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ABSTRACT. Let K/k be an abelian extension of number fields. The Brumer-Stark conjecture
predicts that a group ring element constructed from special values of L-functions associated to
K /k annihilates the ideal class group of K. Moreover it specifies that the generators obtained
have special properties. The aim of this article is to state and study a generalization of
this conjecture to non-abelian Galois extensions that is, in spirit, very similar to the original
conjecture.

1. INTRODUCTION

The Brumer-Stark conjecture was first stated by Tate [2I] and applies to abelian extensions
of number fields. It combines a conjecture of Brumer and ideas coming from conjectures of
Stark. Let K/k be an abelian extension. The main ingredient of the conjecture is a certain
group-ring element in Z[Gal(K/k)], called the Brumer-Stickelberger element, constructed from
the values at s = 0 of the L-functions associated to the extension K/k. The Brumer part of the
conjecture states that the Brumer-Stickelberger element annihilates the class group of the field
K. The Stark part of the conjecture predicts that the principal ideals obtained in this way admit
generators satisfying special properties. A very nice reference for the Brumer-Stark conjecture,
and Stark conjectures in general, is the book of Tate [22], see also [4] and [6]. The aim of this
article is to generalize the Brumer-Stark conjecture to Galois non-abelian extensions.

The plan of this paper is the following. In the second section, we state the Brumer-Stark
conjecture, some of its properties and say a few words about its current status. To avoid confusion
in the setting of this paper, we will call this conjecture the abelian Brumer-Stark conjecture
and will call the conjecture that we propose the Galois Brumer-Stark conjecture. The third
section is devoted to the generalization of the Brumer-Stickelberger element to the Galois case.
There, we rely on an earlier work of Hayes [13] that constructs this generalization and studies
its properties. We show that it also satisfies additional properties very similar to the abelian
case. It is known that the Brumer-Stickelberger element is rational and a suitable denominator
is known in the abelian case. We make a first conjecture, called the Integrality Conjecture,
on a suitable denominator for this element in the general case. This conjecture is part of our
generalization of the abelian Brumer-Stark conjecture. The next section introduces the notion of
strong central extensions. These extensions play a fundamental role in our generalization. The
Galois Brumer-Stark conjecture is stated in Section 5 and we study its properties in Section 6
with the generalization of the properties of the abelian Brumer-Stark conjecture in view. The
last section is devoted to the study of the conjecture in the special case where the Galois group
of the extension contains an abelian normal subgroup of prime index. In this setting, we prove
that the abelian Brumer-Stark conjecture implies the Galois Brumer-Stark conjecture.

Different generalizations to the non-abelian case of the Brumer conjecture and Brumer-Stark
conjecture are stated by Nickel [14] (see also the work of Burns [2]). In an appendix at the end
of the paper, we state the weak version of Nickel’s non-abelian Brumer-Stark conjecture and
compare it with our conjecture.
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Note. Many of the results of this article are extracted from the PhD thesis [7] of the first named
author or generalizations of results contained in this thesis.

Convention. We denote the action of elements of Galois groups on elements, ideals, etc., using
the exponent notation with the convention that they act on the left, that is a7 = (a7)°.

2. THE ABELIAN BRUMER-STARK CONJECTURE

In this section, we state the abelian Brumer-Stark conjecture and review some of its properties.
Let K/k be an abelian extension of number fields. Denote by G its Galois group. Fix S a finite
set of places of k containing the infinite places of k and the finite places of k that ramify in K/k.
To simplify the exposition, we assume from now on that the cardinality of S is at least ton|
The interested reader can refer to [22], IV§6] for the statement of the conjecture when |S| = 1.
To a character x of G is associated the S-truncated Hecke L-function of x defined for Re(s) > 1
by

L /k,s(s,x) = H(l —x(op)N(p) ™) ~"
pES
where p runs through the prime ideals of k not in S, oy, is the Frobenius automorphism of p in G,
and N (p) is the absolute norm of the ideal p. This function admits a meromorphic continuation
to C, which is in fact analytic if the character x is non-trivial. A main object of the abelian
Brumer-Stark conjecture is the Brumer-Stickelberger element. It is a relative analogue of the
Stickelberger element of cyclotomic fields and is defined by the formula

Ok k.5 = Z Lk k,s(0,x) ex € C[G]
xEG‘

where G denotes the group of characters of G and, for y € G, ey is the associated idempotent.
Another characterization of this element is that it is the only element in C[G] such that

X(Ox/k,s) = Lk /k,s(0,X)

for all character y € G. A third characterization of this element is in term of partial zeta
functions. For o € G, the partial zeta function associated to g (and the extension K/k and the
set S) is defined, for Re(s) > 1, by

Cx/k,5(8,0) = Z N(a)™

(a,8)=1

Oq=0

where a runs through the integral ideals of k, not divisible by any prime ideal in S, and whose
Artin symbol o, in G is equal to o. This function also admits meromorphic continuation to the
complex plane and the partial zeta functions are related to Hecke L-functions by the formula

Lisks(s:%) = Y Ciyrus(s,0)x(0). 1)
ocG
From this we deduce the third characterization of the Brumer-Stickelberger element
Ok /k,s = Z Ck/s(0,0)0 (2)
geG

It follows from works of Deligne and Ribet [8] (see also the works of Barsky [I] and Pi. Cassou-
Nogues [5]) that, for any £ € Anng g (i), the annihilator in Z[G] of the group ux of roots of
unity in K, we have {0k, g € Z[G]. In particular, if we let wx denote the cardinality of
we have

wKGK/k,S S Z[G] (3)

IThe only non-trivial case that we are excluding is when k is a complex quadratic field and K is a subfield of
the Hilbert class field of k.
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We need one last notation before stating the abelian Brumer-Stark conjecture. We say that a
non-zero element « in K is an anti-unit if all its conjugates have absolute value equal to 1. The
group of anti-units of K is denoted by K°.

Conjecture (The abelian Brumer-Stark conjecture BS(K/k, S)).
For any fractional ideal A of K, the ideal AVx9%/x.5 s principal and admits a generator a € K°
such that K (a'/"x)/k is abelian.

Remark. The last assertion that K(a'/*x)/k is abelian does not depend upon the choice of
the wg-th root of « since all these roots generate the same extension of K.

Remark. The Brumer conjecture states that the ideal Anngq)(u(K)) 0k /i, of Z[G] annihilates
the class group Clg of K. The Brumer-Stark conjecture implies the Brumer Conjecture.

Let v be a place in S and denote by N, := > ., o € Z[G] the sum of all the elements in
the decomposition group D, of v in G. Then, one can prove, see [22, Chap. IV], that

Ny Ok i,s = 0. (4)

In particular, if the set S contains a place that is totally split in K/k, the Brumer-Stickelberger
element is equal to 0 and the abelian Brumer-Stark conjecture is trivially true. Therefore, the
conjecture is only meaningful when both k is totally real and K is totally complexﬂ In [21], Tate
proves equivalent formulations of the conjecture that are very useful for its study. We will later
on generalize this result to the non-abelian Galois case. For & € K* and 2 an integral ideal of
K, we write o = 1 (mod” ) if v (v — 1) > v (A) for all prime ideals P of K dividing A, where
vy is the valuation associated to . This is equivalent to the usual notion & =1 (mod ) when
« is an algebraic integer.

Theorem 2.1 (Tate). Let 2 be a fractional ideal of K. Then the following statements are
equivalent.
(i). There exists an anti-unit a € K° such that A*x%%/x.s = aO and K (a'/"x)/k is abelian.
(i). There exist an extension L/K such that L/k is abelian and an anti-unit v € L° such that
(QlOL)GK/’“vS =~0y,.
(iti). For almost all prime ideals p of k, there exists ay € K° such that a, = 1 (mod™ pOr)
and A~ N0k /ks = ap Ok where oy, is the Frobenius automorphism of p in G.
(). There exist a family (a;)icr of element of Z[G] generating Anngiq(ux) and a family
(ai)ier of anti-units in K such that A%9%/k5 = o;Ok for all i € I, and ;% = ;% for
alli,jel.

Remark. Here and in the rest of the paper, when we say “for almost all prime ideals”, we
implicitly exclude the ramified primes; therefore the Frobenius automorphism is uniquely defined.

Remark. In part (ii), (AOL)%</#s is defined by the formula ((Q(OL)"GK/’C=S)1/” where n > 1
is any integer such that nfg /i, ¢ € Z[G]. This is well-defined, when it exists, since the group of
ideals of a number field is torsion-free.

