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“Personne n’a encore découvert d’applications militaires à
la théorie des nombres ou à la théorie de la relativité, et
il est vraisemblable que personne n’en découvrira dans le
futur.”

G. H. Hardy The Mathematician’s Apology (1940)



Vocabulaire

I Chiffrer ou crypter : transformer un message pour le rendre
incompréhensible aux destinataires non autorisés.

I Déchiffrer ou décrypter : retrouver le message clair, à l’aide du
� mode d’emploi � (c’est la tâche du destinataire régulier) ou
sans disposer du � mode d’emploi � (c’est le travail de
l’espion).

I Les cryptographes conçoivent les systèmes de cryptage.

I Les cryptanalystes sont les spécialistes du décryptage sans
mode d’emploi (� attaque �).

L’histoire de la cryptographie est celle de la lutte opposant
cryptographes et cryptanalystes, qui sont souvent les mêmes
personnes.



Il y a un peu plus de 2000 ans : le Chiffre de César

César choisit une lettre pour clé. Par exemple la lettre C

Le cryptage est le décalage qui envoie A sur C :

ABCDEFGHIJKLMNOPQRSTUVWXYZ

CDEFGHIJKLMNOPQRSTUVWXYZAB

Cryptage d’un message

DEMAIN MATIN A LYON

FGOCKP OCVKP C NAQP



Décryptage du Chiffre de César

I Décryptage : Le destinataire effectue le décalage inverse de
celui utilisé pour chiffrer.

I L’attaque est un jeu d’enfant car l’ensemble des clés est très
petit. On essaie successivement les 26 clés possibles.

Décryptons FGOCKP :

I Clef A : FGOCKP → FGOCKP

I Clef B : FGOCKP → EFNBJO

I Clef C : FGOCKP → DEMAIN



Un peu d’arithmétique : César et l’addition modulo 26

Numérotons les lettres de 0 à 25.

A B C D E F G ... U V W X Y Z

0 1 2 3 4 5 6 ... 20 21 22 23 24 25

Le Chiffre de César agit sur les numéros :

0 1 2 3 4 5 6 ... 20 21 22 23 24 25

2 3 4 5 6 7 8 ... 22 23 24 25 0 1

Le numéro du cryptage de X s’obtient en ajoutant C = 2 au
numéro de X , et, si le résultat est ≥ 26, en soustrayant 26.

Cette opération s’appelle l’addition modulo 26.



Décryptage du Chiffre de César et addition des lettres

Décryptage : on décrypte en soustrayant la clé, c’est à dire en
ajoutant l’opposé de la clé.

Y + C = 24 + 2 = 26 = 0 = A, donc l’opposé de C est Y.

Cryptage et décryptage

DEMAIN A LYON

+ CCCCCC C CCCC

= FGOCKP C NAQP

FGOCKP C NAQP

+ YYYYYY Y YYYY

= DEMAIN A LYON



Cryptage par substitution alphabétique

La clé secrète est une permutation σ des 26 lettres de l’alphabet.

σ =

(
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

G Y D E A F B O Z P V X H I U R W N L S C T M K Q J

)

Cryptage : on applique la substitution σ à chacune des lettres.
DEMAIN A LYON −→ EAHGZI G XQUI

Décryptage : on remplace σ par la permutation inverse.

σ−1 =

(
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

E G U C D F V M N Z X S W R H J Y P T V C K Q L B I

)



Attaque du cryptage par substitution

Un première idée : on essaie toutes les clés ?

Nombre de clés :

26! = 1 x 2 x 3 x · · · x 26

= 403 291 461 126 605 635 584 000 000

C’est-à-dire environ 130 000 siècles en testant 1000 milliards de
clés par seconde...

Mais il est assez facile de décrypter en analysant les fréquences
d’occurrences des caractères.



Une attaque redoutable : l’analyse des fréquences

Al-Kindi (801-873)

Première page du manuscrit de Al-Kindi sur le déchiffrement des
messages cryptographiques par analyse des fréquences.



Fréquences d’occurrence des lettres en français

Fréquences d’apparition des lettres en français

Le A, le pic du E, le I et les bosses LMNOP et RSTUV.

