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“Personne n’a encore découvert d’applications militaires a
la théorie des nombres ou a la théorie de la relativité, et
il est vraisemblable que personne n’en découvrira dans le
futur.”

G. H. Hardy The Mathematician's Apology (1940)



» Chiffrer ou crypter : transformer un message pour le rendre
incompréhensible aux destinataires non autorisés.

» Déchiffrer ou décrypter : retrouver le message clair, a I'aide du
< mode d'emploi > (c'est la tache du destinataire régulier) ou
sans disposer du < mode d’emploi > (c'est le travail de
I'espion).

> Les cryptographes concoivent les systemes de cryptage.

P Les cryptanalystes sont les spécialistes du décryptage sans
mode d'emploi (< attaque >).

L'histoire de la cryptographie est celle de la lutte opposant
cryptographes et cryptanalystes, qui sont souvent les mémes
personnes.



Il'y a un peu plus de 2000 ans : le Chiffre de César

César choisit une lettre pour clé. Par exemple la lettre C

Le cryptage est le décalage qui envoie A sur C :

ABCDEFGHIJKLMNOPQRSTUVWXYZ
CDEFGHIJKLMNOPQRSTUVWXYZAB

Cryptage d'un message

DEMAIN MATIN A LYON
FGOCKP OCVKP C NAQP



Décryptage du Chiffre de César

» Décryptage : Le destinataire effectue le décalage inverse de
celui utilisé pour chiffrer.

> L’'attaque est un jeu d'enfant car I'ensemble des clés est trés
petit. On essaie successivement les 26 clés possibles.

Décryptons FGOCKP :
» Clef A : FGOCKP — FGOCKP
» Clef B : FGOCKP — EFNBJO
» Clef C : FGOCKP — DEMAIN



César

Numérotons les lettres de 0 a 25.

A B CDEVFG ... U V W X Y YA
61 2 3 4 5 6 ... 20 21 22 23 24 25

Le Chiffre de César agit sur les numéros :

61 2 3 4 5 6 ... 20 21 22 23 24 25
2 3 4 5 6 7 8 ... 22 23 24 25 O 1

Le numéro du cryptage de X s'obtient en ajoutant C = 2 au
numéro de X, et, si le résultat est > 26, en soustrayant 26.

Cette opération s'appelle I'addition modulo 26.



Décryptage du Chiffre de César et addition des lettres

Décryptage : on décrypte en soustrayant la clé, c'est a dire en
ajoutant l'opposé de la clé.

Y4+ C=24 + 2 =26 =0 = A, donc |'opposé de C est Y.

Cryptage et décryptage

DEMAIN A LYON FGOCKP C NAQP
+ CCCCCC C CCCC 4+ YYYYYY Y YYYY
FGOCKP C NAQP = DEMAIN A LYON




Cryptage par substitution alphabétique

La clé secréte est une permutation o des 26 lettres de I'alphabet.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
GYDEAFBOZPVXHIURWNLSCTMKQJ

Cryptage : on applique la substitution o a chacune des lettres.
DEMAIN A LYON — EAHGZI G XQUI

Décryptage : on remplace o par la permutation inverse.

o1 = ABCDEFGHIJKLMNOPQRSTUVWXYZ
~ \ EGUCDFVMNZXSWRHJYPTVCKQLBI



Un premiére idée : on essaie toutes les clés?

Nombre de clés :

26l =1 x2x3x --- x26
= 403291461 126 605 635 584 000 000

C’est-a-dire environ 130000 siecles en testant 1000 milliards de
clés par seconde...

Mais il est assez facile de décrypter en analysant les fréquences
d’'occurrences des caracteres.



Une attaque redoutable : I'analyse des fréquences

Al-Kindi (801-873)
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Premiere page du manuscrit de Al-Kindi sur le déchiffrement des
messages cryptographiques par analyse des fréquences.




Fréquences d'occurrence des lettres en francais

Fréquences d'apparition des lettres en francais

12
10

N O

L 10 15 20 25

Le A, le pic du E, le T et les bosses LMNOP et RSTUV.

Informations additionnelles :

» bigrammes les plus fréquents : ES, DE, LE

> Lettres doublées les plus fréquentes : EE, SS, LL
>



Décryptage d'un cryptage par substitution

Message a décrypter.

CEGCL AM NMGAL LJC ZWIWJLL LH CYEWJ RMYCWLJ ZEHC
GHL LJC UMQWCLL RMY ALJ QLANLJ A MGCYL RMY ALJ
MVGWCMWHJ AM CYEWJWLPL RMY SLGF VGW ZMHJ ALGY AMHNGL
JL HEPPLHC SLACLJ LC ZMHJ AM HECYL NMGAEWJ

On attaque en considérant les fréquences d’apparition des lettres.
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Décryptage d'un cryptage par substitution

Message a décrypter.

