
A BRUMER-STARK CONJECTURE FOR NON-ABELIAN GALOIS

EXTENSIONS

GAELLE DEJOU AND XAVIER-FRANÇOIS ROBLOT

Abstract. Let K/k be an abelian extension of number fields. The Brumer-Stark conjecture
predicts that a group ring element constructed from special values of L-functions associated to

K/k annihilates the ideal class group of K. Moreover it specifies that the generators obtained

have special properties. The aim of this article is to state and study a generalization of
this conjecture to non-abelian Galois extensions that is, in spirit, very similar to the original

conjecture.

1. Introduction

The Brumer-Stark conjecture was first stated by Tate [21] and applies to abelian extensions
of number fields. It combines a conjecture of Brumer and ideas coming from conjectures of
Stark. Let K/k be an abelian extension. The main ingredient of the conjecture is a certain
group-ring element in Z[Gal(K/k)], called the Brumer-Stickelberger element, constructed from
the values at s = 0 of the L-functions associated to the extension K/k. The Brumer part of the
conjecture states that the Brumer-Stickelberger element annihilates the class group of the field
K. The Stark part of the conjecture predicts that the principal ideals obtained in this way admit
generators satisfying special properties. A very nice reference for the Brumer-Stark conjecture,
and Stark conjectures in general, is the book of Tate [22], see also [4] and [6]. The aim of this
article is to generalize the Brumer-Stark conjecture to Galois non-abelian extensions.

The plan of this paper is the following. In the second section, we state the Brumer-Stark
conjecture, some of its properties and say a few words about its current status. To avoid confusion
in the setting of this paper, we will call this conjecture the abelian Brumer-Stark conjecture
and will call the conjecture that we propose the Galois Brumer-Stark conjecture. The third
section is devoted to the generalization of the Brumer-Stickelberger element to the Galois case.
There, we rely on an earlier work of Hayes [13] that constructs this generalization and studies
its properties. We show that it also satisfies additional properties very similar to the abelian
case. It is known that the Brumer-Stickelberger element is rational and a suitable denominator
is known in the abelian case. We make a first conjecture, called the Integrality Conjecture,
on a suitable denominator for this element in the general case. This conjecture is part of our
generalization of the abelian Brumer-Stark conjecture. The next section introduces the notion of
strong central extensions. These extensions play a fundamental role in our generalization. The
Galois Brumer-Stark conjecture is stated in Section 5 and we study its properties in Section 6
with the generalization of the properties of the abelian Brumer-Stark conjecture in view. The
last section is devoted to the study of the conjecture in the special case where the Galois group
of the extension contains an abelian normal subgroup of prime index. In this setting, we prove
that the abelian Brumer-Stark conjecture implies the Galois Brumer-Stark conjecture.

Different generalizations to the non-abelian case of the Brumer conjecture and Brumer-Stark
conjecture are stated by Nickel [14] (see also the work of Burns [2]). In an appendix at the end
of the paper, we state the weak version of Nickel’s non-abelian Brumer-Stark conjecture and
compare it with our conjecture.
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Note. Many of the results of this article are extracted from the PhD thesis [7] of the first named
author or generalizations of results contained in this thesis.

Convention. We denote the action of elements of Galois groups on elements, ideals, etc., using
the exponent notation with the convention that they act on the left, that is ασγ = (αγ)σ.

2. The abelian Brumer-Stark conjecture

In this section, we state the abelian Brumer-Stark conjecture and review some of its properties.
Let K/k be an abelian extension of number fields. Denote by G its Galois group. Fix S a finite
set of places of k containing the infinite places of k and the finite places of k that ramify in K/k.
To simplify the exposition, we assume from now on that the cardinality of S is at least two.1

The interested reader can refer to [22, IV§6] for the statement of the conjecture when |S| = 1.
To a character χ of G is associated the S-truncated Hecke L-function of χ defined for Re(s) > 1
by

LK/k,S(s, χ) :=
∏
p/∈S

(1− χ(σp)N (p)−s)−1

where p runs through the prime ideals of k not in S, σp is the Frobenius automorphism of p in G,
and N (p) is the absolute norm of the ideal p. This function admits a meromorphic continuation
to C, which is in fact analytic if the character χ is non-trivial. A main object of the abelian
Brumer-Stark conjecture is the Brumer-Stickelberger element. It is a relative analogue of the
Stickelberger element of cyclotomic fields and is defined by the formula

θK/k,S :=
∑
χ∈Ĝ

LK/k,S(0, χ) eχ̄ ∈ C[G]

where Ĝ denotes the group of characters of G and, for χ ∈ Ĝ, eχ is the associated idempotent.
Another characterization of this element is that it is the only element in C[G] such that

χ(θK/k,S) = LK/k,S(0, χ̄)

for all character χ ∈ Ĝ. A third characterization of this element is in term of partial zeta
functions. For σ ∈ G, the partial zeta function associated to g (and the extension K/k and the
set S) is defined, for Re(s) > 1, by

ζK/k,S(s, σ) :=
∑

(a,S)=1
σa=σ

N (a)−1

where a runs through the integral ideals of k, not divisible by any prime ideal in S, and whose
Artin symbol σa in G is equal to σ. This function also admits meromorphic continuation to the
complex plane and the partial zeta functions are related to Hecke L-functions by the formula

LK/k,S(s, χ) =
∑
σ∈G

ζK/k,S(s, σ)χ(σ). (1)

From this we deduce the third characterization of the Brumer-Stickelberger element

θK/k,S =
∑
g∈G

ζK/k,S(0, σ)σ−1. (2)

It follows from works of Deligne and Ribet [8] (see also the works of Barsky [1] and Pi. Cassou-
Noguès [5]) that, for any ξ ∈ AnnZ[G](µK), the annihilator in Z[G] of the group µK of roots of
unity in K, we have ξ θK/k,S ∈ Z[G]. In particular, if we let wK denote the cardinality of µK ,
we have

wKθK/k,S ∈ Z[G]. (3)

1The only non-trivial case that we are excluding is when k is a complex quadratic field and K is a subfield of
the Hilbert class field of k.
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We need one last notation before stating the abelian Brumer-Stark conjecture. We say that a
non-zero element α in K is an anti-unit if all its conjugates have absolute value equal to 1. The
group of anti-units of K is denoted by K◦.

Conjecture (The abelian Brumer-Stark conjecture BS(K/k, S)).
For any fractional ideal A of K, the ideal AwKθK/k,S is principal and admits a generator α ∈ K◦
such that K(α1/wK )/k is abelian.

Remark. The last assertion that K(α1/wK )/k is abelian does not depend upon the choice of
the wK-th root of α since all these roots generate the same extension of K.

Remark. The Brumer conjecture states that the ideal AnnZ[G](µ(K)) θK/k,S of Z[G] annihilates
the class group ClK of K. The Brumer-Stark conjecture implies the Brumer Conjecture.

Let v be a place in S and denote by Nv :=
∑
σ∈Dv σ ∈ Z[G] the sum of all the elements in

the decomposition group Dv of v in G. Then, one can prove, see [22, Chap. IV], that

Nv θK/k,S = 0. (4)

In particular, if the set S contains a place that is totally split in K/k, the Brumer-Stickelberger
element is equal to 0 and the abelian Brumer-Stark conjecture is trivially true. Therefore, the
conjecture is only meaningful when both k is totally real and K is totally complex.2 In [21], Tate
proves equivalent formulations of the conjecture that are very useful for its study. We will later
on generalize this result to the non-abelian Galois case. For α ∈ K× and A an integral ideal of
K, we write α ≡ 1 (mod∗ A) if vP(α− 1) ≥ vP(A) for all prime ideals P of K dividing A, where
vP is the valuation associated to P. This is equivalent to the usual notion α ≡ 1 (mod A) when
α is an algebraic integer.

Theorem 2.1 (Tate). Let A be a fractional ideal of K. Then the following statements are
equivalent.

(i). There exists an anti-unit α ∈ K◦ such that AwKθK/k,S = αOK and K(α1/wK )/k is abelian.
(ii). There exist an extension L/K such that L/k is abelian and an anti-unit γ ∈ L◦ such that

(AOL)θK/k,S = γOL.
(iii). For almost all prime ideals p of k, there exists αp ∈ K◦ such that αp ≡ 1 (mod∗ pOK)

and A(σp−N (p))θK/k,S = αpOK where σp is the Frobenius automorphism of p in G.
(iv). There exist a family (ai)i∈I of element of Z[G] generating AnnZ[G](µK) and a family

(αi)i∈I of anti-units in K such that AaiθK/k,S = αiOK for all i ∈ I, and αi
aj = αj

ai for
all i, j ∈ I.

Remark. Here and in the rest of the paper, when we say “for almost all prime ideals”, we
implicitly exclude the ramified primes; therefore the Frobenius automorphism is uniquely defined.

Remark. In part (ii), (AOL)θK/k,S is defined by the formula
(
(AOL)nθK/k,S

)1/n
where n ≥ 1

is any integer such that nθK/k,S ∈ Z[G]. This is well-defined, when it exists, since the group of
ideals of a number field is torsion-free.

Let A be a fractional ideal of K. We say that BS(K/k, S;A) holds if the ideal A satisfies
the equivalent conditions of Theorem 2.1. The conjecture BS(K/k, S) is thus the collection of
the conjectures BS(K/k, S;A) where A ranges through the fractional ideals of K. In [21], Tate
proves that the set of fractional ideals A of K such that BS(K/k, S;A) holds is a subgroup of
the group of ideals of K, stable under the action of G, and that contains the principal ideals of
K. In particular, BS(K/k, S) holds if the field K is principal. Now, let p0 be a prime ideal of
k not in S, then

θK/k,S∪{p0} = (1− σp0

−1)θK/k,S . (5)

2Note that K◦ = {±1} if K is not totally complex.
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It follows from this formula that the validity of BS(K/k, S) implies that of BS(K/k, S ∪ {p0}).
Therefore, the conjecture is true for any admissible set of places S if it is true for the minimal
set that contains exactly the infinite places of k and the finite places that ramify in K/k. The
validity of the abelian Brumer-Stark Conjecture is also preserved under change of extension as
a consequence of part (ii) of Proposition 2.1. That is, if K/K ′/k is a tower of number fields,
then the validity of BS(K/k, S) implies that of BS(K ′/k, S). It also preserved under change of
base, that is if BS(K/k, S) holds then so does BS(K/k′, S′) where K/k′/k is a tower of number
fields and S′ denotes the set of places of k′ above the places in k, see [12]. The following cases
of the conjecture are proved by Tate (see [21] and [22]).

Theorem 2.2 (Tate). The abelian Brumer-Stark conjecture BS(K/k, S) is true in the following
cases.

• The field k is the field Q of rational numbers.3

• The extension K/k is quadratic.
• The extension K/k is of degree 4 and is contained in a non-abelian Galois extension
K/k0 of degree 8.

Sands proves the abelian Brumer-Stark conjecture when the group G is isomorphic to Z/2Z×
Z/2Z and, more generally, when the group G has exponent 2 with some additional technical
hypothesis, see [19]. A local version of the conjecture is stated and is proved for some types of
extensions of degree 2p (with p odd) and numerically studied in some others by Greither et al.
in [11]. The local abelian Brumer-Stark conjecture at p holds for so-called “non-exceptional”
primes p provided some appropriate Iwasawa µ-invariant vanishes by results of Nickel [15], and
when S contains all the prime ideals above p and, again, some appropriate Iwasawa µ-invariant
vanishes by results of Greither and Popescu [10]. Nickel shows in [14] that the local abelian
Brumer-Stark conjecture outside of 2 is implied by the relevant special case of the Equivariant
Tamagawa Number Conjecture (ETNC) plus some additional technical hypothesis. Since this
special case of the ETNC was proved by Burns and Greither [3], this implies, in particular, the
part outside of 2 of the abelian Brumer-Stark conjecture holds if K/k is a tame extension with
K an abelian extension of Q.