Let 2 be a fractional ideal of K. We say that BS(K/k,S;2) holds if the ideal 2 satisfies
the equivalent conditions of Theorem The conjecture BS(K/k, S) is thus the collection of
the conjectures BS(K/k, S;2) where 2 ranges through the fractional ideals of K. In [2I], Tate
proves that the set of fractional ideals 2 of K such that BS(K/k,S;2) holds is a subgroup of
the group of ideals of K, stable under the action of GG, and that contains the principal ideals of
K. In particular, BS(K/k, S) holds if the field K is principal. Now, let py be a prime ideal of
k not in S, then

Ok /k,50(p0r = (1 = 0py )0k /1 5- (5)

2Note that K° = {£1} if K is not totally complex.
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It follows from this formula that the validity of BS(K/k, S) implies that of BS(K/k, S U {po}).
Therefore, the conjecture is true for any admissible set of places S if it is true for the minimal
set that contains exactly the infinite places of k and the finite places that ramify in K/k. The
validity of the abelian Brumer-Stark Conjecture is also preserved under change of extension as
a consequence of part (ii) of Proposition That is, if K/K'/k is a tower of number fields,
then the validity of BS(K/k, S) implies that of BS(K'/k, S). It also preserved under change of
base, that is if BS(K/k, S) holds then so does BS(K/k’, S’) where K/k'/k is a tower of number
fields and S’ denotes the set of places of k' above the places in k, see [I2]. The following cases
of the conjecture are proved by Tate (see [21] and [22]).

Theorem 2.2 (Tate). The abelian Brumer-Stark conjecture BS(K/k, S) is true in the following
cases.

o The field k is the field Q of rational numbersﬂ

e The extension K/k is quadratic.

o The extension K/k is of degree 4 and is contained in a non-abelian Galois extension
K/ky of degree 8.

Sands proves the abelian Brumer-Stark conjecture when the group G is isomorphic to Z /27 x
7Z/27 and, more generally, when the group G has exponent 2 with some additional technical
hypothesis, see [19]. A local version of the conjecture is stated and is proved for some types of
extensions of degree 2p (with p odd) and numerically studied in some others by Greither et al.
in [II]. The local abelian Brumer-Stark conjecture at p holds for so-called “non-exceptional”
primes p provided some appropriate Iwasawa u-invariant vanishes by results of Nickel [I5], and
when S contains all the prime ideals above p and, again, some appropriate Iwasawa p-invariant
vanishes by results of Greither and Popescu [I0]. Nickel shows in [I4] that the local abelian
Brumer-Stark conjecture outside of 2 is implied by the relevant special case of the Equivariant
Tamagawa Number Conjecture (ETNC) plus some additional technical hypothesis. Since this
special case of the ETNC was proved by Burns and Greither [3], this implies, in particular, the
part outside of 2 of the abelian Brumer-Stark conjecture holds if K/k is a tame extension with
K an abelian extension of Q.

As mentioned in the introduction, generalizations to the non-abelian case of the Brumer-Stark
conjecture (and also the Brumer conjecture) due to Nickel are stated in [I4] (see also [2] for much
more general conjectures due to Burns), we state these conjectures and study the links with our
conjecture in an appendix at the end of this article.

3. THE GALOIS BRUMER-STICKELBERGER ELEMENT

We assume from now on that the extension K/k is Galois, but not necessarily abelian. The
set S still denotes a finite set of places of k containing the infinite places of k and the finite places
that ramify in K /k. As in the abelian case, we assume also that S is cardinality at least 2. Note
that the only non-trivial case we are excluding is when k is a complex quadratic field and K is
an unramified extension of k. The first step in the generalization of the abelian Brumer-Stark
conjecture is the construction of the Brumer-Stickelberger element associated to non-abelian
Galois extensions. Fortunately, such a construction is provided by the work of Hayes [13]. We
now review his construction and the first properties of the Brumer-Stickelberger element. Denote
by G the set of irreducible characters of G. For x € G, let Lk /k,s(8,x) denote the Artin L-
function of x with Euler factors at primes in S deleted. The Brumer-Stickelberger element is
defined by

Ok ks = > Lic/i,s(0,X) ex (6)
XECJ

3In this situation, it boils down to Stickelberger’s theorem on cyclotomic sums.
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1
where e, = >Té|) Z X(U)afl is the central idempotent associated to .
ceG
The following results are extracted from [I3].

Theorem 3.1 (Hayes). Denote by € the set of conjugacy classes of G. The Brumer-Stickelberger
element lies in the center Z(C[G]) of C[G] and is the only element of Z(C[G]) such that

&x(Ox/k,5) = Lic/x,5(0,%) (7)
for all x € G, where by is the ring homomorphism from Z(C[G]) to C defined by
x(€)
C):=

for all C € 6¢.
Let B be a normal subgroup of G. Then we have

Oxs ks = (0K /k,s)

where 7 : Gal(K/k) — Gal(K B /k) is the canonical surjection induced by the restriction to K.
Let H be a subgroup of G. Denote by Sy the set of places of K™ above the places in S. Let
INormeg_, i : Z(C[G]) — Z(C[H]) be the inhomogeneous norm defined by

INOI‘mG_HL] Z < H alx <X Indgd) >6¢
pcH xeG
fora:=73%" caalx)ex € Z(C[G]), where (-,-)g is the inner product on the characters of G and
ey is the central idempotent of C[H] associated to ¢. Then we have

eK/KH,SH = INormG_,H(HK/k,S).
We are now interested in generalizing properties (4) and (5). We start with (4).
Proposition 3.2. For v a place of k, define

= > |C‘O € Q[d]

€D,

where w is a fized place of K above v, D,, is the decomposition group of w in G and C, € 6g
is the conjugacy class of o in G. Then, for any place v in S, we have

Nv HK/,CS =0.

Proof. Since N, is in Z(C[G]), it is enough, with the notations of Theorem [3.1] to prove that
Oy (Ny Ok /1,5) = Iy (No)dy (O /i,s) = 0 for all x € G. Let y € G be such that &5 (Ny) #0. By
(7), we need to prove that the order 7(x) = r(x) of vanishing at s = 0 of L/ g(s, x) is at least
1. Let p: G — GL(V) be an irreducible representation with character y. By [22] Prop. 1.3.4],
we have

=Y dimVP — dim V¢ (8)

v'eS

where w' is a fixed place of K above v/ and D, denotes the decomposition group of w’ in G.
Assume first that x is the trivial character. Then the above formula yields r(x) = |S| — 1 and
the result follows from our hypothesis that S contains at least two places. Assume now that y
is non-trivial. We compute

1 1 D,
Py (Ny) = UEZD ic, |¢ x(Co) = WUEZD x(o) = |X1)<1D“”X|DW>DM

where 1p, is the trivial character of D,,. By the above hypothesis, ¢,(N,) # 0 and thus
the trivial character 1p,, appears in the decomposition of x|p,. Therefore the space VPw has
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dimension at least 1. On the other hand, V¢ = {0} since x is irreducible. It follows that
r(x) > 1 and the result is proved. O

Assume that there exists v € S that is totally split in K/k. Then N, = 1 and the Brumer-
Stickelberger element is trivial in this case. Therefore, as in the abelian case, we assume that
both k is totally real and K is totally complex, otherwise the Brumer-Stickelberger element is
trivial. In fact, we can say more than that. Recall that a number field £ is CM if it is a totally
complex quadratic extension of a totally real field. If furthermore E is Galois over some totally
real subfield F, then Gal(E/F) has a unique complex conjugation and we say that a character
x of Gal(E/F) is totally odd if the eigenvalues of an associated representation evaluated at the
complex conjugation are all equal to —1. The following result is due to Tate, see [22] p. 71].

Proposition 3.3 (Tate). Let x € G be a character such that Lk k,s(0,x) # 0. Then x is the
inflation of a totally odd character of a Galois CM sub-extension F/k of K/k.

Corollary 3.4. If K/k does not contain a Galois CM sub-extension then O /i, s = 0.

Proof. Assume that 0/, s # 0. Then, by Theorem and the fact that (¢y),cq is a basis

of the dual of Z(C[G]), we get that there exists an irreducible character x € G such that
by Ok /k,s) = Li/i,s(0,x) # 0. This character comes from a Galois CM sub-extension by the
proposition. [l

Corollary 3.5. Let 7 be a complex conjugation of G. Then (T +1) - 0.5 = 0.

Proof. By the proposition, it is enough to prove that (7 + 1) - e, = 0 for any character x € G
that is the inflation of a totally odd character x of a Galois CM sub-extension. Since ¥ is totally
odd, we have x(g7) = —x(g) for all g € G. Let R be a set of representatives of G/{1,7}. We
now compute

1) o= 40 XY (xo !+ x(or) (o))

PER

=(r+1)- >Tg|) > (xte)o™ = xp)ro )

pER

=(r+1){1-1) x() Z x(p)p~t =0. 0

Gl
The following result generalizes to the Galois case.

Proposition 3.6. Let py be a prime ideal of k not in S. Then
Or/k,50(p0} = UK /k,s Z det(1 — py(oq,))ex
xEG‘
where Pg is a fized prime ideal of K above ypg, o, s the Frobenius automorphism of Po in G,
and, for x € G, py denotes a fized irreducible representation of G with character x.