CEGCL AM NMGAL LJC ZWIWJLL LH CYEWJ RMYCWLJ ZEHC

GHL LJC UMQWCLL RMY ALJ QLANLJ A MGCYL RMY ALJ
MVGWCMWHJ AM CYEWJWLPL RMY SLGF VGW ZMHJ ALGY AMHNGL
JL HEPPLHC SLACLJ LC ZMHJ AM HECYL NMGAEWJ

Décryptage avec (L, M) — (E, A)

CEGCE AA NAGAE EJC ZWIWJEE EH CYEWJ RAYCWEJ ZEHC

GHE EJC UAQWCEE AY AEJ QEANEJ A AGCYE RAY AEJ
AVGWCAWHJ AA CYEWJWEPE RAY SEGF VGW ZAHJ AEGY AAHNGE
JE HEPPEHC SEACEJ EC ZAHJ AA HECYE NAGAEWJ



Décryptage d'un cryptage par substitution

Décryptage avec (L, M) — (E, A)

CEGCE AA NAGAE EJC ZWIWJEE EH CYEWJ RAYCWEJ ZEHC

GHE EJC UAQWCEE AY AEJ QEANEJ A AGCYE RAY AEJ
AVGWCAWHJ AA CYEWJWEPE RAY SEGF VGW ZAHJ AEGY AAHNGE
JE HEPPEHC SEACEJ EC ZAHJ AA HECYE NAGAEWJ

On essaye de deviner des lettres...

CEGCE AA NAGAE EJC ZWIWJEE EH CYEWJ RAYCWEJ ZEHC

GHE EJC UAQWCEE RAY AEJ QEANEJ A AGCYE RAY AEJ
AVGWCAWHJ AA CYEWJWEPE RAY SEGF VGW ZAHJ AEGY AAHNGE
JE HEPPEHC SEACEJ EC ZAHJ AA HECYE NAGAEWJ



Décryptage d'un cryptage par substitution

Décryptage avec (L, M, A) — (E, A, L)

CEGCE LA NAGLE EJC ZWIWJEE EH CYEWJ RAYCWEJ ZEHC

GHE EJC UAQWCEE RAY LEJ QELNEJ L AGCYE RAY LEJ
AVGWCAWHJ LA CYEWJWEPE RAY SEGF VGW ZAHJ LEGY LAHNGE
JE HEPPEHC SELCEJ EC ZAHJ LA HECYE NAGLEWJ

Décryptage avec (L, M, A, J) — (E, A, L, S)

CEGCE LA NAGLE ESC ZWIWSEE EH CYEWS RAYCWES ZEHC

GHE ESC UAQWCEE RAY LES QELNES L AGCYE RAY LES
AVGWCAWHS LA CYEWSWEPE RAY SEGF VGW ZAHS LEGY LAHNGE
SE HEPPEHC SELCES EC ZAHS LA HECYE NAGLEWS



Chiffre de Vigenere : cryptage

Vigenere (diplomate frangais) : Traité des chiffres (1586).

Clé secrete : un mot. (Exemple : la clé HUGO.)

Cryptage : on ajoute les lettres du message avec les lettres de la
clé répétée.

Cryptage d'un message :

AUCLAIRDE LA LUNE MON AMI PTERROT
+ HUGOHUG OH UG OHUG OHU GOH UGOHUGO
= HOIZHCXRLFGZBHK AVH GAP JOSYLUH




Chiffre de Vigenere : décryptage

Décryptage : on ajoute I'opposée de la clé.

HUGO 7 20 6 14
L'opposé de HUGO est TGUM + TGUM 19 6 20 12
= AAAA 0 0 0 0

Décryptage d'un message :

HO IZHCX RL FG ZBHK AVH GAP JOSYLUH
+ TGUMTGUMT GU MTGU MTG UMT GUMTGUM
= AUCLAIRDELALUNE MON AMI PIERROT




Chiffre de Vigenere : les attaques

» Le chiffre de Vigenere a été considéré comme incassable
pendant pres de 300 ans.

» Vers 1850, C. Babbage et F. Kasiski ont cassé ce chiffre.



Chiffre de Vigenere : attaque pour longueur de clé connue

Considérons le message suivant crypté avec une clé inconnue de
longueur 4.