As mentioned in the introduction, generalizations to the non-abelian case of the Brumer-Stark
conjecture (and also the Brumer conjecture) due to Nickel are stated in [14] (see also [2] for much
more general conjectures due to Burns), we state these conjectures and study the links with our
conjecture in an appendix at the end of this article.

3. The Galois Brumer-Stickelberger element

We assume from now on that the extension K/k is Galois, but not necessarily abelian. The
set S still denotes a finite set of places of k containing the infinite places of k and the finite places
that ramify in K/k. As in the abelian case, we assume also that S is cardinality at least 2. Note
that the only non-trivial case we are excluding is when k is a complex quadratic field and K is
an unramified extension of k. The first step in the generalization of the abelian Brumer-Stark
conjecture is the construction of the Brumer-Stickelberger element associated to non-abelian
Galois extensions. Fortunately, such a construction is provided by the work of Hayes [13]. We
now review his construction and the first properties of the Brumer-Stickelberger element. Denote
by Ĝ the set of irreducible characters of G. For χ ∈ Ĝ, let LK/k,S(s, χ) denote the Artin L-
function of χ with Euler factors at primes in S deleted. The Brumer-Stickelberger element is
defined by

θK/k,S :=
∑
χ∈Ĝ

LK/k,S(0, χ) eχ̄ (6)

3In this situation, it boils down to Stickelberger’s theorem on cyclotomic sums.
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where eχ :=
χ(1)

|G|
∑
σ∈G

χ(σ)σ−1 is the central idempotent associated to χ.

The following results are extracted from [13].

Theorem 3.1 (Hayes). Denote by CG the set of conjugacy classes of G. The Brumer-Stickelberger
element lies in the center Z(C[G]) of C[G] and is the only element of Z(C[G]) such that

φχ(θK/k,S) = LK/k,S(0, χ̄) (7)

for all χ ∈ Ĝ, where φχ is the ring homomorphism from Z(C[G]) to C defined by

φχ(C) :=
χ(C)

χ(1)

for all C ∈ CG.
Let B be a normal subgroup of G. Then we have

θKB/k,S = π(θK/k,S)

where π : Gal(K/k)→ Gal(KB/k) is the canonical surjection induced by the restriction to KB.
Let H be a subgroup of G. Denote by SH the set of places of KH above the places in S. Let

INormG→H : Z(C[G]) −→ Z(C[H]) be the inhomogeneous norm defined by

INormG→H(a) :=
∑
φ∈Ĥ

( ∏
χ∈Ĝ

a(χ)〈χ,IndGH φ〉G
)
eφ

for a :=
∑
χ∈Ĝ a(χ)eχ ∈ Z(C[G]), where 〈·, ·〉G is the inner product on the characters of G and

eφ is the central idempotent of C[H] associated to φ. Then we have

θK/KH ,SH = INormG→H(θK/k,S).

We are now interested in generalizing properties (4) and (5). We start with (4).

Proposition 3.2. For v a place of k, define

Nv :=
∑
σ∈Dw

1

|Cσ|
Cσ ∈ Q[G]

where w is a fixed place of K above v, Dw is the decomposition group of w in G and Cσ ∈ CG
is the conjugacy class of σ in G. Then, for any place v in S, we have

Nv θK/k,S = 0.

Proof. Since Nv is in Z(C[G]), it is enough, with the notations of Theorem 3.1, to prove that

φχ(Nv θK/k,S) = φχ(Nv)φχ(θK/k,S) = 0 for all χ ∈ Ĝ. Let χ ∈ Ĝ be such that φχ(Nv) 6= 0. By
(7), we need to prove that the order r(χ̄) = r(χ) of vanishing at s = 0 of LK/k,S(s, χ) is at least
1. Let ρ : G → GL(V ) be an irreducible representation with character χ. By [22, Prop. I.3.4],
we have

r(χ) =
∑
v′∈S

dimV Dw′ − dimV G (8)

where w′ is a fixed place of K above v′ and Dw′ denotes the decomposition group of w′ in G.
Assume first that χ is the trivial character. Then the above formula yields r(χ) = |S| − 1 and
the result follows from our hypothesis that S contains at least two places. Assume now that χ
is non-trivial. We compute

φχ(Nv) =
∑
σ∈Dw

1

|Cσ|
φχ(Cσ) =

1

χ(1)

∑
σ∈Dw

χ(σ) =
|Dw|
χ(1)

〈
1Dw , χ|Dw

〉
Dw

where 1Dw is the trivial character of Dw. By the above hypothesis, φχ(Nv) 6= 0 and thus
the trivial character 1Dw appears in the decomposition of χ|Dw . Therefore the space V Dw has
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dimension at least 1. On the other hand, V G = {0} since χ is irreducible. It follows that
r(χ) ≥ 1 and the result is proved. �

Assume that there exists v ∈ S that is totally split in K/k. Then Nv = 1 and the Brumer-
Stickelberger element is trivial in this case. Therefore, as in the abelian case, we assume that
both k is totally real and K is totally complex, otherwise the Brumer-Stickelberger element is
trivial. In fact, we can say more than that. Recall that a number field E is CM if it is a totally
complex quadratic extension of a totally real field. If furthermore E is Galois over some totally
real subfield F , then Gal(E/F ) has a unique complex conjugation and we say that a character
χ of Gal(E/F ) is totally odd if the eigenvalues of an associated representation evaluated at the
complex conjugation are all equal to −1. The following result is due to Tate, see [22, p. 71].

Proposition 3.3 (Tate). Let χ ∈ Ĝ be a character such that LK/k,S(0, χ) 6= 0. Then χ is the
inflation of a totally odd character of a Galois CM sub-extension F/k of K/k.

Corollary 3.4. If K/k does not contain a Galois CM sub-extension then θK/k,S = 0.

Proof. Assume that θK/k,S 6= 0. Then, by Theorem 3.1 and the fact that (φχ)χ∈Ĝ is a basis

of the dual of Z(C[G]), we get that there exists an irreducible character χ ∈ Ĝ such that
φχ(θK/k,S) = LK/k,S(0, χ) 6= 0. This character comes from a Galois CM sub-extension by the
proposition. �

Corollary 3.5. Let τ be a complex conjugation of G. Then (τ + 1) · θK/k,S = 0.

Proof. By the proposition, it is enough to prove that (τ + 1) · eχ = 0 for any character χ ∈ Ĝ
that is the inflation of a totally odd character χ̃ of a Galois CM sub-extension. Since χ̃ is totally
odd, we have χ(gτ) = −χ(g) for all g ∈ G. Let R be a set of representatives of G/{1, τ}. We
now compute

(τ + 1) · eχ = (τ + 1) · χ(1)

|G|
∑
ρ∈R

(
χ(ρ)ρ−1 + χ(ρτ)(ρτ)−1

)
= (τ + 1) · χ(1)

|G|
∑
ρ∈R

(
χ(ρ)ρ−1 − χ(ρ)τρ−1

)
= (τ + 1)(1− τ) · χ(1)

|G|
∑
ρ∈R

χ(ρ)ρ−1 = 0. �

The following result generalizes (5) to the Galois case.

Proposition 3.6. Let p0 be a prime ideal of k not in S. Then

θK/k,S∪{p0} = θK/k,S
∑
χ∈Ĝ

det(1− ρχ(σP0))eχ̄

where P0 is a fixed prime ideal of K above p0, σP0
is the Frobenius automorphism of P0 in G,

and, for χ ∈ Ĝ, ρχ denotes a fixed irreducible representation of G with character χ.

Proof. With the notations of Theorem 3.1, it is enough to prove, for all ψ ∈ Ĝ, that

φψ(θK/k,S∪{p0}) = φψ(θK/k,S)φψ

(∑
χ∈Ĝ

det(1− ρχ(σP0
))eχ̄

)
= LK/k,S(0, ψ̄)

∑
χ∈Ĝ

det(1− ρχ(σP0
))φψ(eχ̄).

On the other hand, from the definition of Artin L-functions, we see that

φψ(θK/k,S∪{p0}) = LK/k,S∪{p0}(0, ψ̄) = LK/k,S(0, ψ̄) det(1− ρψ̄(σP0
)).
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The result follows from the fact that φψ(eχ̄) = 1 if ψ = χ̄ and zero otherwise. �

We now turn to the question of the rationality of the Brumer-Stickelberger element θK/k,S
when G is non-abelian. As noted on page 2584 of [14], it is a consequence of the principal rank
zero Stark conjecture that was proved by Tate [22]. We recall the argument of the proof. For
any character χ of G, the principal rank zero Stark conjecture states that

LK/k,S(0, χα) = LK/k,S(0, χ)α for all α ∈ AutQ(C) (9)

where χα := α ◦ χ. We write

θK/k,S =
∑
χ∈Ĝ

LK/k,S(0, χ)
χ̄(1)

|G|
∑
σ∈G

χ(σ)σ =
∑
σ∈G

xσ σ

where

xσ :=
1

|G|
∑
χ∈Ĝ

χ̄(1)χ(σ)LK/k,S(0, χ).

Let α be an automorphism of C. We compute

α(xσ) =
1

|G|
∑
χ∈Ĝ

χ̄α(1)χα(σ)LK/k,S(0, χ)α

=
1

|G|
∑
χ∈Ĝ

χ̄α(1)χα(σ)LK/k,S(0, χα) = xσ

since the map χ 7→ χα is a bijection on the set Ĝ. It follows that xσ ∈ Q for all σ ∈ G, and thus
the Brumer-Stickelberger element θK/k,S lies in Q[G].

An interesting problem is to find a suitable denominator for the Brumer-Stickelberger element
in the non-abelian case. In the abelian case, as noted above, wKθK/k,S is always integral. In
the Galois case, however, one can see from examples that it is not true anymore. Let [G,G] be
the commutator subgroup of G, that is the subgroup generated by the commutators [g1, g2] :=
g1g2g

−1
1 g−1

2 with g1, g2 ∈ G. We make the following conjecture.

Conjecture (The Integrality Conjecture).
Define mG to be the lcm of the cardinalities of the conjugacy classes of G and let sG be the order
of the commutator subgroup [G,G] of G. Let dG be the lcm of mG and sG. Then, for almost all
prime ideals P of K, we have

dG(σP −N (p))θK/k,S ∈ Z[G] (10)

where p is the prime ideal of k below P and σP is the Frobenius automorphism of P in G.