Proof. With the notations of Theorem it is enough to prove, for all ¢ € G, that
D00 k. 501p07) = SuOxcsi.5) du( S det(1 = pyoms,))ex )

xX€G
= L /k,5(0,9) Z det(1 — py (o)) Py (ex)-
xe@

On the other hand, from the definition of Artin L-functions, we see that

Gy (0K /k,501p0}) = Li/k,50(p0} (0,¥) = Licr,5(0,%) det(1 — py(ogp,))-
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The result follows from the fact that ¢, (eg) = 1 if ¢ = x and zero otherwise. O

We now turn to the question of the rationality of the Brumer-Stickelberger element O /1 g
when G is non-abelian. As noted on page 2584 of [14], it is a consequence of the principal rank
zero Stark conjecture that was proved by Tate [22]. We recall the argument of the proof. For
any character x of G, the principal rank zero Stark conjecture states that

Lk /i,5(0,x%) = Lg/k,s(0,x)” for all a € Autg(C) 9)
where x® := a o xy. We write
1
Ok/ks = > Lic/i,s(0,X) é|) Y x(o)o=> .0
XEG ceG oceG

where
Ty = \G| Z o)Lk /k,s(0,X)-
xeG
Let a be an automorphism of C. We compute

a(zy) |G| Z o)Lk )k,5(0,x)*
xeG
|G| > ox” (0)Lk/k,s(0,x%) = 7o
xe@

since the map x — x® is a bijection on the set G. It follows that z, € Q for all o € G, and thus
the Brumer-Stickelberger element 0 /5, g lies in Q[G].

An interesting problem is to find a suitable denominator for the Brumer-Stickelberger element
in the non-abelian case. In the abelian case, as noted above, wifg i s is always integral. In
the Galois case, however, one can see from examples that it is not true anymore. Let [G, G| be
the commutator subgroup of G, that is the subgroup generated by the commutators [g1, g2] :=
9192g1_192_1 with g1, g2 € G. We make the following conjecture.

Conjecture (The Integrality Conjecture).

Define mg to be the lem of the cardinalities of the conjugacy classes of G and let sg be the order
of the commutator subgroup [G,G] of G. Let dg be the lem of mg and sg. Then, for almost all
prime ideals P of K, we have

da(op — N (9))0k/k,s € Z[G] (10)
where p is the prime ideal of k below P and oy is the Frobenius automorphism of B in G.

One could weaken the Integrality Conjecture by just asking that there exists an integer dg,
depending only on the isomorphism class of G, such that holds without specify its value.
However, heuristic arguments lead us to predict this specific value of dg. First, observe that
meg = 1 if and only if s¢ = 1 if and only if G is abelian. Therefore, when the extension K/k
is abelian, the Integrality Conjecture is equivalent to the statement before using Lemma
below. We now explain why we conjecture that the factor s¢ is necessary. Let G := G/[G, G]
be the maximal abelian quotient of G' and K := K% be the maximal sub-extension of K/k
that is abelian over k; we have Gal(K?"/k) = G*". Denote by 7®® : G — G the canonical
surjection induced by the restriction to K®P. Let v*" be the map from C[G*] to C[G] defined

for g € G*" by
v Z 9 (11)

ﬂ-ab g
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where the sum is over elements g € G whose image by 7" is equal to §. The map "
extended to C[G?"] by linearityﬁ Let k € C[G?*], we have (7®P o v*)(k) = &k and, if ¢ € C[G],
then £v2P (k) = v2P(72P(¢)k). The 1-dimensional characters of G are exactly the ones that are
inflations of characters of G®P. For such a character y, denote by Y the character of G*" such
that xy = Y o 7. One checks readily that e, = v*"(e;) where ey is the idempotent of C[G?P]
associated to x. By the properties of Artin L-functions, we have

Z Lk k,s(0,x)e Z Lican /150, )™ (e5)
xe€@G xeGab
x(1)=1

- Vab( Z LKab/k,S<0’>2)e):<) = Vab(eKab/k’S).

Xeéab
We define
91(;?/116 g" Z L /i,s(0, x)ex
XEG
x(1)>1
By the above computation, we find that
Orc s = V™ (Orcan 1 5) + QK/k s (12)

For all £ € Anngg(puk), we have SGgl/ab(aKab/k7S) = s (59Kab/k75’) € Z[G] by the remark
before since £ := 7P(¢) € Annggav) (pgan). Therefore the factor sg is there to ensure
that the part of the Brumer-Stickelberger element coming from the 1-dimensional characters is
integral.

The first open case for the Integrality Conjecture is when G ~ SLy(F3), see Theorem In
fact, for relative Galois extensions K/k of degree < 31 and with Galois group not isomorphic
to SLa(IF3), one can prove that s is a suitable denominator for 6/ s. However, numerical
experiments in the case G ~ SLs(F3) show that s is not a suitable denominator in general and,
in fact, it is necessary to use 3s¢ in some cases, see [7, Chap. 5]. It is therefore necessary to add
an extra factor. After Hayes, define, for s € C, the meromorphic function

Ok /k,s( Z Lk k,s(s,x) ex-
x€@
Note that O/, 5(0) = 0k k,s. Using this function, Hayes defines in [I3 §5] the partial zeta
function (g i (s, C) of a class C' € € by the formula

Or/rs(s) = D Cuyms(s, C)|C| ct (13)
Ceba
Note that this definition makes sense because the values of O/, g are in Z(C[G]). Applying ¢,
on both sides, for y € G’, he gets

Lik,s(s,x) = ﬁ Z Cre/r,s(s,C) x(oc) (14)

Ceba
where o¢ denotes a fixed element in C. Equations and should be thought as gen-
eralizations to the non-abelian case of equations and respectively. Assuming that the
partial zeta functions satisfy similar properties in the non-abelian case as in the abelian case
and comparing and evaluated at s = 0, it is therefore natural to assume that the factor
mg, the lem of the cardinalities of the conjugacy classes of GG, is needed to make the Galois

4Note that the image of ¥ is in fact contained in Z(C[G]).
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Brumer-Stickelberger element integral. This explains the value of dg given in the Integrality
Conjecture

The next result is proved in [22 Lemme IV.1.1] for abelian extensions. It is straightforward
to extend the proof to Galois extensions, also see [14, Lemma 2.2].

Lemma 3.7. Let T be a set of prime ideals containing all the unramified prime ideals of K
that do not divide wx except, possibly, a finite number. Then Anngq)(ux) is generated as a
Z-module by the elements ooz — N (p) where P runs through the prime ideals in T and p denotes
the prime ideal of k below B. Furthermore, we have

wie = ged (1 - N(p)). O

PeT
O'cpzl

From this, we deduce equivalent formulations of the Integrality Conjecture.

Proposition 3.8. The following assertions are equivalent

(1). For almost all prime ideals B of K, dg(op — N (p))0k/k,s € Z[G].
(2). For all £ € Anngg (1K), da {9k ks € Z[G].

(3). For almost all prime ideals P of K, dg(op — N(p))9(>1)ﬁs € Z[G).

K/k
(4). For all € € Anngig)(uk), da €05 5 € ZIG).

Proof. The equivalences (1) < (3) and (2) < (4) are consequences of and the discussion
that follows. The direction (2) = (1) is trivial. The other direction comes from Lemma[3.7 O

4. STRONG CENTRAL EXTENSIONS

Before we generalize the abelian Brumer-Stark conjecture to Galois extensions, we introduce
the notion of strong central extensions that will play a crucial role. For that, we stop assuming
for a moment that G is the Galois group of the extension K/k and just consider G as a finite
group. Let I" and A be two other finite groups with A a normal subgroup of I' such that the
following sequence is exact

1 A —=G 1, (15)

that is, I' is a group extension of G by A. Recall that the extension is said to be central if A
is a subgroup of the center of I". This implies, in particular, that A is an abelian group. If,
furthermore, the extension is split, that is there exists an homomorphism s : G — I" such that
s o is the identity, then the extension is trivial, that is ' ~ A x G.

We say that I' is a strong central extension of G by A if AN [I,T'] = 1 where [I',I'] is the
commutator subgroup of I'. The choice of terminology is explained by the following lemma.

Lemma 4.1. Let T be a strong central extension of G by A. Then T' is a central extension of
G by A.

Proof. Let v € I" and § € A. We see that
[v,0] = (v6y ™o € A

since A is normal in I". Thus, [y,d] = 1 and « and ¢ commute. Therefore A is in the center of
I' and the extension is central. O

The trivial extension A x G is always a strong central extension. As noted above, a strong
central extension is trivial if and only if it is split. By the Schur-Zassenhaus theorem, this is
the case when the orders of A and G are relatively prime. For strong central extensions, the
extension is also trivial in an additional case. First, we have the following characterization of
strong central extensions.

S5Note that, for G ~ SL2(F3), we have sg = 8 and mg = 12.
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Lemma 4.2. Consider the group extension . This extension is strong central if and only if
the map © restricts to an isomorphism between [I',T'| and [G, G].

Proof. It is straightforward to see that 7 restricts to a surjective map from [I',T'] to [G, G]. This

map is injective if and only if [I',I'] N Ker(w) = 1. The result follows since Ker(7) = A. O

Lemma 4.3. Let T be a strong central extension of G by A. Assume that G = [G,G]. Then

I'~~AxQG.

Proof. Indeed, by Lemma[4.2] the sequence is split. O
It is not true however that all strong central extensions are split and give rise to a direct

product as we show in the following example.

Example. Let I" be the dicyclic group of order 12. It is the group generated by the two elements
a and b with the following relations: a® = b* = 1 and bab~! = a71. Let A := (b?) ~ Z/2Z;
it is the center of I' and one can verify that I'/A ~ S5, the symmetric group on 3 letters. We
compute [I',T'] = (a), thus AN [T, T] = {1} and we have the strong central extension

1 7./2Z r S, 1.