Informations additionnelles :

I bigrammes les plus fréquents : ES, DE, LE

I Lettres doublées les plus fréquentes : EE, SS, LL

I . . .



Décryptage d’un cryptage par substitution

Message à décrypter.

CEGCL AM NMGAL LJC ZWIWJLL LH CYEWJ RMYCWLJ ZEHC

GHL LJC UMQWCLL RMY ALJ QLANLJ A MGCYL RMY ALJ

MVGWCMWHJ AM CYEWJWLPL RMY SLGF VGW ZMHJ ALGY AMHNGL

JL HEPPLHC SLACLJ LC ZMHJ AM HECYL NMGAEWJ

On attaque en considérant les fréquences d’apparition des lettres.

E A S I N T R L

17,3% 8,4% 8,1% 7,4% 7,1% 7,0% 6,6% 6,0%

L M C J A W H G

27 16 15 15 12 11 10 10



Décryptage d’un cryptage par substitution

Message à décrypter.

CEGCL AM NMGAL LJC ZWIWJLL LH CYEWJ RMYCWLJ ZEHC

GHL LJC UMQWCLL RMY ALJ QLANLJ A MGCYL RMY ALJ

MVGWCMWHJ AM CYEWJWLPL RMY SLGF VGW ZMHJ ALGY AMHNGL

JL HEPPLHC SLACLJ LC ZMHJ AM HECYL NMGAEWJ

Décryptage avec (L, M) → (E, A)

CEGCE AA NAGAE EJC ZWIWJEE EH CYEWJ RAYCWEJ ZEHC

GHE EJC UAQWCEE AY AEJ QEANEJ A AGCYE RAY AEJ

AVGWCAWHJ AA CYEWJWEPE RAY SEGF VGW ZAHJ AEGY AAHNGE

JE HEPPEHC SEACEJ EC ZAHJ AA HECYE NAGAEWJ



Décryptage d’un cryptage par substitution

Décryptage avec (L, M) → (E, A)

CEGCE AA NAGAE EJC ZWIWJEE EH CYEWJ RAYCWEJ ZEHC

GHE EJC UAQWCEE AY AEJ QEANEJ A AGCYE RAY AEJ

AVGWCAWHJ AA CYEWJWEPE RAY SEGF VGW ZAHJ AEGY AAHNGE

JE HEPPEHC SEACEJ EC ZAHJ AA HECYE NAGAEWJ

On essaye de deviner des lettres...

CEGCE AA NAGAE EJC ZWIWJEE EH CYEWJ RAYCWEJ ZEHC

GHE EJC UAQWCEE RAY AEJ QEANEJ A AGCYE RAY AEJ

AVGWCAWHJ AA CYEWJWEPE RAY SEGF VGW ZAHJ AEGY AAHNGE

JE HEPPEHC SEACEJ EC ZAHJ AA HECYE NAGAEWJ



Décryptage d’un cryptage par substitution

Décryptage avec (L, M, A) → (E, A, L)

CEGCE LA NAGLE EJC ZWIWJEE EH CYEWJ RAYCWEJ ZEHC

GHE EJC UAQWCEE RAY LEJ QELNEJ L AGCYE RAY LEJ

AVGWCAWHJ LA CYEWJWEPE RAY SEGF VGW ZAHJ LEGY LAHNGE

JE HEPPEHC SELCEJ EC ZAHJ LA HECYE NAGLEWJ

Décryptage avec (L, M, A, J) → (E, A, L, S)

CEGCE LA NAGLE ESC ZWIWSEE EH CYEWS RAYCWES ZEHC

GHE ESC UAQWCEE RAY LES QELNES L AGCYE RAY LES

AVGWCAWHS LA CYEWSWEPE RAY SEGF VGW ZAHS LEGY LAHNGE

SE HEPPEHC SELCES EC ZAHS LA HECYE NAGLEWS

...



Chiffre de Vigenère : cryptage

Vigenère (diplomate français) : Traité des chiffres (1586).

Clé secrète : un mot. (Exemple : la clé HUGO.)

Cryptage : on ajoute les lettres du message avec les lettres de la
clé répétée.