TUOHYYICYVKOBMAFBHGFILKDLLIVLNKBHCZSUMUBIYIIUZXC
TUMSTUOHYYXSUUXRWUXZVXKIYURZLWNSSOOHPHZOWYADYYYQ
LFGBNUMSOYHCUDUIYGUBZCKIYXAQVLHSHOWILPUIZYZSZDUZ
PKASCIAGTYYSTVRSGVKOBMGBZGKBACXGPPUHYYXOTUMSZYX0
WIUFAYGJVNXSWFAAHAKJVOYSAYYZLJINSUCDRLMNCAYYRLWKG
ITOGHWKGTIZGSYICYVKOBHKGLMKBAJGGKYPCPYKHWIAFTITH
YYXGHVKZSYBCPROZVOBFLOTZHLMSIYIZHCYGLNUATIYXGHJXC
PYRSYYTOYXYSUMGWZCZSAXOHTITPVHSCUMOSBLGDWLKBLTWI
LNUTAZROANKIYPOHHODRLJKBZXKQLFAWX00ZLWUIAYISANKZ
LWUBCUAHICKBBHLFVGGULMGBZXUIAYRSJIXPLUAVVHZSBRKH
JITTBMPIYUSOPMABWYAHHLJEBITBLFEDYYTRYUOHWFAG



Chiffre de Vigenere : attaque pour longueur de clé connue

Message extrait (de 4 en 4 partant du rang 0) :

TYYBBILLHUIUTTYUWVYLSPWYLNOUYZYVHLZZPCTTGBZAPYTZ

WAVWHVALULALTHTSYBLAKPWTYHSPVLHIHLIHPYYUZATVUBWL
LAAYHLZLXLAALCIBVLZAJLVBJBYPWHBLYYW

Ce message est obtenu en ajoutant a chaque lettre du message
clair la méme lettre de la clé. C'est donc un Chiffre de César
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Histogramme des fréquences du message extrait

La premiere lettre de la clé est 11 —4 =7 =H.



Vigenere

» Si on connait la longueur de la clé, I'analyse des fréquences
permet de décrypter le message crypté.

> Le décryptage du Chiffre de Vigenére se fait en essayant une
longueur de clé de 2, 3, 4,... jusqu'a obtenir le texte clair.



La machine électromécanique Enigma (Arthur Scherbius,
1918) utilisée par I'armée allemande a partir de 1926.
Cryptage par un renforcement du Chiffre de Vigenere.

Premieres attaques réussies par le polonais M. Rejewsky
(années 1930). Peu avant l'invasion de la Pologne, Rejewsky
communique ses informations aux francais et britanniques.

Pendant la 2¢ guerre mondiale, le gouvernement britannique
établit a Bletchley Park une importante équipe (=~ 7000
personnes) réunissant des mathématiciens, des logiciens, des
linguistes, des cruciverbistes sous la direction de A. Turing.

A I'aide de gros calculateurs électromécaniques, puis
électroniques, cette équipe parvient a casser le code Enigma
et ses perfectionnements.



Un exemplaire de la machine Enigma



Désavantage principal. Petite taille des alphabets utilisés (quelques
dizaines de lettres).

Attaques par |'étude des fréquences d'occurrences et leurs
variations permettent d'identifier de courts extraits du message

clair.



» Principe de Kerckhoff : publicité des algorithmes

» Fin des petits alphabets : cryptage par blocs

» Cryptographie a clé publique



Principe de Kerckhoff

Auguste Kerckhoff (professeur a I'Ecole des Hautes Etudes
Commerciales) dans le Journal Des Sciences Militaires (1883) :

. si I’Administration veut mettre a profit tous les services
que peut rendre un systéme de correspondance cryptogra-
phique bien combiné, elle doit absolument renoncer aux
méthodes secreétes, et établir en principe qu’elle n’accep-
tera qu'un procédé qui puisse étre enseigné au grand jour
dans nos écoles militaires, que nos éléves seront libres de
communiquer a qui leur plaira . ..



Kerckhoff

On ne peut jamais garantir qu'un secret sera préservé.

Les algorithmes de cryptage et de décryptages sont publics
mais les protagonistes partagent une clé secréte.

Il est plus facile de changer de clé que d'algorithme de
cryptage.

La publicité de I'algorithme est le meilleur moyen de s'assurer
de sa robustesse.



En cryptographie moderne, on commence par regrouper les
caractéres du message a crypter en blocs d'une taille fixe.

On remplace ainsi I'alphabet des caractéres par I'alphabet des
blocs (en général binaires).