However, the group T is not isomorphic to Z/27Z x Ss since the latter group does not have any
element of order 4.

The following lemma provides us with yet another characterization of strong central exten-
sions.

Lemma 4.4. Consider the group extension . This extension is strong central if and only if,
for every abelian subgroup H of G, the subgroup m=*(H) of T is abelian.

Proof. Assume that the extension is strong central. Let H be an abelian subgroup of G. Let
1,72 € 7 Y(H), say 7(y1) = h1, ©(72) = he with hy, hy € H. We compute

m([y1,72]) = [h1, ho] = 1.

By hypothesis, this implies that [y;,72] = 1 and therefore 7=!(H) is abelian.

Reciprocally, we assume that, for any abelian subgroup H of G, the group 7~ !(H) is abelian.
Let 1,72 € T be such that [y1,72] € A. Then 7([y1,72]) = 1 and 7(y1) and 7(y2) commute.
The subgroup of G that they generate is abelian and, by hypothesis, it follows that v; and ~»
commute, that is [y1,72] = 1. Therefore the extension I' of G by A is strong central. O

We note another property of strong central extensions that will be useful later on. For a finite
group A, recall that m 4 denote the lem of the cardinalities of the conjugacy classes of A, s4 is
the order of the commutator subgroup [A, A] of A and d4 is the lem of m4 and s4.

Lemma 4.5. Consider the group extension . Assume that the extension is strong central.
Then we have dr = dg.

Proof. 1t is enough to show that mpr = mg and spr = sg. The fact that sp = sg is a direct
consequence of Lemma We now show that mpr = mqg. Let v € I'. Denote by C' and Z
respectively the conjugacy class of v in I and the centralizer of v in I". We have
ICl=T:2)=xT):n(Z))(Ker(r) : Ker(m) N Z) = (G: 7(Z))(A: ANZ)
=(G:Z0)(Zo:m(2)(A:ANZ)=1|Col|(Zo: m(Z))(A:ANZ)

where Cj is the conjugacy class of 7(y) in G and Zj is the centralizer of m() in G. Since A
is in the center of I' by Lemma [1.1] we have A C Z and (A : ANZ) = 1. Now, let py € Zg
and let p € 7 1(pg). We have 7([p,]) = [po, 7(7)] = 1 since py commutes with 7 (). Therefore
[p,7] € [[,T)NA = {1} and p € Z. Thus, 7(Z) = Z; and we have finally |C| = |Cy|. As any
conjugacy class of G is the image by 7 of a conjugacy class of I', we see that mpr = mg and the
result is proved. (I
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We now come back to our previous setting and assume that G is the Galois group of an
extension K /k. Let L be a finite extension of K. We say that L is a strong central extension of
K/k it L/k is Galois and the group extension

1 A T G 1

is strong central where A := Gal(L/K) and I' := Gal(L/k). The following result is a direct
consequence of Lemma (see also Figure[1)).

Lemma 4.6. Denote by L*® the mazximal sub-estension of L/k that is abelian over k. Then
L is a strong central extension of K/k if and only if L = KL*. Furthermore, in that case,
restriction to L*® yields an isomorphism between Gal(L/K) and Gal(L*®/K?") where K?" is
the maximal sub-extension of K/k that is abelian over k. O

w
Lab

K A
%
Kab

FIGURE 1. Some subfields of the strong central extension L/k of K/k

L

k

We conclude this section with a lemma that shows strong central extensions behave somewhat
nicely.

Lemma 4.7. Let L be a strong central extension of K/k.

(1) Let Ly/K be a sub-extension of L/K. Then Lg is a strong central extension of K/k.
(2) Let M be another strong central extension of K/k. Then LM is a strong central extension
of K/k.
Proof. We use repeatedly the characterization of strong central extensions given by Lemma [4.6]
We prove the first assertion. The group Gal(L/Lg) is a subgroup of Gal(L/K) and thus it is
normal in Gal(L/k). Therefore, Lo /k is a Galois extension. Let L3> = L3> N Ly be the maximal
abelian sub-extension of Lg/k, then [Lg® : K*] = [Lo : K] since Gal(L/K) = Gal(L*/K?).
Furthermore, since LSb N K = K2, we find that
(L3P : K|[K : k]

[Kab : K
thus K LSb = Lg and Ly is a strong central extension of K/k.

We now prove the second assertion. The extension LM/k is Galois as the compositum of two
Galois extensions of k. Let FF = L N M. It is an extension of K. Then, a direct computation
shows that [LM : K| = [L** M?P : K2P]. We find that
[LAPM2P k) [K : k)

[Kab: K
Thus, KL**M? = LM. Since the maximal abelian sub-extension (LM)®> of LM /k that is

abelian over k contains L2’ M?P | it follows that K(LM)* = LM and LM is a strong central
extension of K/k. O

[KLE> - k] = = (L3P : K*P)[K : k] = [Lo : k],

[KL*M™ k] = = [L** M : K*|[K : k] = [LM : k].
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5. THE GALOIS BRUMER-STARK CONJECTURE

We are now ready to state our generalization of the abelian Brumer-Stark conjecture to Galois
extensions.

Conjecture (The Galois Brumer-Stark conjecture BSqa(K/k,S)).

Let K/k be a Galois extension of number fields and let S be a finite set of places of k that
contains the infinite places and the finite places that ramify in K with |S| > 2. The Integrality
Congecture holds for the extension K/k and the set of places S, and, for any fractional ideal 2
of K, the ideal A5 9%/x.5 is principal and admits a generator a € K° such that K(al/wK) 18
a strong central extension of K/k.

Remark. As in the abelian case, the last assertion that K (a!/%%) is a strong central extension
of K/k does not depend on the choice of the wx-th root of « since all of these generate the same
extension of K.

Before studying conjecture BSga(K/k, S), we discuss briefly our evidence for it. Observe
first that it is in some ways a natural generalization of the abelian Brumer-Stark conjecture.
Indeed, we have the following result.

Proposition 5.1. Assume that K/k is abelian. Then the Galois Brumer-Stark conjecture
BSca(K/k, S) is equivalent to the abelian Brumer-Stark conjecture BS(K/k, S).

Proof. This is clear since dg = 1 in that case and, by Lemma we see that K (al/“x)/k is
abelian if and if only if K (a'/"“¥) is a strong central extension of K/k. O

Another piece of evidence is provided by the following result that sums up the cases where
the conjecture is proved or reduces to the abelian Brumer-Stark conjecture. Examples where
the conjecture is numerically proved are also given in [7, Chap. 5].

Theorem 5.2. The Galois Brumer-Stark conjecture is satisfied in the following cases

(1) Gal(K/k) is a non-abelian simple group,

(2) Gal(K/k) =~ Ds,, where Ds, is the dihedral group of order 2n with n odd,

(3) Gal(K/k) ~ S, where Sy, is the symmetric group on n letters with n > 1,

(4) Gal(K/k) is non-abelian of order 8.
Assume that the abelian Brumer-Stark conjecture holds. Then the Galois Brumer-Stark conjec-
ture is satisfied in the following cases

(5) Gal(K/k) is abelian,

(6) Gal(K/k) contains a normal abelian subgroup of prime indez,

(7) Gal(K/k) is of order < 32 and not isomorphic to SLa(F3).

Proof. Cases 1, 2, 3, 4 and & follow respectively from Propositions [777 and
The results of Section[7} and in particular Theorem [7.4] imply case 6. Finally, case 7 follows from

a direct inspection using the GAP system [9] and verifying that, in each case, one can reduce to
the abelian case, one of the other listed cases or an application of Proposition below. (I

Remark. Using the GAP system [9], one can verify also by similar techniques that the Galois
Brumer-Stark conjecture holds or reduces to the abelian Brumer-Stark conjecture for 730 out of
the 1048 possible isomorphism types of Galois groups when [K : k] < 100.

Remark. The Integrality Conjecture actually holds in all the cases listed in Theorem [5.2] without
having to assume the abelian Brumer-Stark conjecture for cases 5, 6, 7. It also holds for the 730
isomorphism types of Galois groups mentioned in the previous remark.

The following result is the generalization to the non-abelian case of Theorem Recall that,
for a prime ideal *B of K, we denote by p the prime ideal of k below ‘B and by oy the Frobenius
automorphism of B in G.
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Theorem 5.3. Assume that the Integrality Conjecture holds for the extension K/k and the set
of places S. Let A be a fractional ideal of K. The following assertions are equivalent.
(). There exists an anti-unit a € K° such that Ax0%/r5 = O and K (o) is a strong
central extension of K/k.
(i). There exists a strong central extension L of K/k and an anti-unit v € L° such that
(Q[OL)dG9K/k,s =~0p,
(#1). For almost all prime ideals B of K, there exists an anti-unit aup € K° such that Qe (op—N(®)0r/ks =
apOk and asy =1 (mod™ Q) for all prime ideals Q of K above p such that oq = owp.
(iv). For any abelian subgroup H of G, there exists a family (a;);cr of elements of Z[H] gen-
erating Anngg)(ux) as a Z-module and a family of anti-units (c;)icr of K such that
Alcaibx/ns = ;O and ;% = a;% for alli,jel.