One could weaken the Integrality Conjecture by just asking that there exists an integer dG,
depending only on the isomorphism class of G, such that (10) holds without specify its value.
However, heuristic arguments lead us to predict this specific value of dG. First, observe that
mG = 1 if and only if sG = 1 if and only if G is abelian. Therefore, when the extension K/k
is abelian, the Integrality Conjecture is equivalent to the statement before (3) using Lemma 3.7
below. We now explain why we conjecture that the factor sG is necessary. Let Gab := G/[G,G]
be the maximal abelian quotient of G and Kab := K [G,G] be the maximal sub-extension of K/k
that is abelian over k; we have Gal(Kab/k) = Gab. Denote by πab : G → Gab the canonical
surjection induced by the restriction to Kab. Let νab be the map from C[Gab] to C[G] defined
for g̃ ∈ Gab by

νab(g̃) :=
1

sG

∑
πab(g)=g̃

g (11)
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where the sum is over elements g ∈ G whose image by πab is equal to g̃. The map νab is
extended to C[Gab] by linearity.4 Let κ ∈ C[Gab], we have (πab ◦ νab)(κ) = κ and, if ξ ∈ C[G],
then ξνab(κ) = νab(πab(ξ)κ). The 1-dimensional characters of G are exactly the ones that are
inflations of characters of Gab. For such a character χ, denote by χ̃ the character of Gab such
that χ = χ̃ ◦ πab. One checks readily that eχ = νab(eχ̃) where eχ̃ is the idempotent of C[Gab]
associated to χ̃. By the properties of Artin L-functions, we have∑

χ∈Ĝ
χ(1)=1

LK/k,S(0, χ)eχ̄ =
∑
χ̃∈Ĝab

LKab/k,S(0, χ̃)νab(e ¯̃χ)

= νab
( ∑
χ̃∈Ĝab

LKab/k,S(0, χ̃)e ¯̃χ

)
= νab(θKab/k,S).

We define

θ
(>1)
K/k,S :=

∑
χ∈Ĝ
χ(1)>1

LK/k,S(0, χ)eχ̄.

By the above computation, we find that

θK/k,S = νab(θKab/k,S) + θ
(>1)
K/k,S . (12)

For all ξ ∈ AnnZ[G](µK), we have sG ξ ν
ab(θKab/k,S) = sGν

ab(ξ̃θKab/k,S) ∈ Z[G] by the remark

before (3) since ξ̃ := πab(ξ) ∈ AnnZ[Gab](µKab). Therefore the factor sG is there to ensure
that the part of the Brumer-Stickelberger element coming from the 1-dimensional characters is
integral.

The first open case for the Integrality Conjecture is when G ' SL2(F3), see Theorem 5.2. In
fact, for relative Galois extensions K/k of degree ≤ 31 and with Galois group not isomorphic
to SL2(F3), one can prove that sG is a suitable denominator for θK/k,S . However, numerical
experiments in the case G ' SL2(F3) show that sG is not a suitable denominator in general and,
in fact, it is necessary to use 3sG in some cases, see [7, Chap. 5]. It is therefore necessary to add
an extra factor. After Hayes, define, for s ∈ C, the meromorphic function

ΘK/k,S(s) :=
∑
χ∈Ĝ

LK/k,S(s, χ) eχ̄.

Note that ΘK/k,S(0) = θK/k,S . Using this function, Hayes defines in [13, §5] the partial zeta
function ζK/k,S(s, C) of a class C ∈ CG by the formula

ΘK/k,S(s) =
∑
C∈CG

ζK/k,S(s, C)
1

|C|
C−1. (13)

Note that this definition makes sense because the values of ΘK/k,S are in Z(C[G]). Applying φχ

on both sides, for χ ∈ Ĝ, he gets

LK/k,S(s, χ) =
1

χ(1)

∑
C∈CG

ζK/k,S(s, C)χ(σC) (14)

where σC denotes a fixed element in C. Equations (13) and (14) should be thought as gen-
eralizations to the non-abelian case of equations (2) and (1) respectively. Assuming that the
partial zeta functions satisfy similar properties in the non-abelian case as in the abelian case
and comparing (2) and (13) evaluated at s = 0, it is therefore natural to assume that the factor
mG, the lcm of the cardinalities of the conjugacy classes of G, is needed to make the Galois

4Note that the image of νab is in fact contained in Z(C[G]).
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Brumer-Stickelberger element integral. This explains the value of dG given in the Integrality
Conjecture.5

The next result is proved in [22, Lemme IV.1.1] for abelian extensions. It is straightforward
to extend the proof to Galois extensions, also see [14, Lemma 2.2].

Lemma 3.7. Let T be a set of prime ideals containing all the unramified prime ideals of K
that do not divide wK except, possibly, a finite number. Then AnnZ[G](µK) is generated as a
Z-module by the elements σP−N (p) where P runs through the prime ideals in T and p denotes
the prime ideal of k below P. Furthermore, we have

wK = gcd
P∈T
σP=1

(1−N (p)). �

From this, we deduce equivalent formulations of the Integrality Conjecture.

Proposition 3.8. The following assertions are equivalent

(1). For almost all prime ideals P of K, dG(σP −N (p))θK/k,S ∈ Z[G].
(2). For all ξ ∈ AnnZ[G](µK), dG ξ θK/k,S ∈ Z[G].

(3). For almost all prime ideals P of K, dG(σP −N (p))θ
(>1)
K/k,S ∈ Z[G].

(4). For all ξ ∈ AnnZ[G](µK), dG ξ θ
(>1)
K/k,S ∈ Z[G].

Proof. The equivalences (1) ⇔ (3) and (2) ⇔ (4) are consequences of (12) and the discussion
that follows. The direction (2)⇒ (1) is trivial. The other direction comes from Lemma 3.7. �

4. Strong central extensions

Before we generalize the abelian Brumer-Stark conjecture to Galois extensions, we introduce
the notion of strong central extensions that will play a crucial role. For that, we stop assuming
for a moment that G is the Galois group of the extension K/k and just consider G as a finite
group. Let Γ and ∆ be two other finite groups with ∆ a normal subgroup of Γ such that the
following sequence is exact

1 // ∆ // Γ
π // G // 1, (15)

that is, Γ is a group extension of G by ∆. Recall that the extension is said to be central if ∆
is a subgroup of the center of Γ. This implies, in particular, that ∆ is an abelian group. If,
furthermore, the extension is split, that is there exists an homomorphism s : G → Γ such that
s ◦ π is the identity, then the extension is trivial, that is Γ ' ∆×G.

We say that Γ is a strong central extension of G by ∆ if ∆ ∩ [Γ,Γ] = 1 where [Γ,Γ] is the
commutator subgroup of Γ. The choice of terminology is explained by the following lemma.

Lemma 4.1. Let Γ be a strong central extension of G by ∆. Then Γ is a central extension of
G by ∆.

Proof. Let γ ∈ Γ and δ ∈ ∆. We see that

[γ, δ] = (γδγ−1)δ−1 ∈ ∆

since ∆ is normal in Γ. Thus, [γ, δ] = 1 and γ and δ commute. Therefore ∆ is in the center of
Γ and the extension is central. �

The trivial extension ∆ × G is always a strong central extension. As noted above, a strong
central extension is trivial if and only if it is split. By the Schur-Zassenhaus theorem, this is
the case when the orders of ∆ and G are relatively prime. For strong central extensions, the
extension is also trivial in an additional case. First, we have the following characterization of
strong central extensions.

5Note that, for G ' SL2(F3), we have sG = 8 and mG = 12.
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Lemma 4.2. Consider the group extension (15). This extension is strong central if and only if
the map π restricts to an isomorphism between [Γ,Γ] and [G,G].

Proof. It is straightforward to see that π restricts to a surjective map from [Γ,Γ] to [G,G]. This
map is injective if and only if [Γ,Γ] ∩Ker(π) = 1. The result follows since Ker(π) = ∆. �

Lemma 4.3. Let Γ be a strong central extension of G by ∆. Assume that G = [G,G]. Then
Γ ' ∆×G.

Proof. Indeed, by Lemma 4.2, the sequence is split. �

It is not true however that all strong central extensions are split and give rise to a direct
product as we show in the following example.

Example. Let Γ be the dicyclic group of order 12. It is the group generated by the two elements
a and b with the following relations: a3 = b4 = 1 and bab−1 = a−1. Let ∆ := 〈b2〉 ' Z/2Z;
it is the center of Γ and one can verify that Γ/∆ ' S3, the symmetric group on 3 letters. We
compute [Γ,Γ] = 〈a〉, thus ∆ ∩ [Γ,Γ] = {1} and we have the strong central extension

1 // Z/2Z // Γ // S3
// 1.

However, the group Γ is not isomorphic to Z/2Z× S3 since the latter group does not have any
element of order 4.

The following lemma provides us with yet another characterization of strong central exten-
sions.

Lemma 4.4. Consider the group extension (15). This extension is strong central if and only if,
for every abelian subgroup H of G, the subgroup π−1(H) of Γ is abelian.

Proof. Assume that the extension is strong central. Let H be an abelian subgroup of G. Let
γ1, γ2 ∈ π−1(H), say π(γ1) = h1, π(γ2) = h2 with h1, h2 ∈ H. We compute

π([γ1, γ2]) = [h1, h2] = 1.

By hypothesis, this implies that [γ1, γ2] = 1 and therefore π−1(H) is abelian.
Reciprocally, we assume that, for any abelian subgroup H of G, the group π−1(H) is abelian.

Let γ1, γ2 ∈ Γ be such that [γ1, γ2] ∈ ∆. Then π([γ1, γ2]) = 1 and π(γ1) and π(γ2) commute.
The subgroup of G that they generate is abelian and, by hypothesis, it follows that γ1 and γ2

commute, that is [γ1, γ2] = 1. Therefore the extension Γ of G by ∆ is strong central. �

We note another property of strong central extensions that will be useful later on. For a finite
group A, recall that mA denote the lcm of the cardinalities of the conjugacy classes of A, sA is
the order of the commutator subgroup [A,A] of A and dA is the lcm of mA and sA.

Lemma 4.5. Consider the group extension (15). Assume that the extension is strong central.
Then we have dΓ = dG.

Proof. It is enough to show that mΓ = mG and sΓ = sG. The fact that sΓ = sG is a direct
consequence of Lemma 4.2. We now show that mΓ = mG. Let γ ∈ Γ. Denote by C and Z
respectively the conjugacy class of γ in Γ and the centralizer of γ in Γ. We have

|C| = (Γ : Z) = (π(Γ) : π(Z))(Ker(π) : Ker(π) ∩ Z) = (G : π(Z))(∆ : ∆ ∩ Z)

= (G : Z0)(Z0 : π(Z))(∆ : ∆ ∩ Z) = |C0|(Z0 : π(Z))(∆ : ∆ ∩ Z)

where C0 is the conjugacy class of π(γ) in G and Z0 is the centralizer of π(γ) in G. Since ∆
is in the center of Γ by Lemma 4.1, we have ∆ ⊂ Z and (∆ : ∆ ∩ Z) = 1. Now, let ρ0 ∈ Z0

and let ρ ∈ π−1(ρ0). We have π([ρ, γ]) = [ρ0, π(γ)] = 1 since ρ0 commutes with π(γ). Therefore
[ρ, γ] ∈ [Γ,Γ] ∩∆ = {1} and ρ ∈ Z. Thus, π(Z) = Z0 and we have finally |C| = |C0|. As any
conjugacy class of G is the image by π of a conjugacy class of Γ, we see that mΓ = mG and the
result is proved. �
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We now come back to our previous setting and assume that G is the Galois group of an
extension K/k. Let L be a finite extension of K. We say that L is a strong central extension of
K/k if L/k is Galois and the group extension

1 // ∆ // Γ // G // 1

is strong central where ∆ := Gal(L/K) and Γ := Gal(L/k). The following result is a direct
consequence of Lemma 4.2 (see also Figure 1).