Le nombre de lettres de I'alphabet est tout petit, mais le
nombre de blocs d'une taille donnée est grand. Pour une taille
de bloc de 64 bits, le nombre de blocs différents est

264 — 18446 744073709551 616.

(Environ 3000000 “Library of Congress” [200 millions de livres])

L'analyse des fréquence devient impossible.



Diffie 1975

» La sécurité du cryptage ne repose plus sur le partage
d'une clé secrete.

» Le protocole contient deux clés : une clé publique pour
crypter le message et une clé secrete pour décrypter le
message.

» |l ne propose pas cependant de protocole effectif...



canal sdr
canal non sir

Générateur de clés

Cryptage

canal sdr
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et

1976 : création du protocole a clé secrete D. E. S (Data Encryption
Standard) suite a un appel d'offre du National Bureau of Standards
en 1973. C'est le protocole dominant des années 1980-2000.

» Clefs de 56 bits. Cryptage par blocs de 64 bits.

Aujourd'hui, une attaque casse un message chiffré par D. E. S. en
quelques heures.

1997 : Nouvel appel d'offre avec adoption en 2001 de A. E. S
(Advanced Encryption Standard).

» Clé de 128, 192 ou 256 bits.
» Cryptage par blocs de 128 bits.
» Rapide ~ 100 Mo par seconde.
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1975-1980

Au début des années 1970.
» Cryptages rapides et siirs avec D. E. S et variations.
P> A condition de partager une clé avec chaque correspondant.

» Avec des d'échanges de plus en plus nombreux et de plus en
plus lointains.

P Le probleme du partage des clés devient inextricable.

Diffie et Hellmann apportent deux solutions a ce probleme.

» Le protocole de Diffie-Hellman : Il est possible d'échanger un
clé secrete au moyen d'une conversation que tout le monde
peut entendre.

» La cryptographie asymétrique ou cryptographie a clé publique.



7. mZ

» Réduire un nombre modulo m c'est le remplacer par le reste
de sa division euclidienne par m (toujours entre 0 et m — 1).

» Effectuer une addition ou une multiplication modulo m de x
par y, c'est additionner ou multiplier x et y, puis réduire le
résultat modulo m.

» Pour m > 1 un entier, Z/mZ est I'ensemble des entiers
réduits modulo m, muni de I'addition et de la multiplication
modulo m (c’est un anneau).

Par exemple, Z/10Z est I'ensemble {0,1,2,3,4,5,6,7,8,9} et
5+7=2, 3-7=6, 3-2=6, 3-9=7, 6-5=0.



(Z/mZ)* et (Z/pZ)’

Le sous-ensemble des entiers inversibles modulo m est défini par
(Z/mZ)* ={0 < x < m—1:PGCD(x,m) =1}

est un groupe multiplicatif, c'est-a-dire :

Pour tout x € (Z/mZ)*, il existe y € (Z/mZ)* tel que xy = 1.

Exemple : (Z/10Z2)* = {1,3,7,9} et 3-7 = 1.

Pour x € (Z/mZ)*, on pose
x)={x*=1,xt =x,x*,x%,- .-} C (Z/mZ)*.

Exemple : x =5 dans (Z/7Z2)* = {1,2,3,4,5,6}
(5) ={1, 5, 4, 6, 2, 3}

Théoréme : Soit p un nombre premier. |l existe g € (Z/pZ)* tel
que (g) = (Z/pZ)*. (C'est un groupe cyclique de générateur g).



Diffie-Hellman

» Alice : Choix de p (premier) et g générateur de (Z/pZ)*
p =30967624360979079013 g = 11595598273 653500 247.

» Choix de a (secret) et calcul de A= g mod p
A =23606831717615331161.

» Envoi sur canal publique de p, g et A a Bob.

» Bob : Choix de b (secret) et envoie sur canal publique a Alice
de
B =g" mod p= 14308194949 994 250 745.

» Alice calcule B? et Bob calcule A?. C'est le secret commun car

Ab — (ga)b _ gab — (gb)a — B?



Le protocole de Diffie-Hellman d’'échanger de clé

Que peut faire I'attaquant Eve?
» Elle connait A=g? B=gP? petg.
» Elle ne connait pas a, b, ni ab. Comment trouver gab?

» |l faut pouvoir résoudre le probléme suivant :
Etant donnés A, p et g. Trouver a € {0,...,p — 1} tel que

a

g? mod p=A.

» (C'est le probleme du logarithme discret.



logarithme discret

Soit G un groupe fini cyclique d'ordre n de générateur g. Donc

G = {goyglagza-”ygn_l}-
Soit x € G. Trouver a € {0,...,n— 1} tel que x = g°.