Remark. In part (i), (AOy)4¢%%/k.s is defined by the formula ((QlOL)"dGGK/’%S)l/n where
n > 1 is any integer such that ndgOg s € Z[G]. This is well-defined since the group of ideals
of a number field is torsion-free.

Proof. We use repeatedly the fact that 0 g lies in the center of C[G].

(i) = (ii). Let v := o'/*x and L := K(v). Then, L is a strong central extension of K/k and ~y
is an anti-unit in L. Furthermore, we have

(vOL)"™ = a0y, = (A0 )tewrlx/rs

and the result follows since the group of ideals of a number field is torsion-free.

(#4) = (7i1). Denote by I' the Galois group of L/k and by A the Galois group of L/K. Let T be
the set of prime ideals of K, unramified in L/K and K/Q, relatively prime with wg and with 2
and all its conjugates over k. Note that 7 contains all but finitely many prime ideals of K. Let
B € T and let P be a prime ideal of L above 3. Denote by o the Frobenius automorphism
of ‘i? in I'. We set oy = ~oR “N®) Let 9 be another prime ideal of L above p such that
m(og) = m(og) where m : I' — G is the canonical surjection induced by the restriction to K
and og is the Frobenius automorphism of Q in I'. There exists p € T such that Q = p(P),
and we have o = pogp~". Since m([p,0p]) = m(og)m(og)~" = 1, this commutator lies in A
and is therefore trivial. Thus og = o and ag = ag- In particular, g does not depend on
the choice of the prime ideal 9 of L above 9B, and we can just denote it by asp. Furthermore,
agp =774 ~N®) =1 (mod* {]) for all prime ideals Q of L above p such that oq = oy where Q
is the prime ideal of K below Q. We now prove that asp lies in K. Let 6 € A. We have

5— 5—
(afsp’l)w}( = <(7U’K)a‘i3_N(p)) ! = (OéU‘E_N(p)) ! =1

since « lies in K. Thus, there exists a root of unity ¢ € px such that agg_l = ¢. We have
ayp = a(‘% =1 (mod* P) by the above remark, hence £ = 1 (mod* 9B) and thus £ = 1 by the
choice of . Therefore, asp € K as desired. Furthermore, it is clear from its construction that
it is an anti-unit and that we have asp = 1 (mod™ Q) for all prime ideals Q above p such that
0n = oy by the above. Finally, we compute

aqOy, = (’YOL)J@_N('J) _ ((Q[OL)dGGK/k,S)U‘B_N(p) _ (Q{OL)dG(O‘i‘—N(p))eK/k,S7

and, since 2 is an ideal of K and dg(op — N(p))0k/k,s € Z[G] by the Integrality Conjecture,
we get

apOk = Qda(op—N()Oxk/k.s
The implication is proved.

(#i1) = (iv). Let H be an abelian subgroup of G. Denote by Ty the set of prime ideals of K
for which (i7i) applies and that are unramified in L/K and K/k, relatively prime with wx and
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with 2 and all its conjugates over k, and whose Frobenius automorphism in G lies in H. Let I
be a set indexing T, so that Ty = {B; : i € I}. For i € I, we set a; := og, — N (p;) € Z[H]
and o := asp, € K°. It follows from Lemmathat the family (a;);cr generates Anngm)(px).
By construction, we have also A%¢%x/k.s = q;Of. It remains to prove that, for i,j € I, we
have a?i = a;7, that is, for two prime ideals 8 and 9 in Tz, the two elements a;f N and

gy ~N®) are equal. We have

(CV‘BOK)UD -N(p) — (Q[dc(aqs—/\/(P)WK/k,s)"Q —N(p)

(mdc;(ogf/\f(p))ex/k,s)w—fv P _ (aqOg)7=—N®

where we used the fact that o and o commute since they both belong to H. Since asp and
ag are both anti-units, there exists a root of unity £ € ux such that agf*N(q) = fozgnfj\/’(p).
Reasoning as above, we see that £ =1 (mod™ ), thus £ = 1 and the equality is proved.

(tv) = (7). Let H be an abelian subgroup of G. Let (a;);er and (o;)icr be the corresponding
families. There exists a family (\;);cs of integers, with only finitely many non-zero terms, such

that
WK = Z /\iai.
iel
We set ayg = Hie I af‘i. It is clear that a g is an anti-unit of K and we have

aHOK — de(Zi )\iai)e — QldeKeK/k,S.

In particular, up to a root of unity in K, ag does not depend upon the choices made, and we
will therefore denote it simply by a. For any h € H, there exists an integer nj, € N such that
h — ny, annihilates pg. Therefore, there exists a family (Ay;)ier of integers, with only finitely
many non-zero terms, such that

h — Np = Z )\;M-ai.

il
Furthermore, we have

Qe — H (Ha?j)\h‘j))\i _ H ( a;\h,,j)kiai _ ahziez Aiai K

iel jel iel jel

Mni .
where ay, = [[;¢; a;™". For g, another element of H, one can prove in the same way that

ap " = almmm Let vy = a'/vs and L := K(vy). We now prove that L/K* is an abelian
extension. First, we prove that L/K is a Galois extension. For h € H, let h be any lift of h to
L. We compute

(vﬁfnh,)w;( _ (,YwK)fzfnh _ O[hfnh — O[}:,UK'

Thus, there exists &, € ux such that fyil_"h = &pay. Therefore, we have

Y = Ehapy™ € L

and L/KH is a Galois extension. Observe, in passing, that since we can take H = (g), where
g € G is arbitrary, this implies that L/k is Galois. We now prove that Gal(L/K™) is abelian.
Let h, § be two elements of Gal(L/K*); denote by h and g their restriction to K. We have

ry(gfny)(hfnh) = (ghah)ging = a;z_ng B a;inh = (fgag)hinh = fy(hfnh)(!j*ng)
and therefore 49" = 3. Thus Gal(L/K™) is abelian as desired. Since this is true for any

abelian subgroup H of G, we get by Lemma that L is a strong central extension of K/k.
This concludes the proof. O
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For a fractional ideal 2 of K, we say that BSq.(K/k,S;2) is satisfied if the Integrality
Conjecture holds for the extension K/k and the set of places S, and the ideal 2 verifies the
equivalent properties of Theorem Conjecture BSga(K/k,S) is thus equivalent to the col-
lection of conjectures BSga (K /k, S;2A) where 2 ranges through the fractional ideals of K.

6. SOME PROPERTIES OF THE (GALOIS BRUMER-STARK CONJECTURE

In this section, we look at some properties satisfied by the Galois Brumer-Stark conjecture
and, in particular, the generalizations of the properties of the abelian Brumer-Stark conjecture
stated in Section 2

Proposition 6.1. The set of fractional ideals A of K that satisfy BSga(K/k, S;2) is a subgroup
of the group of ideals of K, stable under the action of G and that contains the principal ideals
of K.

Proof. We first prove that this set is a group. Let 20 and 96 be two fractional ideals of K such
that BSga(K/k,S; ) and BSga(K/k,5;9B) hold. Let o and S be anti-units satisfying part
(i) of Theorem for the ideals 2l and B respectively. Then af is an anti-unit such that
B0k = (AB)dewrbx/xs  Furthermore, since K ((af)/“x) C K(al/wx, g1/ W) it is a strong
central extension of K/k by Lemma [4.7| and therefore BSga (K/k, S;AB) is satisfied. Thus the
set of ideals 2 such that BSq. (K /k, S;2) holds is a subgroup of the group of fractional ideals
of K.

Let o be an element of G. We now prove that BSg.(K/k,S;27) is satisfied assuming
BSga(K/k, S;2) holds. Since O/, s is in the center of C[G], a“ is a generator of

(Q[dG'wKOK/k‘s)J _ (Q[O’)dchaK/k,s .

Furthermore, o is clearly an anti-unit. Let v := a'/*% and ¢ := (a”)l/wK. Denote by ¢ a lift
of o to L := K(v). Then there exists £ € ux such that § = £&y°. Since L/k is Galois, we get
that L' := K(§) C L. This proves that L’ is a strong central extension of K/k by Lemma
and thus concludes the proof that BSqa(K/k, S;27) is satisfied.

Finally, we prove that BSg.(K/k, S;2l) is satisfied if 2 is a principal ideal, say 2 = nOk.
For that, we use the equivalent formulation (iv) of Theorem Let H be an abelian subgroup
of G. For h € H, let n, € N be such that " = ™ for all £ € pux with the convention that
n1 = wg + 1. Then the family aj, := h —ny, for h € H, generates Anngg(px ). For h € H, we
define v, := nie@fx/x.s. Note that dganfr/k,s € Z|G] by the Integrality Conjecture. For all
h € H, we have (nOK)dG“hGK/ka = aOk by construction. Furthermore, let w be an infinite
(complex) place of K. Denote by 7,, € G the complex conjugation at w. By Corollary we
have that (14 7, )0k ks = 0 and thus oz}lfﬂ“ =1 for all complex places w of K. Therefore ay,
is an anti-unit for all h € H. It remains to prove that a,;lg = a " for all g,h € H. But this is a
direct consequence of the fact that (h —ny)(g —ng) = (9 —ng)(h —nyp) since H is abelian. This
concludes the proof. O

Corollary 6.2. Assume that K is principal. Then BSga(K/k,S) is satisfied. O

Using the decomposition of the Brumer-Stickelberger element given by , we can prove the
following result that relates BS(K?P/k, S) and BSqa(K/k, S).