Lemma 4.6. Denote by Lab the maximal sub-extension of L/k that is abelian over k. Then
L is a strong central extension of K/k if and only if L = KLab. Furthermore, in that case,
restriction to Lab yields an isomorphism between Gal(L/K) and Gal(Lab/Kab) where Kab is
the maximal sub-extension of K/k that is abelian over k. �

L

Lab

[Γ,Γ]

K

∆

Kab

∆
[G,G]

k

G

Gab

Γ

Figure 1. Some subfields of the strong central extension L/k of K/k

We conclude this section with a lemma that shows strong central extensions behave somewhat
nicely.

Lemma 4.7. Let L be a strong central extension of K/k.

(1) Let L0/K be a sub-extension of L/K. Then L0 is a strong central extension of K/k.
(2) Let M be another strong central extension of K/k. Then LM is a strong central extension

of K/k.

Proof. We use repeatedly the characterization of strong central extensions given by Lemma 4.6.
We prove the first assertion. The group Gal(L/L0) is a subgroup of Gal(L/K) and thus it is
normal in Gal(L/k). Therefore, L0/k is a Galois extension. Let Lab

0 = Lab ∩L0 be the maximal
abelian sub-extension of L0/k, then [Lab

0 : Kab] = [L0 : K] since Gal(L/K) ∼= Gal(Lab/Kab).
Furthermore, since Lab

0 ∩K = Kab, we find that

[KLab
0 : k] =

[Lab
0 : k][K : k]

[Kab : k]
= [Lab

0 : Kab][K : k] = [L0 : k],

thus KLab
0 = L0 and L0 is a strong central extension of K/k.

We now prove the second assertion. The extension LM/k is Galois as the compositum of two
Galois extensions of k. Let F = L ∩M . It is an extension of K. Then, a direct computation
shows that [LM : K] = [LabMab : Kab]. We find that

[KLabMab : k] =
[LabMab : k][K : k]

[Kab : k]
= [LabMab : Kab][K : k] = [LM : k].

Thus, KLabMab = LM . Since the maximal abelian sub-extension (LM)ab of LM/k that is
abelian over k contains LabMab, it follows that K(LM)ab = LM and LM is a strong central
extension of K/k. �
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5. The Galois Brumer-Stark conjecture

We are now ready to state our generalization of the abelian Brumer-Stark conjecture to Galois
extensions.

Conjecture (The Galois Brumer-Stark conjecture BSGal(K/k, S)).
Let K/k be a Galois extension of number fields and let S be a finite set of places of k that
contains the infinite places and the finite places that ramify in K with |S| ≥ 2. The Integrality
Conjecture holds for the extension K/k and the set of places S, and, for any fractional ideal A
of K, the ideal AdGwKθK/k,S is principal and admits a generator α ∈ K◦ such that K(α1/wK ) is
a strong central extension of K/k.

Remark. As in the abelian case, the last assertion that K(α1/wK ) is a strong central extension
of K/k does not depend on the choice of the wK-th root of α since all of these generate the same
extension of K.

Before studying conjecture BSGal(K/k, S), we discuss briefly our evidence for it. Observe
first that it is in some ways a natural generalization of the abelian Brumer-Stark conjecture.
Indeed, we have the following result.

Proposition 5.1. Assume that K/k is abelian. Then the Galois Brumer-Stark conjecture
BSGal(K/k, S) is equivalent to the abelian Brumer-Stark conjecture BS(K/k, S).

Proof. This is clear since dG = 1 in that case and, by Lemma 4.4, we see that K(α1/wK )/k is
abelian if and if only if K(α1/wK ) is a strong central extension of K/k. �

Another piece of evidence is provided by the following result that sums up the cases where
the conjecture is proved or reduces to the abelian Brumer-Stark conjecture. Examples where
the conjecture is numerically proved are also given in [7, Chap. 5].

Theorem 5.2. The Galois Brumer-Stark conjecture is satisfied in the following cases

(1) Gal(K/k) is a non-abelian simple group,
(2) Gal(K/k) ' D2n where D2n is the dihedral group of order 2n with n odd,
(3) Gal(K/k) ' Sn where Sn is the symmetric group on n letters with n ≥ 1,
(4) Gal(K/k) is non-abelian of order 8.

Assume that the abelian Brumer-Stark conjecture holds. Then the Galois Brumer-Stark conjec-
ture is satisfied in the following cases

(5) Gal(K/k) is abelian,
(6) Gal(K/k) contains a normal abelian subgroup of prime index,
(7) Gal(K/k) is of order < 32 and not isomorphic to SL2(F3).

Proof. Cases 1, 2, 3, 4 and 5 follow respectively from Propositions 6.6, 6.7, 6.8, 7.7, and 5.1.
The results of Section 7, and in particular Theorem 7.4, imply case 6. Finally, case 7 follows from
a direct inspection using the GAP system [9] and verifying that, in each case, one can reduce to
the abelian case, one of the other listed cases or an application of Proposition 6.5 below. �

Remark. Using the GAP system [9], one can verify also by similar techniques that the Galois
Brumer-Stark conjecture holds or reduces to the abelian Brumer-Stark conjecture for 730 out of
the 1048 possible isomorphism types of Galois groups when [K : k] ≤ 100.

Remark. The Integrality Conjecture actually holds in all the cases listed in Theorem 5.2 without
having to assume the abelian Brumer-Stark conjecture for cases 5, 6, 7. It also holds for the 730
isomorphism types of Galois groups mentioned in the previous remark.

The following result is the generalization to the non-abelian case of Theorem 2.1. Recall that,
for a prime ideal P of K, we denote by p the prime ideal of k below P and by σP the Frobenius
automorphism of P in G.
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Theorem 5.3. Assume that the Integrality Conjecture holds for the extension K/k and the set
of places S. Let A be a fractional ideal of K. The following assertions are equivalent.

(i). There exists an anti-unit α ∈ K◦ such that AdGwKθK/k,S = αOK and K(α1/wK ) is a strong
central extension of K/k.

(ii). There exists a strong central extension L of K/k and an anti-unit γ ∈ L◦ such that
(AOL)dGθK/k,S = γOL

(iii). For almost all prime ideals P of K, there exists an anti-unit αP ∈ K◦ such that AdG(σP−N (p))θK/k,S =
αPOK and αP ≡ 1 (mod∗ Q) for all prime ideals Q of K above p such that σQ = σP.

(iv). For any abelian subgroup H of G, there exists a family (ai)i∈I of elements of Z[H] gen-
erating AnnZ[H](µK) as a Z-module and a family of anti-units (αi)i∈I of K such that

AdGaiθK/k,S = αiOK and αj
ai = αi

aj for all i, j ∈ I.

Remark. In part (ii), (AOL)dGθK/k,S is defined by the formula
(
(AOL)ndGθK/k,S

)1/n
where

n ≥ 1 is any integer such that ndGθK/k,S ∈ Z[G]. This is well-defined since the group of ideals
of a number field is torsion-free.

Proof. We use repeatedly the fact that θK/k,S lies in the center of C[G].

(i)⇒ (ii). Let γ := α1/wK and L := K(γ). Then, L is a strong central extension of K/k and γ
is an anti-unit in L. Furthermore, we have(

γOL
)wK

= αOL = (AOL)dGwKθK/k,S

and the result follows since the group of ideals of a number field is torsion-free.

(ii)⇒ (iii). Denote by Γ the Galois group of L/k and by ∆ the Galois group of L/K. Let T be
the set of prime ideals of K, unramified in L/K and K/Q, relatively prime with wK and with A
and all its conjugates over k. Note that T contains all but finitely many prime ideals of K. Let
P ∈ T and let P̃ be a prime ideal of L above P. Denote by σP̃ the Frobenius automorphism

of P̃ in Γ. We set αP̃ := γσP̃−N (p). Let Q̃ be another prime ideal of L above p such that

π(σP̃) = π(σQ̃) where π : Γ → G is the canonical surjection induced by the restriction to K

and σQ̃ is the Frobenius automorphism of Q̃ in Γ. There exists ρ ∈ Γ such that Q̃ = ρ(P̃),
and we have σQ̃ = ρσP̃ρ

−1. Since π([ρ, σP̃]) = π(σQ̃)π(σP̃)−1 = 1, this commutator lies in ∆
and is therefore trivial. Thus σQ̃ = σP̃ and αQ̃ = αP̃. In particular, αP̃ does not depend on

the choice of the prime ideal P̃ of L above P, and we can just denote it by αP. Furthermore,

αP = γσQ̃−N (p) ≡ 1 (mod∗ Q̃) for all prime ideals Q̃ of L above p such that σQ = σP where Q

is the prime ideal of K below Q̃. We now prove that αP lies in K. Let δ ∈ ∆. We have(
αδ−1
P

)wK
=
((
γwK

)σP̃−N (p)
)δ−1

=
(
ασP−N (p)

)δ−1

= 1

since α lies in K. Thus, there exists a root of unity ξ ∈ µK such that αδ−1
P = ξ. We have

αP ≡ αδP ≡ 1 (mod∗ P̃) by the above remark, hence ξ ≡ 1 (mod∗ P̃) and thus ξ = 1 by the
choice of P. Therefore, αP ∈ K as desired. Furthermore, it is clear from its construction that
it is an anti-unit and that we have αP ≡ 1 (mod∗ Q) for all prime ideals Q above p such that
σQ = σP by the above. Finally, we compute

αPOL = (γOL)
σP̃−N (p)

=
(
(AOL)dGθK/k,S

)σP̃−N (p)
= (AOL)dG(σP̃−N (p))θK/k,S ,

and, since A is an ideal of K and dG(σP − N (p))θK/k,S ∈ Z[G] by the Integrality Conjecture,
we get

αPOK = AdG(σP−N (p))θK/k,S .

The implication is proved.

(iii) ⇒ (iv). Let H be an abelian subgroup of G. Denote by TH the set of prime ideals of K
for which (iii) applies and that are unramified in L/K and K/k, relatively prime with wK and
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with A and all its conjugates over k, and whose Frobenius automorphism in G lies in H. Let I
be a set indexing TH , so that TH = {Pi : i ∈ I}. For i ∈ I, we set ai := σPi − N (pi) ∈ Z[H]
and αi := αPi ∈ K◦. It follows from Lemma 3.7 that the family (ai)i∈I generates AnnZ[H](µK).

By construction, we have also AdGaiθK/k,S = αiOK . It remains to prove that, for i, j ∈ I, we

have αaij = α
aj
i , that is, for two prime ideals P and Q in TH , the two elements α

σQ−N (q)
P and

α
σP−N (p)
Q are equal. We have

(αPOK)σQ−N (p) =
(
AdG(σP−N (p))θK/k,S

)σQ−N (p)

=
(
AdG(σQ−N (p))θK/k,S

)σP−N (p)
= (αQOK)σP−N (p)

where we used the fact that σP and σQ commute since they both belong to H. Since αP and

αQ are both anti-units, there exists a root of unity ξ ∈ µK such that α
σQ−N (q)
P = ξα

σP−N (p)
Q .

Reasoning as above, we see that ξ ≡ 1 (mod∗ P), thus ξ = 1 and the equality is proved.

(iv) ⇒ (i). Let H be an abelian subgroup of G. Let (ai)i∈I and (αi)i∈I be the corresponding
families. There exists a family (λi)i∈I of integers, with only finitely many non-zero terms, such
that

wK =
∑
i∈I

λiai.

We set αH :=
∏
i∈I α

λi
i . It is clear that αH is an anti-unit of K and we have

αHOK = AdG(
∑
i λiai)θ = AdGwKθK/k,S .