Cryptage d’un message :

AU CLAIR DE LA LUNE MON AMI PIERROT

+ HU GOHUG OH UG OHUG OHU GOH UGOHUGO

= HO IZHCX RL FG ZBHK AVH GAP JOSYLUH



Chiffre de Vigenère : décryptage

Décryptage : on ajoute l’opposée de la clé.

L’opposé de HUGO est TGUM

HUGO

+ TGUM

= AAAA

7 20 6 14
19 6 20 12

0 0 0 0

Décryptage d’un message :

HO IZHCX RL FG ZBHK AVH GAP JOSYLUH

+ TG UMTGU MT GU MTGU MTG UMT GUMTGUM

= AU CLAIR DE LA LUNE MON AMI PIERROT



Chiffre de Vigenère : les attaques

I Le chiffre de Vigenère a été considéré comme incassable
pendant près de 300 ans.

I Vers 1850, C. Babbage et F. Kasiski ont cassé ce chiffre.



Chiffre de Vigenère : attaque pour longueur de clé connue

Considérons le message suivant crypté avec une clé inconnue de
longueur 4.

TUOHYYICYVKOBMAFBHGFILKDLLIVLNKBHCZSUMUBIYIIUZXC

TUMSTUOHYYXSUUXRWUXZVXKIYURZLWNSSOOHPHZOWYADYYYQ

LFGBNUMSOYHCUDUIYGUBZCKIYXAQVLHSHOWILPUIZYZSZDUZ

PKASCIAGTYYSTVRSGVKOBMGBZGKBACXGPPUHYYXOTUMSZYXO

WJUFAYGJVNXSWFAAHAKJVOYSAYYZLJNSUCDRLMNCAYYRLWKG

IIOGHWKGTIZGSYICYVKOBHKGLMKBAJGGKYPCPYKHWIAFTITH

YYXGHVKZSYBCPROZVOBFLOTZHLMSIYIZHCYGLNUAIYXGHJXC

PYRSYYTOYXYSUMGWZCZSAXOHTITPVHSCUMOSBLGDWLKBLTWI

LNUIAZROANKIYPOHHODRLJKBZXKQLFAWXOOZLWUIAYISANKZ

LWUBCUAHICKBBHLFVGGULMGBZXUIAYRSJIXPLUAVVHZSBRKH

JITTBMPIYUSOPMABWYAHHLJEBITBLFEDYYTRYUOHWFAG



Chiffre de Vigenère : attaque pour longueur de clé connue

Message extrait (de 4 en 4 partant du rang 0) :

TYYBBILLHUIUTTYUWVYLSPWYLNOUYZYVHLZZPCTTGBZAPYTZ

WAVWHVALULALIHTSYBLAKPWTYHSPVLHIHLIHPYYUZATVUBWL

LAAYHLZLXLAALCIBVLZAJLVBJBYPWHBLYYW

Ce message est obtenu en ajoutant à chaque lettre du message
clair la même lettre de la clé. C’est donc un Chiffre de César

Histogramme des fréquences du message extrait

La première lettre de la clé est 11− 4 = 7 = H.



Chiffre de Vigenère : attaque dans le cas général

I Si on connait la longueur de la clé, l’analyse des fréquences
permet de décrypter le message crypté.

I Le décryptage du Chiffre de Vigenère se fait en essayant une
longueur de clé de 2, 3, 4,. . . jusqu’à obtenir le texte clair.



Derniers cryptages par substitution

I La machine électromécanique Enigma (Arthur Scherbius,
1918) utilisée par l’armée allemande à partir de 1926.
Cryptage par un renforcement du Chiffre de Vigenère.

I Premières attaques réussies par le polonais M. Rejewsky
(années 1930). Peu avant l’invasion de la Pologne, Rejewsky
communique ses informations aux français et britanniques.

I Pendant la 2e guerre mondiale, le gouvernement britannique
établit à Bletchley Park une importante équipe (≈ 7 000
personnes) réunissant des mathématiciens, des logiciens, des
linguistes, des cruciverbistes sous la direction de A. Turing.

I A l’aide de gros calculateurs électromécaniques, puis
électroniques, cette équipe parvient à casser le code Enigma
et ses perfectionnements.