Méthode directe. On calcule g%, g1, g2, ... jusqu'a obtenir g2 = x.
colit & n opérations dans G.

Méthodes génériques. Pour un groupe G de type boite noire, il
faut &~ v/¢ opérations dans G avec ¢ le plus grand nombre premier
divisant n par la méthode Baby Step - Giant Step.

Pour G = (Z/pZ)*. On sait faire beaucoup mieux avec les
méthodes d'indice.

Remarque. Si g,x € R alors a := log(x)/ log(g).



logarithme discret

Soit G un groupe fini cyclique d'ordre n engendré par g. Soit

x € G. Trouver a € {0,...,n— 1} tel que x = g°.

Méthode. On pose m = [y/n]. On calcule et on stocke
(,g) pour j=0,1,...,m—1.

Pour k =0,1,..., on teste si xg~“™ = g/ avec j € {0,...,m—1}.
Si oui, on renvoie km + j.

Preuve. Par division euclidienne a = km + j avec 0 < j < m et
k < m par choix de m.

Rapport n <+ v/n. 1h <> 1mn, 1 mois <> 27mn, 1 an <> 1h35...



Rivest, Shamir, Adleman 1977

> Clé secrete : p et g deux grands nombres premiers

» Clé publique : N = pqg et un exposant e (en général 3 ou
216 4+ 1 = 65537).

» Message : entier x € (Z/NZ)*.
> Le cryptage est I'application x — x¢
> Le décryptage est I'application y — y
avec ed =1 (mod (p —1)(g — 1)).
Preuve. On a
(Z/NZ)" ~ (Z/pZ)" x (Z/qZ)*

donc c'est un groupe d'ordre (p — 1)(g — 1) et x(P~D(a=1) = 1,

Calculer d est facile si on peut retrouver p et g a partir de .
Pour casser RSA, il faut résoudre le probleme de la factorisation.



p de Pollard

Paradoxe des anniversaires.

Question. Combien faut-il de personnes pour en avoir (au moins)
deux avec le méme anniversaire ? et avec une probabilité > 1/27

Formalisation. E := {ey,...,en}. Eléments x3,...,xx dans E au
hasard avec répétition possible.
Probabilité px qu'il existe i # j tels que x; = x; 7

Pobabilité que tous les x; soient distincts :

n(n—1)--- (: ~(k-1) (1 _ ;) ~ oxp (4(;;1))

i i=1
Théoreme. Si k > 1,2/n, alors py > 1/2.

Réponse. pour n = 365, on trouve [1,2/n]| = 23.



p de Pollard

But. Factoriser N = pq.

Idée. xi,...,xx nombres au hasard entre 0 et N — 1. Pour k = /p,
avec probabilité > 1/2, il existe i # j tels que x; = x; (mod p) et
donc

PGCD(x; — xj, N) > 1.

Probléeme. il faut stocker toutes les valeurs et tester toutes les
paires !

Solution. On utilise la suite x; = [V/N] et x; = x> ; + ¢ mod N.
La suite (x;)i>o0 (presque une suite aléatoire pour ¢ # 0, —2) et est
ultimement périodique modulo p.

Théoreme. Si (x,) est un suite ultimement périodique, il existe
m > 1 tel que x;, = xom.

Estimation du coiit. & ,/p ~ N'/# opérations.



Factorisation : la méthode p de Pollard
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p de Pollard

Exemple. Factoriser N = 127 199.

m 5% Xom PGCD | m 5% Xom PGCD
1 357 251 1 11 | 125075 | 105564 1
2 251 7210 1 12| 59412 | 28503 1
3 | 63002 | 97662 1 13| 13495 | 103617 1
4 | 7210 | 114009 1 14 | 93257 | 97895 1
5 | 86909 | 54078 1 15 | 18022 | 99548 1
6 | 97662 | 59412 1 16 | 53438 | 42431 1
7 1103628 | 93257 1 17 | 2295 | 44053 1
8 | 114009 | 53438 1 18 | 51867 | 115435 1
9 | 95068 | 51867 1 19 | 54039 | 28231 1
10 | 54078 | 106079 1 20 | 106079 | 123495 | 311

D’ou la factorisation N = 311 - 409



» On ne peut pas préjuger de I'applicabilité de la recherche
fondamentale.

» |'arithmétique a beaucoup apporté a la cryptographie.

P Inversement, les problemes posés par la cryptographie, on
revivifié des domaines mathématiques déja anciens, comme la
factorisation des entiers, en y apportant de nouveaux points
de vue et de nouvelles questions.
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