In particular, up to a root of unity in K, αH does not depend upon the choices made, and we
will therefore denote it simply by α. For any h ∈ H, there exists an integer nh ∈ N such that
h − nh annihilates µK . Therefore, there exists a family (λh,i)i∈I of integers, with only finitely
many non-zero terms, such that

h− nh =
∑
i∈I

λh,iai.

Furthermore, we have

αh−nh =
∏
i∈I

(∏
j∈I

α
ajλh,j
i

)λi
=
∏
i∈I

(∏
j∈I

α
λh,j
j

)λiai
= α

∑
i∈I λiai

h = αwKh

where αh :=
∏
i∈I α

λh,i
i . For g, another element of H, one can prove in the same way that

α
g−ng
h = αh−nhg . Let γ := α1/wK and L := K(γ). We now prove that L/KH is an abelian

extension. First, we prove that L/KH is a Galois extension. For h ∈ H, let h̃ be any lift of h to
L. We compute

(γh̃−nh)wK = (γwK )h̃−nh = αh−nh = αwKh .

Thus, there exists ξh ∈ µK such that γh̃−nh = ξhαh. Therefore, we have

γh̃ = ξhαhγ
nh ∈ L

and L/KH is a Galois extension. Observe, in passing, that since we can take H = 〈g〉, where
g ∈ G is arbitrary, this implies that L/k is Galois. We now prove that Gal(L/KH) is abelian.

Let h̃, g̃ be two elements of Gal(L/KH); denote by h and g their restriction to K. We have

γ(g̃−ng)(h̃−nh) = (ξhαh)g−ng = α
g−ng
h = αh−nhg = (ξgαg)

h−nh = γ(h̃−nh)(g̃−ng)

and therefore γg̃h̃ = γh̃g̃. Thus Gal(L/KH) is abelian as desired. Since this is true for any
abelian subgroup H of G, we get by Lemma 4.4 that L is a strong central extension of K/k.
This concludes the proof. �
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For a fractional ideal A of K, we say that BSGal(K/k, S;A) is satisfied if the Integrality
Conjecture holds for the extension K/k and the set of places S, and the ideal A verifies the
equivalent properties of Theorem 5.3. Conjecture BSGal(K/k, S) is thus equivalent to the col-
lection of conjectures BSGal(K/k, S;A) where A ranges through the fractional ideals of K.

6. Some properties of the Galois Brumer-Stark conjecture

In this section, we look at some properties satisfied by the Galois Brumer-Stark conjecture
and, in particular, the generalizations of the properties of the abelian Brumer-Stark conjecture
stated in Section 2.

Proposition 6.1. The set of fractional ideals A of K that satisfy BSGal(K/k, S;A) is a subgroup
of the group of ideals of K, stable under the action of G and that contains the principal ideals
of K.

Proof. We first prove that this set is a group. Let A and B be two fractional ideals of K such
that BSGal(K/k, S;A) and BSGal(K/k, S;B) hold. Let α and β be anti-units satisfying part
(i) of Theorem 5.3 for the ideals A and B respectively. Then αβ is an anti-unit such that
αβOK = (AB)dGwKθK/k,S . Furthermore, since K((αβ)1/wK ) ⊂ K(α1/wK , β1/wK ), it is a strong
central extension of K/k by Lemma 4.7 and therefore BSGal(K/k, S;AB) is satisfied. Thus the
set of ideals A such that BSGal(K/k, S;A) holds is a subgroup of the group of fractional ideals
of K.

Let σ be an element of G. We now prove that BSGal(K/k, S;Aσ) is satisfied assuming
BSGal(K/k, S;A) holds. Since θK/k,S is in the center of C[G], ασ is a generator of(

AdGwKθK/k,S
)σ

=
(
Aσ
)dGwKθK/k,S .

Furthermore, ασ is clearly an anti-unit. Let γ := α1/wK and δ := (ασ)1/wK . Denote by σ̃ a lift
of σ to L := K(γ). Then there exists ξ ∈ µK such that δ = ξγσ̃. Since L/k is Galois, we get
that L′ := K(δ) ⊂ L. This proves that L′ is a strong central extension of K/k by Lemma 4.7
and thus concludes the proof that BSGal(K/k, S;Aσ) is satisfied.

Finally, we prove that BSGal(K/k, S;A) is satisfied if A is a principal ideal, say A = ηOK .
For that, we use the equivalent formulation (iv) of Theorem 5.3. Let H be an abelian subgroup
of G. For h ∈ H, let nh ∈ N be such that ξh = ξnh for all ξ ∈ µK with the convention that
n1 = wK + 1. Then the family ah := h− nh, for h ∈ H, generates AnnZ[H](µK). For h ∈ H, we

define αh := ηdGahθK/k,S . Note that dGahθK/k,S ∈ Z[G] by the Integrality Conjecture. For all

h ∈ H, we have (ηOK)dGahθK/k,S = αhOK by construction. Furthermore, let w be an infinite
(complex) place of K. Denote by τw ∈ G the complex conjugation at w. By Corollary 3.5, we
have that (1 + τw)θK/k,S = 0 and thus α1+τw

h = 1 for all complex places w of K. Therefore αh
is an anti-unit for all h ∈ H. It remains to prove that α

ag
h = α ahg for all g, h ∈ H. But this is a

direct consequence of the fact that (h− nh)(g− ng) = (g− ng)(h− nh) since H is abelian. This
concludes the proof. �

Corollary 6.2. Assume that K is principal. Then BSGal(K/k, S) is satisfied. �

Using the decomposition of the Brumer-Stickelberger element given by (12), we can prove the
following result that relates BS(Kab/k, S) and BSGal(K/k, S).

Theorem 6.3. Assume that the Integrality Conjecture is satisfied for the extension K/k and
the set of places S and that BS(Kab/k, S) holds. Then BSGal(K/k, S) is satisfied if, for any

fractional ideal A of K, the ideal A
dGwKθ

(>1)

K/k,S is principal, and admits a generator β ∈ K◦ such
that K(β1/wK ) is a strong central extension of K/k.
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Proof. Let A be a fractional ideal of K. Set a := NK/Kab(A). An direct computation shows that

AdGwKν
ab(θ

Kab/k,S
) = a(dG/sG)wKθKab/k,SOK .

By hypothesis, there exists α0, an anti-unit in Kab, such that

a(dG/sG)wKθKab/k,S = α0OKab

and Kab(α
1/wK
0 )/k is abelian. Let α := α0β. Then α is an anti-unit of K and by (12), we have

αOK = AdGwKθK/k,S .

It remains to prove that K(α1/wK ) is a strong central extension of K/k. It is a sub-extension

of K(α
1/wK
0 , β1/wK )/K. But K(β1/wK ) is a strong central extension of K/k by hypothesis and

K(α
1/wK
0 ) is a strong central extension of K/k by Lemma 4.6. Thus, K(α1/wK ) is a strong

central extension of K/k by Lemma 4.7 and the result is proved. �

For χ ∈ Ĝ, recall that Kχ denote the subfield of K fixed by the kernel of χ.

Corollary 6.4. Assume that BS(Kab/k, S) is satisfied and that, for all χ ∈ Ĝ such that χ(1) >
1, Kχ is not a CM extension. Then BSGal(K/k, S) holds.

Proof. Indeed, in that case, θ
(>1)
K/k,S = 0 by Proposition 3.3. �

As an application of Corollary 6.4, we can prove that BS(Kab/k, S) implies BSGal(K/k, S)
for some isomorphic types of group Gal(K/k).

Proposition 6.5. Let G be a finite group such that, for all irreducible characters χ of G with
χ(1) > 1, the center of G/ ker(χ) does not contain an element of order 2. Then BSGal(K/k, S)
holds for any Galois extension K/k of number fields with Gal(K/k) ' G and such that BS(Kab/k, S)
is satisfied.

Proof. The result is trivial if k is not totally real or if K is not totally complex. Assume therefore
that k is totally real and K is totally complex. Let χ be an irreducible character of Gal(K/k)
with χ(1) > 1. It is enough to prove that Kχ is not a CM extension. Assume it is a CM
extension. Then the complex conjugation is an element of order 2 in its Galois group, which
is isomorphic to G/ ker(χ), and it commutes with all the elements of the group since it is the
unique complex conjugation. This is a contradiction, thus Kχ is not CM and the result follows
from Corollary 6.4. �

We give several applications of this result.

Proposition 6.6. Assume that Gal(K/k) is a non-abelian simple group. Then BSGal(K/k, S)
holds.

Proof. The commutator subgroup [G,G] is normal in G, thus it is equal to G and BS(Kab/k, S)
trivially holds since Kab = k. Now, let χ be an irreducible character of G with χ(1) > 1. Then χ
is faithful because ker(χ) is a normal subgroup of G. But the center of G is trivial and therefore
BSGal(K/k, S) holds by Proposition 6.5. �

Proposition 6.7. Assume that Gal(K/k) is isomorphic to the dihedral group D2n of order 2n
where n ≥ 3 is odd. Then BSGal(K/k, S) holds.

Proof. The groupD2n is the group generated by two elements a and b with the following relations:
a2 = bn = 1 and aba = b−1. When n is odd, its maximal abelian quotient is the cyclic group
of order 2, thus Kab/k is quadratic and BS(Kab/k, S) holds. Furthermore, by [20, §I.5.3], its
non-linear irreducible representations are the representations ρh, for 1 ≤ h ≤ (n− 1)/2, defined
by

ρh(bk) =

(
ωkh 0

0 ω−kh

)
and ρh(abk) =

(
0 ω−hk

ωhk 0

)
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for k ∈ Z, where ω is a fixed primitive n-th root of unity. In particular, the kernel of ρh is a
subgroup of 〈b〉, distinct from 〈b〉. It follows that D2n/ ker(ρh) is isomorphic to D2m for some
integer m ≥ 3 dividing n. But the center of D2m, for m ≥ 3 odd, is trivial. The result follows
from Proposition 6.5. �

Proposition 6.8. Assume that Gal(K/k) is isomorphic to the symmetric group Sm on m letters
with m ≥ 2. Then BSGal(K/k, S) holds.

Proof. The result is clear if m = 2. Assume m ≥ 3. We use Proposition 6.5 again. The
commutator subgroup of Sm is the alternating group Am. Therefore Kab is a quadratic extension
of k and BS(Kab/k, S) holds. Assume first that m ≥ 5. Then Am is the only non-trivial normal
subgroup of G and therefore the non-trivial irreducible representations of Sm are either faithful
or have Am as kernel. In particular, the non-linear irreducible representations of Sm must be
faithful and the result follows since the center of Sm is trivial. For m = 3 and m = 4, the
result follows from direct inspection. Indeed, for m = 3, the unique non-linear irreducible
representation is faithful and the center of S3 is trivial. For m = 4, there is only one non-linear
irreducible representation ρ that is not faithful. Its kernel is isomorphic to the Klein group
Z/2Z× Z/2Z and the quotient is S4/ ker(ρ) ' S3 and thus has again trivial center. �

Remark. Using Proposition 6.5 and similar techniques, one can prove that BSGal(K/k, S)
follows from BS(Kab/k, S) for some other families of groups, eg. the group of affine bijective
maps of a finite field Fq which is isomorphic to Fq o F×q .

We now turn to the question of the change of extension for the Galois Brumer-Stark conjecture.
We will prove that it is satisfied in many cases up to a factor.