Un exemplaire de la machine Enigma



Conclusion sur les cryptages alphabétiques

Désavantage principal. Petite taille des alphabets utilisés (quelques
dizaines de lettres).

Attaques par l’étude des fréquences d’occurrences et leurs
variations permettent d’identifier de courts extraits du message
clair.



La cryptographie moderne

I Principe de Kerckhoff : publicité des algorithmes

I Fin des petits alphabets : cryptage par blocs

I Cryptographie à clé publique



Principe de Kerckhoff

Auguste Kerckhoff (professeur à l’Ecole des Hautes Etudes
Commerciales) dans le Journal Des Sciences Militaires (1883) :

. . . si l’Administration veut mettre à profit tous les services
que peut rendre un système de correspondance cryptogra-
phique bien combiné, elle doit absolument renoncer aux
méthodes secrètes, et établir en principe qu’elle n’accep-
tera qu’un procédé qui puisse être enseigné au grand jour
dans nos écoles militaires, que nos élèves seront libres de
communiquer à qui leur plaira . . .



Le principe de Kerckhoff : pourquoi ?

I On ne peut jamais garantir qu’un secret sera préservé.

I Les algorithmes de cryptage et de décryptages sont publics
mais les protagonistes partagent une clé secrète.

I Il est plus facile de changer de clé que d’algorithme de
cryptage.

I La publicité de l’algorithme est le meilleur moyen de s’assurer
de sa robustesse.



Cryptage par blocs

I En cryptographie moderne, on commence par regrouper les
caractères du message à crypter en blocs d’une taille fixe.

I On remplace ainsi l’alphabet des caractères par l’alphabet des
blocs (en général binaires).

I Le nombre de lettres de l’alphabet est tout petit, mais le
nombre de blocs d’une taille donnée est grand. Pour une taille
de bloc de 64 bits, le nombre de blocs différents est

264 = 18 446 744 073 709 551 616.

(Environ 3 000 000 “Library of Congress” [200 millions de livres])

I L’analyse des fréquence devient impossible.



Cryptographie à clé publique (Diffie 1975)

I La sécurité du cryptage ne repose plus sur le partage
d’une clé secrète.

I Le protocole contient deux clés : une clé publique pour
crypter le message et une clé secrète pour décrypter le
message.

I Il ne propose pas cependant de protocole effectif...



Protocoles à clé secréte et à clé publique

Générateur de clés

Cryptage
c = Ck (m)

Source

Décryptage
m = Dk (c)

Destination

k

k

m m

c

Alice Bob

canal sûr
canal non sûr

Protocole à clé secrète

Générateur de clés

Cryptage
c = CkB (m)

Source

Décryptage
m = DlB (c)

Destination

kB
lB

m m

c

Alice Bob

canal sûr
canal non sûr

Protocole à clé publique



Protocoles symétriques modernes : D. E. S et A. E. S

1976 : création du protocole à clé secrète D. E. S (Data Encryption

Standard) suite à un appel d’offre du National Bureau of Standards
en 1973. C’est le protocole dominant des années 1980-2000.

I Clefs de 56 bits. Cryptage par blocs de 64 bits.

Aujourd’hui, une attaque casse un message chiffré par D. E. S. en
quelques heures.

1997 : Nouvel appel d’offre avec adoption en 2001 de A. E. S
(Advanced Encryption Standard).

I Clé de 128, 192 ou 256 bits.

I Cryptage par blocs de 128 bits.

I Rapide ≈ 100 Mo par seconde.



Diagramme de base pour I.D.E.A. (une ronde)

w1 w2 w3 w4

K1 K2 K3 K4

K5

K6

× ×+ +

+
+

× +

+ ×

+ +

+ +

w ′1 w ′2 w ′3 w ′4



Le tournant des années 1975-1980

Au début des années 1970.

I Cryptages rapides et sûrs avec D. E. S et variations.

I A condition de partager une clé avec chaque correspondant.

I Avec des d’échanges de plus en plus nombreux et de plus en
plus lointains.

I Le problème du partage des clés devient inextricable.

