it will suffice to check this piece for points over R and Q2, because when a smooth curve
over a local field has a point, the implicit function theorem implies that the curve has an
analytic neighborhood of such points.

If a < 0 and Xa,b has a real point, the first equation shows that it satisfies x ≤ −1, the
second equation shows that b < 0, and the third equation yields a sign contradiction. Thus

{(1, 1), (2,−1), (1,−1), (2, 1)} ⊆ Sel2(E/Q) ⊆ 〈2〉 × 〈−1, 2〉.



10 BJORN POONEN

But Sel2(E/Q) is a group, so it equals either the group of order 4 on the left, or the group
of order 8 on the right. A calculation shows that X1,2(Q2) is empty, so Sel2(E/Q) =
{(1, 1), (2,−1), (1,−1), (2, 1)}, which has order 4. Since E(Q)/2 → Sel2(E/Q) is surjec-
tive, X(Q, E)2 = 0. Finally, since E2 ⊆ E(Q), #(E(Q)/2) = 22+r. On the other hand,
#(E(Q)/2) ≤ 4, so r = 0.

12. Structure of X

We return to the situation where A is an abelian variety over a number field k. Let
X = X(k,A). The group H1(k, A) = H1(Gk, A(k)) is torsion, as discussed in Section 3,
since Gk is a profinite group. Hence the subgroup X ⊆ H1(k,A) is torsion. In particular,

we may write X =
⊕

p

Xp∞ , where for each prime number p, Xp∞ denotes the p-primary

part of X, that is, the subgroup of elements of X whose order is a power of p. By descent,
Xm is finite for each positive integer m. Therefore, by abelian group theory,

Xp∞ '
(

Qp

Zp

)np

⊕ Tp

where np ∈ Z≥0 and Tp is a finite abelian p-group, hence of the form

Tp '
Z

ps1
⊕ . . .⊕ Z

ps`

for some si ∈ Z>0. The group
⊕

p

(
Qp

Zp

)np

⊆X is called the infinitely divisible subgroup

of X. The conjecture that X is finite says that the infinitely divisible subgroup should be
trivial, and that moreover Tp = 0 for all but finitely many primes p.

Let A∨ denote the dual abelian variety. Then there exists a bilinear Cassels-Tate pairing

X(k,A)×X(k,A∨)→ Q/Z

whose kernel on either side is the infinitely divisible subgroup. See [PS99] for various defini-
tions of this pairing. If X(k,A) is finite, then X(k,A∨) also is finite (this can be deduced
from the existence of an isogeny A→ A∨), and the Cassels-Tate pairing is nondegenerate.

If D is a divisor on A, one can define a homomorphism of abelian varieties φD : A→ A∨

that maps a ∈ A(k) to the class of Da −D in Pic0(A), where Da is obtained by translating
the divisor D by −a. (We use −a only so that the translation agrees with the operation
of t∗a on the corresponding line sheaves, where ta : A → A is the translation-by-a map.) If
D is ample, then φD is an isogeny, and it is then called the polarization associated to D;
in general a polarization on A over k is a homomorphism φD defined over k but possibly
coming from an ample divisor D defined only over k.) The map φD induces a homomorphism
X(k,A) → X(k, A∨), and composing this with the Cassels-Tate pairing lets one define a
pairing

X(k,A)×X(k,A)→ Q/Z,

which turns out to be alternating if D is defined over k.
A finite abelian group equipped with a nondegenerate alternating pairing always has square

order. Thus if φD is an isomorphism with D defined over k, and if #X(k,A) is finite, then
#X(k,A) is a square. In particular, if A is an elliptic curve, and D is the degree 1 divisor
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consisting of the origin O, then φD is an isomorphism; thus for elliptic curves, X is of square
order whenever it is finite.

See [PS99] for more information, including an example of a principally polarized abelian
variety over Q with #X = 2. (This is possible, since the polarization φD does not come
from any D defined over Q. A principal polarization is a polarization that is an isomorphism
A→ A∨.) William Stein found a non-principally polarized example with #X = 3.
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