Proposition 6.9. Let K ′/k be a Galois sub-extension of K/k with G′ := Gal(K ′/k). Denote

by B̃SGal(K
′/k, S) the Galois Brumer-Stark conjecture for the extension K ′/k and the set of

places S with the factor dG′ replaced by dG including in the statement of the Integrality Con-
jecture. Assume that wK is relatively prime with the degree of the extension K/K ′Kab. Then

BSGal(K/k, S) implies B̃SGal(K
′/k, S).

Remark. If G is abelian then Kab = K, thus K = K ′Kab and the condition of the proposition
is always satisfied. Furthermore, we have dG = dG′ = 1 and we recover the fact that BS(K/k, S)
implies BS(K ′/k, S).

Remark. We prove actually a slighter stronger statement: if BSGal(K/k, S) holds then, for all
fractional ideal A′ of K ′, there exists an anti-unit α ∈ K ′ such that

A′ dGwK′θK′/k,S = (α).

The extra hypothesis that wK is relatively prime with the degree of K/K ′Kab is only used to
prove the fact that K ′(α1/wK′ ) is a strong central extension of K ′/k.

In order to see that the statement of Proposition 6.9 makes sense, we have the following
lemma.

Lemma 6.10. Let A be a finite group and let B be a quotient group of A. Then dB divides dA.

Proof. It is enough to prove that sB divides sA and mB divides mA. Let π : A → B be the
canonical surjection and denote by D its kernel. It is clear that sB divides sA since π([A,A]) =
[B,B]. We now prove that mB divides mA. Let b ∈ B and let a ∈ A be such that π(a) = b.
Denote by Z the centralizer of a in A and by Z0 the centralizer of b in B. Note that Z := π−1(Z0)
is a subgroup of A containing Z and that

|Z0| =
|Z|
|D|

=
(Z : Z) |Z|
|D|

.
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Denote by C and C0 the conjugacy classes of a and b in A and B respectively. We find that

|C| = |A|
|Z|

=
|A|(Z : Z)

|D| |Z0|
= (Z : Z)

|B|
|Z0|

= (Z : Z) |C0|.

Thus |C0| divides |C| and therefore mB divides mA. �

Proof of Proposition 6.9. To start, observe that, thanks to Theorem 3.1, the Integrality Con-
jecture for the extension K/k and the set of places S implies the Integrality Conjecture for
the extension K ′/k and the set of places S with dG′ replaced by dG. We first prove the
result when K = K ′Kab. In this situation, we shall actually prove that BSGal(K/k, S) im-
plies BSGal(K

′/k, S). Indeed, we have dG = dG′ by Lemma 4.5 since one can see, thanks to
Lemma 4.6, that K is a strong central extension of K ′/k. Let A′ be a fractional ideal of K ′.
By our assumption that BSGal(K/k, S) holds, taking A := A′OK , we see that there exists an
anti-unit α in K such that

αOK = (AOK)dGwKθK/k,S = A′ dGwKθK/k,SOK = A′ dG′wKθK′/k,SOK . (16)

Furthermore, L := K(γ) is a strong central extension of K/k where γ := α1/wK . Clearly, we
have

γOL = (A′OL) dG′θK′/k,S .

We now use Theorem 5.3(ii) with the extension L/K ′ and the element γ. The only assertion
that needs to be checked is the fact that L is a strong central extension of K ′/k. By Lemma 4.6,
this is equivalent to the fact that L = K ′Lab where Lab is the maximal sub-extension of L/k that
is abelian over k. Clearly, Kab ⊂ Lab thus we have K ′Kab = K ⊂ K ′Lab. Since KLab = L, it
follows that L ⊂ K ′Lab, thus K ′Lab = L and L is a strong central extension of K ′/k. Therefore
BSGal(K

′/k, S;A′) holds for all fractional ideals A′ of K ′ and BSGal(K
′/k, S) is satisfied.

We now prove the general case. By the first part, replacing K ′ by K ′Kab if necessary, we
can assume that K ′ contains Kab and therefore, by hypothesis, wK is relatively prime with the
degree of K/K ′. Let A′ be a fractional ideal of K ′. Reasoning as above, we see that there exists
α ∈ K◦ such that

αOK = A′ dGwKθK′/k,SOK
and L is a strong central extension of K/k where L := K(γ) and γ := α1/wK . Denote by Γ
the Galois group of L/k. For σ ∈ Γ, Lσ = L is a Kummer extension of Kσ = K generated by
γσ. Thus there exist an integer nσ relatively prime to wK with 1 ≤ nσ ≤ d := [L : K], and an
element κσ ∈ K× such that γσ = κσγ

nσ . Observe that, for δ ∈ ∆ := Gal(L/K), we have nδ = 1
and κδ is a root of unity in K. Furthermore, using the fact that σ and δ commute, we get

γδσ = (κσγ
nσ )δ = κσκ

nσ
δ γnσ = γσδ = (κδγ)σ = κσδ κσγ

nσ

and thus κσδ = κnσδ . As δ runs through the elements of ∆, κδ runs through the roots of unity of
order d, thus σ − nσ annihilates the group µd of d-th roots of unity. Assume now that σ lies in
A := Gal(L/K ′). Therefore, σ fixes the group of roots of unity µK′ = µK and nσ = 1. Using
the fact that θK′/k,S is in the center of C[G], we get

ασOK = (A′σ) dGwKθK′/k,SOK = A′ dGwKθK′/k,SOK = αOK .
Since α is an anti-unit, there exists a root of unity ξσ in K× such that ασ = ξσα. Combining
with the above expression for γσ, we find that κwKσ = ξσ. Thus κσ is a root of unity in K and

ξσ = 1. It follows that α ∈ K ′. Again we use Theorem 5.3(ii) to prove that B̃SGal(K/k, S) holds
for A′. It remains to prove that there is a strong central extension of K ′/k containing γ. Let
L′ := K ′Lab where Lab is the maximal sub-extension of L/k that is abelian over k. The Galois
group of the extension L/L′ is [Γ,Γ]∩A. Hence, by Lemma 4.6, L′ is the maximal sub-extension
of L/k that is strong central for K ′/k. We now prove that γ ∈ L′. Denote by π : Γ → G
the canonical surjection induced by the restriction to K. Its kernel is ∆, thus it restricts to an
isomorphism between [Γ,Γ] and [G,G] (see also Lemma 4.2). We have γ ∈ L′ if and only if
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π(Gal(L/L′)) ⊂ π(Gal(L/K ′(γ))), that is π([Γ,Γ]∩A) ⊂ Gal(K/N) where N = K ∩K ′(γ). But
N/K ′ is a sub-extension of K/K ′ of degree dividing wK and therefore N = K ′ and the above

condition is always satisfied. Hence B̃SGal(K
′/k, S) holds and this concludes the proof. �

We conclude this section with a proof of when the validity of the conjecture is preserved
when one enlarges the set S. For χ ∈ Ĝ, denote by ρχ a fixed irreducible representation of G of
character χ.

Lemma 6.11. Let P1, . . . ,Pt be prime ideals of K. We have

t∏
i=1

∑
χ∈Ĝ

det(1− ρχ(σPi))eχ̄ ∈
1

|G|
Z(Z[G]).

Proof. Let α ∈ Gal(Q̄/Q). One can see that the above expression is invariant under the action of

α using the fact that the map χ 7→ χα is a bijection on Ĝ. Therefore, it lies in Q[G]∩Z(C[G]) =
Z(Q[G]). Now, by the orthogonality of characters, we have

t∏
i=1

∑
χ∈Ĝ

det(1− ρχ(σPi))eχ̄ =
∑
χ∈Ĝ

t∏
i=1

det(1− ρχ(σPi))eχ̄.

Finally, for all χ ∈ Ĝ, |G| eχ and det(1 − ρχ(σPi)), for i = 1, . . . , t, are algebraic integers and
thus the result follows. �

Proposition 6.12. Let p1, . . . , pt be distinct prime ideals of k not belonging to S. Define

ω :=

t∏
i=1

∑
χ∈Ĝ

det(1− ρχ(σPi))eχ̄ ∈
1

|G|
Z(Z[G])

where Pi is a prime ideal of K above pi for i = 1, . . . , t. Let d ≥ 1 be the smallest integer
such that dω ∈ Z[G]. Assume that BSGal(K/k, S) holds and let S′ := S ∪ {p1, . . . , pt}. Then
BSGal(K/k, S

′;A) is satisfied for any fractional ideal A of K whose class in ClK has order
relatively prime to d.

Proof. Assume that BSGal(K/k, S) holds. Let A be an ideal of K whose class in ClK has order
relatively prime to d. Thus there exists an ideal A0 of K and η ∈ K× such that A = ηAd0. Let
α0 be an anti-unit of K such that

α0OK = A
dGwKθK/k,S
0

and the extension K(α
1/wK
0 ) is a strong central extension of K/k. Define

α := αdω0 ηdGwKθK/k,S′ .

One checks directly that

αOK = AdGwKθK/k,S′ .

From the proof of Proposition 6.1, we see that δ := ηdGwKθK/k,S′ is an anti-unit and that the
extension K(δ1/wK ) is a strong central extension of K/k. Therefore, α is an anti-unit and the

extension K(α1/wK ) ⊂ K(α
1/wK
0 , δ1/wK ) is a strong central extension of K/k by Lemma 4.7.

Thus BSGal(K/k, S
′;A) holds. �
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7. Groups with a normal abelian subgroup of prime index

In this section, we consider the case where the Galois group G contains an abelian normal
subgroup H of prime index. We prove in this setting that the Integrality Conjecture is satisfied
and that the Galois Brumer-Stark conjecture follows from the abelian Brumer-Stark conjecture
for suitable abelian sub-extensions. The methods used in this section are similar in spirit to the
ones used by Nomura [17] to prove that the weak non-abelian Brumer-Stark conjecture of Nickel
for monomial groups follows from the abelian Brumer-Stark conjecture (and similar results for
the weak Brumer conjecture of Nickel). However, a big difference is that, in Nomura’s paper,
he can work (rational) character by character whereas this does not seem to possible with the
Galois Brumer-Stark conjecture.

We assume from now on that the group G is not abelian and contains a normal abelian
subgroup H of index `, a prime number. Let m denote the order of H, thus |G| = m`. We
have [G,G] ⊂ H since G/H is cyclic of order ` and therefore KH is a subfield of Kab. Let SH
denote the set of places of KH that are above the places in S. The set SH contains the infinite
places of KH and the finite places that ramify in K/KH . The first result of this section gives a
decomposition of the Brumer-Stickelberger element in this situation.

Theorem 7.1. With the notations and setting as above, we have

θ
(>1)
K/k,S =

(
1− 1

sG
N[G,G]

)
θK/KH ,SH

where N[G,G] :=
∑

c∈[G,G]

c ∈ Z[G].

Proof. Since the group G contains an abelian normal subgroup of index `, the dimensions of the
irreducible characters of G divide `. Hence any character in Ĝ with χ(1) > 1 is of dimension `.

Denote by Ĝ` the set of irreducible characters of G of dimension `.

Lemma 7.2. Let Ĥ` be the set of irreducible characters of H whose kernel does not contain
[G,G]. For χ ∈ Ĝ`, define Ĥ`(χ) to be the subset of those characters in Ĥ` whose induction to
G is χ. Then, we have

Ĥ` =
⋃
χ∈Ĝ`

Ĥ`(χ) (disjoint union)

and each Ĥ`(χ) has exactly ` elements. Furthermore, for all χ ∈ Ĝ` and g ∈ G, we have

χ(g) =

0 if g 6∈ H,∑
ϕ∈Ĥ`(χ)

ϕ(g) if g ∈ H.