Diffie et Hellmann apportent deux solutions à ce problème.

I Le protocole de Diffie–Hellman : Il est possible d’échanger un
clé secrète au moyen d’une conversation que tout le monde
peut entendre.

I La cryptographie asymétrique ou cryptographie à clé publique.



Un peu de math... L’anneau Z/mZ

I Réduire un nombre modulo m c’est le remplacer par le reste
de sa division euclidienne par m (toujours entre 0 et m − 1).

I Effectuer une addition ou une multiplication modulo m de x
par y , c’est additionner ou multiplier x et y , puis réduire le
résultat modulo m.

I Pour m > 1 un entier, Z/mZ est l’ensemble des entiers
réduits modulo m, muni de l’addition et de la multiplication
modulo m (c’est un anneau).

Par exemple, Z/10Z est l’ensemble {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} et
5 + 7 ≡ 2, 3− 7 ≡ 6, 3 · 2 ≡ 6, 3 · 9 ≡ 7, 6 · 5 ≡ 0.



(Z/mZ)∗ et (Z/pZ)∗

Le sous-ensemble des entiers inversibles modulo m est défini par

(Z/mZ)∗ = {0 ≤ x ≤ m − 1 : PGCD(x ,m) = 1}
est un groupe multiplicatif, c’est-à-dire :

Pour tout x ∈ (Z/mZ)∗, il existe y ∈ (Z/mZ)∗ tel que xy ≡ 1.

Exemple : (Z/10Z)∗ = {1, 3, 7, 9} et 3 · 7 ≡ 1.

Pour x ∈ (Z/mZ)∗, on pose

〈x〉 = {x0 = 1, x1 = x , x2, x3, · · · } ⊂ (Z/mZ)∗.

Exemple : x = 5 dans (Z/7Z)∗ = {1, 2, 3, 4, 5, 6}
〈5〉 = {1, 5, 4, 6, 2, 3}

Théorème : Soit p un nombre premier. Il existe g ∈ (Z/pZ)∗ tel
que 〈g〉 = (Z/pZ)∗. (C’est un groupe cyclique de générateur g).



Le protocole de Diffie-Hellman ou comment échanger une
clé

I Alice : Choix de p (premier) et g générateur de (Z/pZ)∗

p = 30 967 624 360 979 079 013 g = 11 595 598 273 653 509 247.

I Choix de a (secret) et calcul de A = g a mod p

A = 23 606 831 717 615 331 161.

I Envoi sur canal publique de p, g et A à Bob.

I Bob : Choix de b (secret) et envoie sur canal publique à Alice
de

B = gb mod p ≡ 14 308 194 949 994 250 745.

I Alice calcule Ba et Bob calcule Ab. C’est le secret commun car

Ab = (ga)b = gab = (gb)a = Ba



Le protocole de Diffie-Hellman d’échanger de clé

Que peut faire l’attaquant Eve ?

I Elle connait A = ga, B = gb, p et g.

I Elle ne connait pas a, b, ni ab. Comment trouver gab ?

I Il faut pouvoir résoudre le problème suivant :

Etant donnés A, p et g. Trouver a ∈ {0, . . . , p − 1} tel que

ga mod p = A.

I C’est le problème du logarithme discret.



Problème du logarithme discret

Soit G un groupe fini cyclique d’ordre n de générateur g . Donc

G = {g 0, g 1, g 2, . . . , gn−1}.

Soit x ∈ G . Trouver a ∈ {0, . . . , n − 1} tel que x = ga.

Méthode directe. On calcule g 0, g 1, g 2, . . . jusqu’à obtenir ga = x .
coût ≈ n opérations dans G .

Méthodes génériques. Pour un groupe G de type bôıte noire, il
faut ≈

√
` opérations dans G avec ` le plus grand nombre premier

divisant n par la méthode Baby Step - Giant Step.

Pour G = (Z/pZ)∗. On sait faire beaucoup mieux avec les
méthodes d’indice.

Remarque. Si g , x ∈ R+ alors a := log(x)/ log(g).



Problème du logarithme discret : Baby step - Giant Step

Soit G un groupe fini cyclique d’ordre n engendré par g . Soit
x ∈ G . Trouver a ∈ {0, . . . , n − 1} tel que x = ga.