Theorem 6.3. Assume that the Integrality Conjecture is satisfied for the extension K/k and
the set of places S and that BS(K?"/k,S) holds. Then BSqa(K/k,S) is satisfied if, for any

1)
fractional ideal A of K, the ideal Alewrliis g principal, and admits a generator § € K° such
that K(B'/"“x) is a strong central extension of K/k.
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Proof. Let 2 be a fractional ideal of K. Set a := N/ gan(2). An direct computation shows that
QldeKVab(gKab/k,S) — a(dG/SG)wKQKab/k,S OK

By hypothesis, there exists ag, an anti-unit in K2, such that

a(dG/SG)wKeKab/kys = agOfan

and Kab(aé/wk)/k is abelian. Let o := apfB. Then o is an anti-unit of K and by (12)), we have
aOk = dcwrOx/k.s

It remains to prove that K (a!/"“x) is a strong central extension of K/k. It is a sub-extension

of K(aé/wK,ﬁl/wK)/K. But K (/") is a strong central extension of K/k by hypothesis and

K(oz(l)/wK) is a strong central extension of K/k by Lemma m Thus, K(a!/“) is a strong
central extension of K /k by Lemma [£.7] and the result is proved. O

For x € @, recall that KX denote the subfield of K fixed by the kernel of y.

Corollary 6.4. Assume that BS(K?"/k,S) is satisfied and that, for all x € G such that x(1) >
1, KX is not a CM extension. Then BSqa(K/k,S) holds.

Proof. Indeed, in that case, Gglk) g = 0 by Proposition ]

As an application of Corollary [6.4, we can prove that BS(K?"/k, S) implies BSqa1(K/k, S)
for some isomorphic types of group Gal(K/k).

Proposition 6.5. Let G be a finite group such that, for all irreducible characters x of G with
x(1) > 1, the center of G/ker(x) does not contain an element of order 2. Then BSga(K/k,S)
holds for any Galois extension K/k of number fields with Gal(K /k) ~ G and such that BS(K?" /k, S)
is satisfied.

Proof. The result is trivial if £ is not totally real or if K is not totally complex. Assume therefore
that k is totally real and K is totally complex. Let x be an irreducible character of Gal(K/k)
with x(1) > 1. It is enough to prove that KX is not a CM extension. Assume it is a CM
extension. Then the complex conjugation is an element of order 2 in its Galois group, which
is isomorphic to G/ ker(x), and it commutes with all the elements of the group since it is the
unique complex conjugation. This is a contradiction, thus KX is not CM and the result follows

from Corollary (]

We give several applications of this result.

Proposition 6.6. Assume that Gal(K/k) is a non-abelian simple group. Then BSga(K/k,S)
holds.

Proof. The commutator subgroup |G, G] is normal in G, thus it is equal to G and BS(K?"/k, S)
trivially holds since K* = k. Now, let y be an irreducible character of G with x(1) > 1. Then y
is faithful because ker(x) is a normal subgroup of G. But the center of G is trivial and therefore
BSqa(K/k, S) holds by Proposition O

Proposition 6.7. Assume that Gal(K/k) is isomorphic to the dihedral group Day, of order 2n
where n. > 3 is odd. Then BSqa(K/k,S) holds.

Proof. The group D, is the group generated by two elements a and b with the following relations:
a?> =b" =1 and aba = b~!'. When n is odd, its maximal abelian quotient is the cyclic group
of order 2, thus K®/k is quadratic and BS(K?"/k, S) holds. Furthermore, by [20, §1.5.3], its
non-linear irreducible representations are the representations pj, for 1 < h < (n — 1)/2, defined

by
wkh 0 0 w—hk
Ph(bk) = ( 0 w—kh) and Ph(abk) = (whk 0 )
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for k € Z, where w is a fixed primitive n-th root of unity. In particular, the kernel of p; is a
subgroup of (b), distinct from (b). It follows that Dsg,, /ker(pp) is isomorphic to Da,, for some
integer m > 3 dividing n. But the center of Ds,,, for m > 3 odd, is trivial. The result follows
from Proposition [6.5 O

Proposition 6.8. Assume that Gal(K/k) is isomorphic to the symmetric group Sy, onm letters
with m > 2. Then BSga(K/k,S) holds.

Proof. The result is clear if m = 2. Assume m > 3. We use Proposition [6.5 again. The
commutator subgroup of S,, is the alternating group A,,,. Therefore K2 is a quadratic extension
of k and BS(K?P/k, S) holds. Assume first that m > 5. Then A,, is the only non-trivial normal
subgroup of G and therefore the non-trivial irreducible representations of Sy, are either faithful
or have A,, as kernel. In particular, the non-linear irreducible representations of S,, must be
faithful and the result follows since the center of S,, is trivial. For m = 3 and m = 4, the
result follows from direct inspection. Indeed, for m = 3, the unique non-linear irreducible
representation is faithful and the center of S5 is trivial. For m = 4, there is only one non-linear
irreducible representation p that is not faithful. Its kernel is isomorphic to the Klein group
Z/27 x 7./27 and the quotient is Sy/ker(p) ~ S3 and thus has again trivial center. O

Remark. Using Proposition and similar techniques, one can prove that BSg.(K/k,S)
follows from BS(K?P/k,S) for some other families of groups, eg. the group of affine bijective
maps of a finite field F; which is isomorphic to F, x F.

We now turn to the question of the change of extension for the Galois Brumer-Stark conjecture.
We will prove that it is satisfied in many cases up to a factor.

Proposition 6.9. Let K'/k be a Galois sub-extension of K/k with G’ := Gal(K'/k). Denote
by /B\gcal(K'/k’,S) the Galois Brumer-Stark conjecture for the extension K'/k and the set of
places S with the factor dg: replaced by dg including in the statement of the Integrality Con-
jecture. Assume that wy is relatively prime with the degree of the extension K/K'K®". Then
BSca(K/k, S) implies BSga(K'/k, S).

Remark. If G is abelian then K2 = K, thus K = K’K?P and the condition of the proposition
is always satisfied. Furthermore, we have dg = dg- = 1 and we recover the fact that BS(K/k, S)
implies BS(K'/k, S).

Remark. We prove actually a slighter stronger statement: if BSq.1(K/k, S) holds then, for all
fractional ideal 2’ of K’, there exists an anti-unit o € K’ such that

Q[/deK/eK'/ka — (a)

The extra hypothesis that wg is relatively prime with the degree of K/K'K?" is only used to
prove the fact that K’(a!'/%x") is a strong central extension of K'/k.

In order to see that the statement of Proposition [6.9] makes sense, we have the following
lemma.

Lemma 6.10. Let A be a finite group and let B be a quotient group of A. Then dp divides d 4.

Proof. It is enough to prove that sp divides s4 and mp divides ms. Let m : A — B be the
canonical surjection and denote by D its kernel. It is clear that sp divides s4 since 7([A, A]) =
[B, B]. We now prove that mp divides m4. Let b € B and let a € A be such that 7(a) = b.
Denote by Z the centralizer of a in A and by Z, the centralizer of b in B. Note that Z := 7~1(Zp)
is a subgroup of A containing Z and that

_ 12l _(z:2)]7]

|Zo] = 77 =
|D| |D|
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Denote by C and Cy the conjugacy classes of @ and b in A and B respectively. We find that

Al _ [Al(z: 2) Bl
IC| = = = =(Z2:2) =(Z2:2)|Cy).
1Z] DIl |Zo|
Thus |Cp| divides |C| and therefore mp divides m 4. O

Proof of Proposition[6.9 To start, observe that, thanks to Theorem the Integrality Con-
jecture for the extension K/k and the set of places S implies the Integrality Conjecture for
the extension K’'/k and the set of places S with dg replaced by dg. We first prove the
result when K = K’'K?". In this situation, we shall actually prove that BSg.(K/k,S) im-
plies BSga(K'/k,S). Indeed, we have dg = dg' by Lemma since one can see, thanks to
Lemma that K is a strong central extension of K’/k. Let 2 be a fractional ideal of K’.
By our assumption that BSqa.(K/k, S) holds, taking 2 := 'Ok, we see that there exists an
anti-unit o in K such that

a0 = (mOK)deKGK/k,S = Q' dewrlx/ks O = Y WOk ks O (16)

Furthermore, L := K(v) is a strong central extension of K/k where v := a/*x. Clearly, we
have
YO = (Q[/OL) darOx/ /s |

We now use Theorem u) with the extension L/K’ and the element v. The only assertion
that needs to be checked is the fact that L is a strong central extension of K'/k. By Lemma [4.6]
this is equivalent to the fact that L = K'L*" where L is the maximal sub-extension of L/k that
is abelian over k. Clearly, K** C L*" thus we have K'K* = K c K'L?". Since KL* = L, it
follows that L € K'L?" thus K'L* = L and L is a strong central extension of K’/k. Therefore
BSca(K'/k,S;2) holds for all fractional ideals 2’ of K’ and BSga(K'/k, S) is satisfied.