Proof of the lemma. Let ϕ be a character in Ĥ` and let χ := IndGH(ϕ). Then χ is of dimension `.
Assume χ is not irreducible. Then it is a sum of 1-dimensional characters and all these characters
are trivial on [G,G]. By Frobenius reciprocity, the restriction of any of these characters to H is
equal to ϕ. Thus ϕ is trivial on [G,G], a contradiction. Therefore χ is irreducible and lies in

Ĝ`. The restriction of χ to H is the sum of ` characters of H, and using once again Frobenius
reciprocity, we see that these characters are exactly the characters of H whose induction to G
is χ and that they are all distinct. Therefore, we have proved that, if χ ∈ Ĝ` is the induction of
some character in Ĥ`, then the set Ĥ`(χ) contains ` distinct characters, say ϕ1, . . . , ϕ`, such that

χ|H = ϕ1 + · · ·+ϕ`. Furthermore, if χ′ is a character of Ĝ` induced from a character in Ĥ` with

χ 6= χ′, the sets Ĥ`(χ) and Ĥ`(χ
′) are clearly disjoint. This implies that Ĥ` is the disjoint union

of the Ĥ`(χ)’s for χ ∈ Ĝ`. We now prove that Ĥ`(χ) is non-empty for all χ ∈ Ĝ`. This amounts

to proving that any character in Ĝ` is the induction of some character in Ĥ`. Characters of H
whose kernel contains [G,G] are in bijection with characters of H/[G,G]. Denote by t the index



A BRUMER-STARK CONJECTURE FOR NON-ABELIAN GALOIS EXTENSIONS 21

of [G,G] in H. The number of characters in Ĥ` is therefore m− t and, by the above discussion,

the inductions of these characters yield (m− t)/` characters in Ĝ`. On the other hand, we have

the formula m` = t` + a`2, where a is the number of characters in Ĝ`, since the sum of the
square of the dimensions of the irreducible characters of G is equal to |G| and using the fact that

(G : [G,G]) = t`. Therefore, we have a = (m− t)/` and all the characters of Ĝ` are inductions

of characters in Ĥ`. To conclude, it remains to prove the expression for χ ∈ Ĝ`. Let ϕ ∈ Ĥ`(χ).
For all g ∈ G, we have

χ(g) =
1

m

∑
r∈G

rgr−1∈H

ϕ(rgr−1).

Since the group H is normal in G, rgr−1 ∈ H if and only g ∈ H. Thus χ(g) = 0 if g 6∈ H. If
g ∈ H, the expression follows from the fact that χ|H =

∑
ϕ∈Ĥ`(χ) ϕ. �

As a consequence of Lemma 7.2, we have, for χ ∈ Ĝ`, that

eχ =
∑

ϕ∈Ĥ`(χ)

eϕ

where eϕ is the idempotent of C[H] associated to the character ϕ. We now compute

θ
(>1)
K/k,s =

∑
χ∈Ĝ`

LK/k,S(0, χ) eχ̄ =
∑
χ∈Ĝ`

LK/k,S(0, χ)
∑

ϕ∈Ĥ`(χ)

eϕ̄

=
∑
χ∈Ĝ`

∑
ϕ∈Ĥ`(χ)

LK/k,S(0, IndGH ϕ) eϕ̄ =
∑
χ∈Ĝ`

∑
ϕ∈Ĥ`(χ)

LK/KH ,SH (0, ϕ) eϕ̄

=
∑
ϕ∈Ĥ`

LK/KH ,SH (0, ϕ) eϕ̄ =
∑
ϕ∈Ĥ

LK/KH ,SH (0, ϕ) eϕ̄ −
∑

ϕ∈Ĥ\Ĥ`

LK/KH ,SH (0, ϕ) eϕ̄

= θK/KH ,SH −
∑
ϕ∈Ĥ

[G,G]⊂Kerϕ

LK/KH ,SH (0, ϕ) eϕ̄.

Let ϕ be a character of H whose kernel contains [G,G]. Let ϕ̃ be the only character of J :=
H/[G,G] such that the inflation of ϕ̃ to H is equal to ϕ. From the properties of Artin L-functions,
we have LK/KH ,SH (0, ϕ) = LKab/KH ,SH (0, ϕ̃) and a direct calculation shows that eϕ = νab

H (eϕ̃)

where eϕ̃ is the idempotent of C[Gab] associated to ϕ̃, νab
H : C[J ]→ C[H] is the map defined for

g̃ ∈ J by

νab
H (g̃) :=

1

sG

∑
πab
H (g)=g̃

g,

and extended by linearity to C[J ], and πab
H : H → J is the canonical surjection. Therefore, we

have ∑
ϕ∈Ĥ

[G,G]⊂Kerϕ

LK/KH ,SH (0, ϕ) eϕ̄ =
∑
ϕ̃∈Ĵ

LKab/KH ,SH (0, ϕ̃)νab
H (e ¯̃ϕ)

= νab
H

(∑
ϕ̃∈Ĵ

LKab/KH ,SH (0, ϕ̃) e ¯̃ϕ

)
= νab

H (θKab/KH ,SH ).

Now, for α ∈ C[H] and β ∈ C[J ], one checks readily that ανab
H (β) = νab

H (α̃β) where α̃ := πab
H (α).

Thus, we find that

νab
H (θKab/KH ,SH ) = θK/KH ,SH ν

ab
H (1) =

1

sG
N[G,G] θK/KH ,SH .
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The result then follows by substituting in the above expression. �

The main advantage of the decomposition given by Theorem 7.1 is the fact that the extensions
involved are all abelian. Therefore, in our study of BSGal(K/k, S) in that setting, we can reduce
to the abelian case. In particular, it follows from (3) that

dGwKθ
(>1)
K/k =

dG
sG

(sG −N[G,G])wKθK/KH ,SH ∈ Z[G].

However, for p a prime ideal of k, unramified in K/k, and P a prime ideal of K above p, we do
not have necessarily that (σP − N (p))θK/KH ,SH lies in Z[G], since σP might not belong to H.
However, we can still prove the Integrality Conjecture is satisfied.

Proposition 7.3. We have

(sG −N[G,G])θK/KH ,SH ∈ Z[H].

In particular, the Integrality Conjecture holds for the extension K/k and the set S.

Proof. First note that, by Theorem 7.1 and the discussion after (12), the first assertion implies
the Integrality Conjecture in this case. Now, we have

(sG −N[G,G])θK/KH ,SH =
∑

c∈[G,G]

(1− c)θK/KH ,SH .

But 1 − c ∈ AnnZ[H](µK) for all c ∈ [G,G] and thus, by the properties of the abelian Brumer-
Stickelberger element, all the terms in the sum are in Z[H]. The first assertion and the proof of
the proposition follow. �

We now prove that, in this situation, the Galois Brumer-Stark conjecture is a consequence of
the abelian Brumer-Stark conjecture.

Theorem 7.4. Let K/k be a Galois extension of number fields whose Galois group G contains
an abelian normal subgroup H of prime index. Assume that BS(Kab/k, S) and BS(K/KH , SH)
hold where SH denotes the set of places of KH above the places in S. Then BSGal(K/k, S) is
satisfied.

Proof. We will prove the result using Theorem 6.3. Let A be a fractional ideal of K. By our
hypothesis, there exists α1 ∈ K◦ such that

A
wKθK/KH,SH = α1OK

and the extension K(γ1)/KH is abelian where γ1 := α
1/wK
1 . Define

β := α
(dG/sG)(sG−N[G,G])
1 =

( ∏
c∈[G,G]

α1−c
1

)dG/sG
.

By construction, β is an anti-unit of K and satisfies

βOK = A
dGwKθ

(>1)

K/k,S .

It remains to prove that K(β1/wK ) is a strong central extension of K/k. We will actually prove
that K(β1/wK ) = K. Let L1 be the Galois closure of K(γ1)/k. Denote by Γ1 the Galois group
Gal(L1/k). Let c1 ∈ [Γ1,Γ1]. Note that c1 ∈ Gal(L1/K

H) since KH/k is abelian. Thus,
by Theorem 2.1, there exists a prime ideal P1 of L1, relatively prime to the order of µL1 ,
whose Frobenius automorphism in Γ1 is equal to c1, and an anti-unit α1,pH ∈ K◦ such that
α1,pH ≡ 1 (mod∗ pHOK) and

α1,pHOK = A
(σpH

−N (pH))θK/KH,SH
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where pH is the prime ideal of KH below P1 and σpH is the Frobenius automorphism of pH in
H. We have

γc1−1
1 OL1 = A

(c1−1)θK/KH,SHOL1

= A
(σpH

−N (pH))θK/KH,SHA
(N (pH)−1)θK/KH,SHOL1

= α1,pHα
(N (pH)−1)/wK
1 OL1

.

Observe that γ1, α1,pH and α1 are anti-units, thus there exists a root of unity ξ ∈ µL1 such that

ξγc1−1
1 = α1,pHα

(N (pH)−1)/wK
1 . Furthermore, since c1 acts trivially on the group µK , wK divides

N (pH)− 1 and α1,pHα
(N (pH)−1)/wK
1 belongs to K◦. Raising to the power wK , we get

ξwKα
σpH
−1

1 = αwK1,pH
α
N (pH)−1
1

and therefore

ξwK ≡ αN (pH)−σpH
1 ≡ 1 (mod∗ pHOK).

Therefore we find that ξwK = 1, hence ξ ∈ µK and γc1−1
1 ∈ K.

Now, for all c ∈ [G,G], fix an element c1 in [Γ1,Γ1] whose restriction to K is equal to c, and
define

δ :=
( ∏
c∈[G,G]

γ1−c1
1

)dG/sG
.

By the above computation, we see that δ ∈ K and, by construction, that δwK = β. Therefore
K(β1/wK ) = K and the result follows. �

Corollary 7.5. Assume that the order of H is odd. Then BS(Kab/k, S) implies BSGal(K/k, S).

Proof. Indeed, since the degree of K/KH is odd, BS(K/KH , S) is trivially true as we cannot
have both K totally complex and KH totally real. �

We proved already that BSGal(K/k, S) holds when G is isomorphic to the dihedral group of
order 2m with m odd (see Proposition 6.7). We prove a similar statement when m is even.

Proposition 7.6. Assume that G is isomorphic to the dihedral group D2m of order 2m, with
m even, and that BS(K/KH , SH) holds where H is the unique cyclic subgroup of G of order m.
Then BSGal(K/k, S) is satisfied.

Proof. The cyclic subgroup H is normal and of index 2. Therefore, by Theorem 7.4 and the
hypothesis, it is enough to prove that BS(Kab/k, S) is satisfied. The maximal abelian quotient
of D2m is isomorphic to Z/2Z× Z/2Z, thus BS(Kab/k, S) holds by the results of [19]. �

We conclude this section with another application of Theorem 7.4.

Proposition 7.7. Assume that G is non-abelian of order 8. Then BSGal(K/k, S) is satisfied.

Proof. The non-abelian groups of order 8 are, up to isomorphism, the dihedral group D8 of order
8 and the quaternion group Q8. We start with Gal(K/k) ' D8. Thanks to Proposition 7.6, it
remains to prove that BS(K/KH , S) holds where H is the cylic subgroup of order 4 contained
in Gal(K/k). But K/KH is a degree 4 abelian extension contained in the degree 8 non-abelian
Galois extension K/k, so BS(K/KH , S) is true by results of Tate (see Theorem 2.2).