Méthode. On pose m = d
√

ne. On calcule et on stocke

(j , g j) pour j = 0, 1, . . . ,m − 1.

Pour k = 0, 1, . . . , on teste si xg−km = g j avec j ∈ {0, . . . ,m− 1}.
Si oui, on renvoie km + j .

Preuve. Par division euclidienne a = km + j avec 0 ≤ j < m et
k < m par choix de m.

Rapport n↔
√

n. 1h ↔ 1mn, 1 mois ↔ 27mn, 1 an ↔ 1h35...



Protocole RSA (Rivest, Shamir, Adleman 1977)

I Clé secrète : p et q deux grands nombres premiers

I Clé publique : N = pq et un exposant e (en général 3 ou

216 + 1 = 65 537).

I Message : entier x ∈ (Z/NZ)∗.

I Le cryptage est l’application x 7→ xe

I Le décryptage est l’application y 7→ yd

avec ed = 1 (mod (p − 1)(q − 1)).

Preuve. On a
(Z/NZ)∗ ' (Z/pZ)∗ × (Z/qZ)∗

donc c’est un groupe d’ordre (p − 1)(q − 1) et x (p−1)(q−1) = 1.

Calculer d est facile si on peut retrouver p et q à partir de N.
Pour casser RSA, il faut résoudre le problème de la factorisation.



Factorisation : la méthode ρ de Pollard

Paradoxe des anniversaires.

Question. Combien faut-il de personnes pour en avoir (au moins)
deux avec le même anniversaire ? et avec une probabilité > 1/2 ?

Formalisation. E := {e1, . . . , en}. Eléments x1, . . . , xk dans E au
hasard avec répétition possible.
Probabilité pk qu’il existe i 6= j tels que xi = xj ?

Pobabilité que tous les xi soient distincts :

n(n − 1) · · · (n − (k − 1))

nk
=

k−1∏
i=1

(
1− i

n

)
≈ exp

(
−k(k−1)

2n

)
Théorème. Si k ≥ 1, 2

√
n, alors pk > 1/2.

Réponse. pour n = 365, on trouve d1, 2
√

ne = 23.



Factorisation : la méthode ρ de Pollard

But. Factoriser N = pq.

Idée. x1, . . . , xk nombres au hasard entre 0 et N − 1. Pour k ≈ √p,
avec probabilité > 1/2, il existe i 6= j tels que xi ≡ xj (mod p) et
donc

PGCD(xi − xj ,N) > 1.

Problème. il faut stocker toutes les valeurs et tester toutes les
paires !

Solution. On utilise la suite x1 = d
√

Ne et xi = x2
i−1 + c mod N.

La suite (xi )i≥0 (presque une suite aléatoire pour c 6= 0,−2) et est
ultimement périodique modulo p.

Théorème. Si (xn) est un suite ultimement périodique, il existe
m ≥ 1 tel que xm = x2m.

Estimation du coût. ≈ √p ≈ N1/4 opérations.



Factorisation : la méthode ρ de Pollard



Factorisation : la méthode ρ de Pollard

Exemple. Factoriser N = 127 199.

m xm x2m PGCD m xm x2m PGCD

1 357 251 1 11 125075 105564 1
2 251 7210 1 12 59412 28503 1
3 63002 97662 1 13 13495 103617 1
4 7210 114009 1 14 93257 97895 1
5 86909 54078 1 15 18022 99548 1
6 97662 59412 1 16 53438 42431 1
7 103628 93257 1 17 2295 44053 1
8 114009 53438 1 18 51867 115435 1
9 95068 51867 1 19 54039 28231 1

10 54078 106079 1 20 106079 123495 311

D’où la factorisation N = 311 · 409



Conclusion générale

I On ne peut pas préjuger de l’applicabilité de la recherche
fondamentale.

I L’arithmétique a beaucoup apporté à la cryptographie.

I Inversement, les problèmes posés par la cryptographie, on
revivifié des domaines mathématiques déjà anciens, comme la
factorisation des entiers, en y apportant de nouveaux points
de vue et de nouvelles questions.
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