We now prove the general case. By the first part, replacing K’ by K’'K?" if necessary, we
can assume that K’ contains K2 and therefore, by hypothesis, w is relatively prime with the
degree of K/K'. Let 2!’ be a fractional ideal of K’. Reasoning as above, we see that there exists
a € K° such that

OéOK _ Q[IdeKGK//k*SOK

and L is a strong central extension of K/k where L := K(v) and v := o'/*%. Denote by T
the Galois group of L/k. For ¢ € T, L° = L is a Kummer extension of K° = K generated by
~7. Thus there exist an integer n, relatively prime to wg with 1 < n, < d:=[L: K|, and an
element k, € K* such that 77 = k,v". Observe that, for § € A := Gal(L/K), we have ng =1
and kg is a root of unity in K. Furthermore, using the fact that o and § commute, we get

do _ (:‘@;’7”0)6 _ ch:‘ﬁ?”’yn“ _ 706 _ (K;(;’y)a — Hgl’ig’)/na

Y
and thus x§ = k5. As ¢ runs through the elements of A, ks runs through the roots of unity of
order d, thus ¢ — n, annihilates the group pg of d-th roots of unity. Assume now that o lies in
A := Gal(L/K'). Therefore, o fixes the group of roots of unity puxs = px and n, = 1. Using

the fact that Ok 4, g is in the center of C[G], we get
OZUOK _ (Q{/O‘)dch@K//k’SOK — Ql/deKgK,/k’SOK — OZOK

Since « is an anti-unit, there exists a root of unity &, in K> such that a” = {,a. Combining
with the above expression for v7, we find that kY% = ¢,. Thus &, is a root of unity in K and
¢, = 1. It follows that & € K’. Again we use Theorem (u) to prove that §§Ga1(K/k, S) holds
for 2'. Tt remains to prove that there is a strong central extension of K’/k containing . Let
L' := K'L* where L®" is the maximal sub-extension of L/k that is abelian over k. The Galois
group of the extension L/L’ is [I',T'|N A. Hence, by Lemmal[4.6] L’ is the maximal sub-extension
of L/k that is strong central for K'/k. We now prove that v € L. Denote by 7 : I' — G
the canonical surjection induced by the restriction to K. Its kernel is A, thus it restricts to an
isomorphism between [I',I'] and [G,G] (see also Lemma [£.2). We have v € L' if and only if
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m(Gal(L/L")) C n(Gal(L/K'(y))), that is 7([I’, T'|N A) C Gal(K/N) where N = KNK'(~). But
N/K’ is a sub-extension of K/K' of degree dividing wy and therefore N = K’ and the above
condition is always satisfied. Hence BSqa1(K'/k, S) holds and this concludes the proof. O

We conclude this section with a proof of when the validity of the conjecture is preserved
when one enlarges the set S. For x € G, denote by p, a fixed irreducible representation of G' of
character x.

Lemma 6.11. Let Bq,..., B be prime ideals of K. We have

[1 3 det(1 - pylom. s € 2 @G,

1= 1XEG

Proof. Let a € Gal(Q/Q). One can see that the above expression is invariant under the action of
o using the fact that the map x — x® is a bijection on G. Therefore, it lies in Q[G] N Z(C[G]) =
Z(Q[G]). Now, by the orthogonality of characters, we have

HZdetl—pXUqg ZHdetl—PxU‘ﬁ))

i=lye@ xeg i=1

Finally, for all x € G, |G|e, and det(1 — px(op,)), for i = 1,...,t, are algebraic integers and
thus the result follows. O

Proposition 6.12. Let py,...,p; be distinct prime ideals of k not belonging to S. Define

w:i= H Z det(1 — py(op,))ex € ‘—aZ(Z[G])

= IXEG

where P; is a prime ideal of K above p; for i = 1,...,t. Let d > 1 be the smallest integer
such that dw € Z[G]. Assume that BSga(K/k,S) holds and let " := S U {p1,...,p:}. Then
BSqa(K/k,S;2) is satisfied for any fractional ideal A of K whose class in Cli has order
relatively prime to d.

Proof. Assume that BSga(K/k, S) holds. Let 2 be an ideal of K whose class in Clx has order
relatively prime to d. Thus there exists an ideal 2 of K and 7 € K* such that 2 = n2g. Let
«ag be an anti-unit of K such that

dewr O /1
apOy = AGE KKk

/wK)

and the extension K (ay is a strong central extension of K/k. Define

o= Oéng]deKeK/k*S/ )

One checks directly that
CYOK — QldeKQK/k’S, .

From the proof of Proposition we see that § := n?eWx%%/ks’ is an anti-unit and that the
extension K (0'/“x) is a strong central extension of K/k. Therefore, o is an anti-unit and the

extension K (a'/"x) C K(aé/wK,él/wK) is a strong central extension of K/k by Lemma
Thus BSga (K/k, S’;2() holds. O
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7. GROUPS WITH A NORMAL ABELIAN SUBGROUP OF PRIME INDEX

In this section, we consider the case where the Galois group G contains an abelian normal
subgroup H of prime index. We prove in this setting that the Integrality Conjecture is satisfied
and that the Galois Brumer-Stark conjecture follows from the abelian Brumer-Stark conjecture
for suitable abelian sub-extensions. The methods used in this section are similar in spirit to the
ones used by Nomura [I7] to prove that the weak non-abelian Brumer-Stark conjecture of Nickel
for monomial groups follows from the abelian Brumer-Stark conjecture (and similar results for
the weak Brumer conjecture of Nickel). However, a big difference is that, in Nomura’s paper,
he can work (rational) character by character whereas this does not seem to possible with the
Galois Brumer-Stark conjecture.

We assume from now on that the group G is not abelian and contains a normal abelian
subgroup H of index ¢, a prime number. Let m denote the order of H, thus |G| = mf. We
have |G, G] C H since G/H is cyclic of order ¢ and therefore K* is a subfield of K2P. Let Sy
denote the set of places of K that are above the places in S. The set Sy contains the infinite
places of K and the finite places that ramify in K/K¥. The first result of this section gives a
decomposition of the Brumer-Stickelberger element in this situation.

Theorem 7.1. With the notations and setting as above, we have
(>1) _ 1
Ok irs = (1 - QN[G,G})(’K/KH,SH

where Nig,q) == >, c€Z[G].

ce[G,G]
Proof. Since the group G contains an abelian normal subgroup of index ¢, the dimensions of the
irreducible characters of G divide ¢. Hence any character in G with x(1) > 1 is of dimension /.
Denote by Gy the set of irreducible characters of G of dimension /.

Lemma 7.2. Let Hy be the set of irreducible characters of H whose kernel does not contain
[G,G]. For x € Gy, define Hy(x) to be the subset of those characters in H; whose induction to
G is x. Then, we have
H) = U Hy(x) (disjoint union)
x€Ge

and each ﬁg(x) has exactly £ elements. Furthermore, for all x € Gy and g € G, we have

0 ifg¢ H,

X9 =9 S ol ifgeH.
eEH,(x)

Proof of the lemma. Let ¢ be a character in Hy and let x := Ind$ (). Then x is of dimension £.
Assume Y is not irreducible. Then it is a sum of 1-dimensional characters and all these characters
are trivial on [G, G]. By Frobenius reciprocity, the restriction of any of these characters to H is
equal to ¢. Thus ¢ is trivial on [G, G], a contradiction. Therefore x is irreducible and lies in
Gy. The restriction of x to H is the sum of ¢ characters of H, and using once again Frobenius
reciprocity, we see that these characters are exactly the characters of H whose induction to G
is y and that they are all distinct. Therefore, we have proved that, if x € Gy is the induction of
some character in Hy, then the set [ ¢(x) contains ¢ distinct characters, say ¢1,. . ., @, such that
X|H = 1+ -+ e Furthermore, if X’ is a character of G, induced from a character in H, with
X # X', the sets Hy(x) and Hy(x') are clearly disjoint. This implies that Hy is the disjoint union
of the Hy(x)’s for x € Gy. We now prove that Hy(y) is non-empty for all x € G4. This amounts
to proving that any character in G, is the induction of some character in Hy. Characters of H
whose kernel contains [G, G| are in bijection with characters of H/[G, G]. Denote by t the index
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of [G,G] in H. The number of characters in Hy is therefore m — ¢ and, by the above discussion,
the inductions of these characters yield (m — t)/¢ characters in Gy. On the other hand, we have
the formula m¢ = t¢ + af?, where a is the number of characters in Gy, since the sum of the
square of the dimensions of the irreducible characters of G is equal to |G| and using the fact that
(G : [G,G)) = tl. Therefore, we have a = (m —t)/¢ and all the characters of Gy are inductions
of characters in Hy. To conclude, it remains to prove the expression for x € Gy. Let p e H 0(X).
For all g € GG, we have