Assume now that Gal(K/k) ' Q8. A presentation for the group Q8 is given by the three
generators a, b, c with the relations a2 = b2 = c2 = abc. It is customary to denote the element
abc by −1 since it is of order 2 and lies in the center of Q8. (In fact, it generates the center
of Q8.) The subgroup H generated by a is cyclic of order 4. Thus, we can apply Theorem 7.4
and BSGal(K/k, S) follows from BS(Kab/k, S) and BS(K/KH , SH). Now, the commutator
subgroup of Q8 is the subgroup {±1} and Gal(Kab/k) ' Z/2Z × Z/2Z. Thus, BS(Kab/k, S)
is satisfied by the results of [19]. Finally, as above, the extension K/KH is a degree 4 abelian



24 GAELLE DEJOU AND XAVIER-FRANÇOIS ROBLOT

extension contained in the degree 8 non-abelian Galois extension K/k so BS(K/KH , SH) follows
again from Theorem 2.2. �

Appendix. The non-abelian Brumer-Stark conjecture of Nickel

In this appendix, we state the weak non-abelian Brumer-Stark conjecture of Nickel [14] and
compare it with our conjecture. Note that Nickel states also a strong version of the non-abelian
Brumer-Stark conjecture and similar generalizations of the Brumer conjecture. We change
slightly the notations used by Nickel to match the notations used in the previous sections.

Let K/k be a Galois CM-extension with group G. Fix a finite set S of places of k such that
S contains the infinite places of k and the finite places of k that ramify in K/k. Let Hyp(S) be
the set of finite set T of places of k such that

• S and T are disjoint,
• the group EK(S, T ) is torsion-free.

Here, EK(S, T ) denotes the group of (S, T )-units of L, that is the group of elements u ∈ K×
such that vP(u) = 0 for all prime ideals P of K such that (P ∩ k) 6∈ S and u ≡ 1 (mod∗ Q) for
all prime ideals Q of K such that (Q ∩ k) ∈ T . For T ∈ Hyp(S), define

δT := nr
( ∏

p∈T
1− σ−1

P N (p)
)

where P is a fixed prime ideal of K above p and nr : Q[G]→ Z(Q[G]) is the reduced norm (see
[18, §9]). Let Λ′ denote a fixed maximal order of Q[G] containing Z[G]. Denote by F(G) := {x ∈
Z(Λ′) : xΛ′ ⊂ Z[G]} the central conductor of Λ′ over Z[G].

Conjecture (The weak non-abelian Brumer-Stark conjecture of Nickel).
Let wK := nr(wK). Then wKθK/k,S ∈ Z(Λ′). Furthermore, for any fractional ideal A of K and
for each x ∈ F(G), there exists an anti-unit αx ∈ K◦ such that

AxwKθK/k,S = αxOK
and, for any set of places T ∈ Hyp(S ∪ Sαx), there exists αx,T ∈ EK(Sαx , T ) such that, for all
z ∈ F(G)

αzδTx = αzwKx,T

where Sαx is the set of prime ideals p of k such that vp(NK/k(αx)) 6= 0.

Remark. The strong version of the conjecture is similar with the modules Z(Λ′) and F(G)
replaced respectively by the modules I(G) and H(G) where I(G) is the module generated by
the reduced norms of matrices with coefficients in Z[G]; the definition of H(G) is more intricate,
see [14, p. 2582]

The results of Greither-Popescu [10], mentioned at the end of Section 2, have been generalized
by Nickel in [16] where he proves that the p-part of his non-abelian Brumer conjecture and
non-abelian Brumer-Stark conjecture hold if S contains all the prime ideals above p and some
appropriate µ-invariant vanishes. As mentioned in the previous section, Nomura [17] proves that
the weak non-abelian Brumer-Stark conjecture of Nickel is implied by the abelian Brumer-Stark
conjecture when the Galois group of K/k is monomial (and also obtain additional results on the
strong version and local versions of the conjecture).

We now briefly compare our conjecture with the weak non-abelian Brumer-Stark conjecture of
Nickel. Both conjectures have two parts: an integrality statement for the Brumer-Stickelberger
element and an annihilation of the class group statement that also predicts special properties
for the generators obtained. We first prove that the Galois Brumer-Stark conjecture implies the
annihilation statement in the weak non-abelian Brumer-Stark conjecture of Nickel up to a factor
dG, including the existence of generators that satisfy almost all the required properties.
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Proposition 7.8. Assume that BSGal(K/k, S) holds. Let A be a fractional ideal of K. Then,
for all x ∈ F(G), there exists an anti-unit αx ∈ K◦ such that

AdGxwKθK/k,S = αxOK
and, for any set of places T ∈ Hyp(S ∪ Sαx), there exists αx,T ∈ K× with αwKx,T ∈ EK(Sαx , T )

such that, for all z ∈ F(G)

αzδTx = αzwKx,T .

Proof. Let α ∈ K◦ be such that AdGwKθK/k,S = αOK and K(α1/wK ) is a strong central extension
of K/k. For x ∈ F(G), let αx := αxmK where mK = w−1

K wK . Note that by (18) below, we have
mK ∈ Z(Λ′) and thus xmK ∈ Z[G]. We compute

AdGxwKθK/k,S = (AdGwKθK/k,S )xmK = αxOK .

Now, let T ∈ Hyp(S ∪ Sαx). Let MT be the product of the prime ideals of K above the prime
ideals in T . Then, for any a ∈ F(G), the element aδT ∈ Z[G] kills (OK/MT )×. We give the proof
of this result due to Nickel (personal communication). Let ` be a prime number. The module
(OK/MT )× ⊗ Z` admits a quadratic presentation induced by the following exact sequences

Z`[DP] // Z`[DP] // (OK/P)× ⊗ Z` // 1

where p ranges through the prime ideals in T , P is a fixed prime ideal of K above p, DP is

the decomposition group of P in G, the first map is the multiplication by 1− σ−1
P N (p) and the

second map is induced by the action of DP on a fixed generator of (OK/P)×. Thus, the Fitting
invariant of (OK/MT )× ⊗ Z` is generated by δT , see [14, p. 2580]. By Theorem 1.2, ibid., we
get that aδT annihilates (OK/MT )× ⊗ Z`. Since this is true for all primes ` and (OK/MT )× is
a finite abelian group, the result follows. In particular, because EK(S, T ) is torsion-free, we get
that xδT lies in AnnZ[G](µK). Using Lemma 3.7, we can write

xδT =

t∑
i=1

λi(σPi −N (pi)),

where λi’s are rational integers and the Pi’s are prime ideals of K such that Theorem 5.3(iii)
applies. Let γ := α1/wK , L := K(γ) and Γ := Gal(L/K). Define

x̃T :=

t∑
i=1

λi(σP̃i −N (pi)) ∈ Z[Γ]

where P̃i is a fixed prime ideal of L above Pi and σP̃i is the Frobenius automorphism of P̃i

in Γ. We set αx,T := γx̃T . From the proof of Theorem 5.3(iii), we see that γσP̃i
−N (pi) is an

element of K× (it is equal to αPi with the notations of Theorem 5.3(iii)) and thus αx,T ∈ K×.
Furthermore, we have

αx,TOL = (AdGθK/k,SOL)x̃T = AdGxδT θK/k,SOL
and, using the fact that dGxδT θK/k,S ∈ Z[G] by the Integrality Conjecture, we get that αx,TOK =

AdGxδT θK/k,S . Now, let N be a large enough integer such that Nm−1
K δT ∈ Z[G]. Then, we find

(compare with proof of [14, Lemma 2.12])

αNx,TOK =
(
AdGxmKθK/k,S

)Nm−1
K δT

= α
Nm−1

K δT
x OK

and αx,T is supported only by prime ideals above Sαx . Also, we have αwKx,T = αxδT ≡ 1 (mod∗MT )

and therefore αwKx,T ∈ EK(Sαx , T ). Finally, for z ∈ F(G), we compute

αzwKx,T = γx̃T zwK = (γwK )x̃T zmK = αxδT zmK = (αxmK )zδT = αzδTx . �
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It is an interesting question to ask if there is any result in the other direction: assuming
the non-abelian Brumer-Stark conjecture of Nickel, can we deduce some results on our Galois
Brumer-Stark conjecture? We were not able yet to obtain significant results on this question.
Similarly, it appears that the connections between the Integrality Conjecture and the integrality
statement in the conjectures of Nickel are quite thin and, indeed, the two statements appear
to be of quite different nature. To illustrate this point, we look at the proof of the integrality
statement of the weak non-abelian Brumer-Stark conjecture in the setting of the previous section.
(Of course, this case also follows from the results of [17].)

We start with some general results and facts. Let X be the set of irreducible Q-characters
of G or, equivalently, the set of orbits of Ĝ under the action of Gal(Q̄/Q). For X ∈ X, define
eX :=

∑
φ∈X eφ ∈ Q[G]. Then, as a Q[G]-module, one has

Q[G] =
⊕
X∈X

eXQ[G].

For each X ∈ X, fix a character φX ∈ X and set QX := Q(φX) and nX := φX(1). Indeed
these do not depend on the choice of the character φX ∈ X. Then

⊕
X∈X QX is isomorphic to

Z(Q[G]) by the map

(αX)X∈X 7→
∑
X∈X

∑
σ∈Gal(QX/Q)

ασXeφσX (17)

where φσX := σ◦φX . This map restricts to an isomorphism between
⊕

X∈XOX and Z(Λ′) where
OX denotes the ring of integers of QX . A direct computation shows that

wK =
∑
X∈X

wnXK eX (18)

and thus

wKθK/k,S =
∑
X∈X

∑
σ∈Gal(QX/Q)

wnXK LK/k,S(0, φ̄X)σeφσX

using (9). Thus, the assertion that wKθK/k,S lies in Z(Λ′) is equivalent to the fact that

wnXK LK/k,S(0, φX) lies in OX for all X ∈ X. Assume that X ∈ X is such that nX = 1. Let φ̃X
be the unique character of Gab whose inflation to G is equal to φX . Then, we have

wnXK LK/k,S(0, φX) = wKLKab/k,S(0, φ̃X) ∈ OX

using (1) and (3). Thus wKθK/k,S ∈ Z(Λ′) if and only if wKθ
(>1)
K/k,S ∈ Z(Λ′).

We now specialize to the setting of the last section and assume that G contains a normal
abelian subgroup H of prime index `. Thanks to the above remark and Theorem 7.1, we have
wKθK/k,S ∈ Z(Λ′) if and only if ew`KθK/KH ,SH ∈ Z(Λ′) where

e := 1− 1

sG
N[G,G] =

∑
X∈X
nX>1

eX ∈ Z(Λ′). (19)

Since wKθK/KH ,SH ∈ Z[H] ⊂ Z(Λ′) by (3), we recover the fact that wKθK/k,S ∈ Z(Λ′) in that
setting.

The different roles played by the idempotent e in both proofs show, in our opinion, that the
integrality statements of the two conjectures are, somewhat, of different nature (at least in this
setting). Indeed, for the weak non-abelian Brumer-Stark conjecture of Nickel, this factor plays
no role at all whereas it plays an essential part in the proof of the Integrality Conjecture, see the
proof of Proposition 7.3. This leads us to believe that there is no direct easy connection between
the two integrality conjectures.
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