_ - -1
Xg)=— > @lrgr™).
reG
rgrileH
Since the group H is normal in G, rgr—! € H if and only g € H. Thus x(g9) = 0if g ¢ H. If
g € H, the expression follows from the fact that x|z = Zweﬁz(x) P. (I

As a consequence of Lemma we have, for x € Gy, that

€X = E 64’0
wEH,(x)

where e, is the idempotent of C[H] associated to the character ¢. We now compute

G%i)g = Z Li/k,s5(0,x) ex = Z Lk /k,5(0,x) Z s

x€Gy x€Ge e H(X)
=Y > LemsO0mdGe)es= > > Lijxns, 0,9 es

x€Gr pEH(X) x€Ge «pEﬁz(X)
= Z Li/rn s,(0,0)ep = Z Lk sy (0 Z Lk s,(0,0)ep

peH, pel pEH\H,
=0k /KH 5, — Z Lk kn s,(0,0)ep.

peH
[G,G]CKer ¢

Let ¢ be a character of H whose kernel contains [G,G]. Let ¢ be the only character of J :=
H/|G, G] such that the inflation of ¢ to H is equal to ¢. From the properties of Artin L-functions,
we have Ly xn g,(0,¢) = Ly ku g, (0,¢) and a direct calculation shows that e, = Vi (eg)
where eg is the idempotent of C[G®P] associated to @, v : C[J] — C[H] is the map defined for

g e J by
VH Z 9,
¥ (9)=3

and extended by linearity to C[J], and 7% : H — J is the canonical surjection. Therefore, we
have

> Liymsg(0,9)eg =Y Lia i s, (0, BV (e3)
chH @ej
[G,G]CKer ¢
= VH (Z LKab/KH SH(O QO) 65)
4p€J
= V?})(eKab/KH SH)'
Now, for a € C[H] and 3 € C[J], one checks readily that aviP(8) = v (a3) where & := 73 (a).
Thus, we find that

1
V?Ib(HKab/KH,SH) = GK/KH’SH V?}D(l) = QN[GUG] QK/KH,SH'
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The result then follows by substituting in the above expression. O

The main advantage of the decomposition given by Theorem [7.1]is the fact that the extensions
involved are all abelian. Therefore, in our study of BSg.i(K/k, S) in that setting, we can reduce
to the abelian case. In particular, it follows from that

d
deKﬁf/lk) = i(SG — N[G,G])U]KHK/KH7SH S Z[G]

However, for p a prime ideal of k, unramified in K/k, and 8 a prime ideal of K above p, we do
not have necessarily that (o — N (p))0k, x# s, lies in Z[G], since o might not belong to H.
However, we can still prove the Integrality Conjecture is satisfied.

Proposition 7.3. We have
(s¢ — Nig.e))0k /K s, € Z[H].
In particular, the Integrality Conjecture holds for the extension K/k and the set S.

Proof. First note that, by Theorem and the discussion after , the first assertion implies
the Integrality Conjecture in this case. Now, we have

(SG_N[G,G])HK/KH7SH = Z (]‘_C)HK/KH,SFp
c€[G,G]
But 1 — ¢ € Anngg)(ux) for all ¢ € [G,G] and thus, by the properties of the abelian Brumer-
Stickelberger element, all the terms in the sum are in Z[H]. The first assertion and the proof of
the proposition follow. O

We now prove that, in this situation, the Galois Brumer-Stark conjecture is a consequence of
the abelian Brumer-Stark conjecture.

Theorem 7.4. Let K/k be a Galois extension of number fields whose Galois group G contains
an abelian normal subgroup H of prime index. Assume that BS(K?"/k,S) and BS(K/KH, Sy)
hold where Sg denotes the set of places of K™ above the places in S. Then BSga(K/k,S) is
satisfied.

Proof. We will prove the result using Theorem [6.3] Let 2 be a fractional ideal of K. By our
hypothesis, there exists a; € K° such that

w0
AR/ s = 0y O

and the extension K (v;)/K is abelian where ~; := ai/wk. Define

c€[G,G]

By construction, £ is an anti-unit of K and satisfies
BOK = QldeKe?/l’“)vs.

It remains to prove that K (ﬁl/ “K) is a strong central extension of K/k. We will actually prove
that K(B'/“x) = K. Let L; be the Galois closure of K(v;)/k. Denote by I'; the Galois group
Gal(L1/k). Let ¢; € [I'1,I'1]. Note that ¢; € Gal(Li/K*H) since K /k is abelian. Thus,
by Theorem there exists a prime ideal By of L1, relatively prime to the order of ur,,
whose Frobenius automorphism in I'y is equal to c¢;, and an anti-unit oy, € K° such that
a1p, =1 (mod™ pyOk) and

Q1 py O = ATrn N Oy s,
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where pyr is the prime ideal of K below 91 and oy, is the Frobenius automorphism of py in
H. We have

c1—1 (c1—1)0 H
'711 OLI =2 KR SH OLI
— Q[(JPH _N(pH))QK/KH,sH Q[(N(pH)_l)eK/KHvSH OL
1

(N(PH)—l)/wKOL
.

= Qlpp
Observe that v1, oy, and oy are anti-units, thus there exists a root of unity £ € ur, such that
ffyfl’l = al’pHagN(pH)fl)/wK. Furthermore, since ¢; acts trivially on the group pug, wg divides
N(pyg) —1 and alﬁpHagN(pH)_l)/wK belongs to K°. Raising to the power wg, we get
fwKaTPH -1 _ Oé’llu’;(Ho/l\/(pH)_l

and therefore N
UK =) (Pr)=0vpy — 4 (mod* pyOk).
Therefore we find that £ = 1, hence £ € ux and ’yfrl e K.
Now, for all ¢ € [G,G], fix an element ¢; in [I'1,T';] whose restriction to K is equal to ¢, and

define
o ()
c€[G,G]
By the above computation, we see that § € K and, by construction, that % = 3. Therefore
K(BY*x) = K and the result follows. O

Corollary 7.5. Assume that the order of H is odd. Then BS(K?/k, S) implies BSqa (K /k, S).

Proof. Indeed, since the degree of K/K* is odd, BS(K/K*H,S) is trivially true as we cannot
have both K totally complex and K totally real. U

We proved already that BSq.1(K/k, S) holds when G is isomorphic to the dihedral group of
order 2m with m odd (see Proposition . We prove a similar statement when m is even.

Proposition 7.6. Assume that G is isomorphic to the dihedral group Da,, of order 2m, with
m even, and that BS(K /K, Sg) holds where H is the unique cyclic subgroup of G of order m.
Then BSqa(K/k, S) is satisfied.

Proof. The cyclic subgroup H is normal and of index 2. Therefore, by Theorem [7.4] and the
hypothesis, it is enough to prove that BS(K?P /k, S) is satisfied. The maximal abelian quotient
of Dy, is isomorphic to Z/27Z x 7./27, thus BS(K?P/k, S) holds by the results of [19]. O

We conclude this section with another application of Theorem
Proposition 7.7. Assume that G is non-abelian of order 8. Then BSga(K/k,S) is satisfied.

Proof. The non-abelian groups of order 8 are, up to isomorphism, the dihedral group Dg of order
8 and the quaternion group Qs. We start with Gal(K/k) ~ Ds. Thanks to Proposition it
remains to prove that BS(K /K, S) holds where H is the cylic subgroup of order 4 contained
in Gal(K/k). But K/KH is a degree 4 abelian extension contained in the degree 8 non-abelian
Galois extension K/k, so BS(K/KH,S) is true by results of Tate (see Theorem [2.2)).

Assume now that Gal(K/k) ~ Qs. A presentation for the group Qg is given by the three
generators a, b, ¢ with the relations a? = b% = ¢? = abe. It is customary to denote the element
abc by —1 since it is of order 2 and lies in the center of Qs. (In fact, it generates the center
of Qs.) The subgroup H generated by a is cyclic of order 4. Thus, we can apply Theorem
and BSg.i(K/k,S) follows from BS(K?"/k,S) and BS(K/K*H,Sy). Now, the commutator
subgroup of Qg is the subgroup {£1} and Gal(K?"/k) ~ Z/27 x 7./27. Thus, BS(K?"/k, S)
is satisfied by the results of [19]. Finally, as above, the extension K/K* is a degree 4 abelian
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extension contained in the degree 8 non-abelian Galois extension K /k so BS(K /K, Sy) follows
again from Theorem O

APPENDIX. THE NON-ABELIAN BRUMER-STARK CONJECTURE OF NICKEL

In this appendix, we state the weak non-abelian Brumer-Stark conjecture of Nickel [14] and
compare it with our conjecture. Note that Nickel states also a strong version of the non-abelian
Brumer-Stark conjecture and similar generalizations of the Brumer conjecture. We change
slightly the notations used by Nickel to match the notations used in the previous sections.

Let K/k be a Galois CM-extension with group G. Fix a finite set S of places of k such that
S contains the infinite places of k and the finite places of k that ramify in K/k. Let Hyp(S) be
the set of finite set T of places of k such that

e S and T are disjoint,

e the group Ex(S,T) is torsion-free.
Here, Ex(S,T) denotes the group of (S, T)-units of L, that is the group of elements v € K*
such that vy (u) = 0 for all prime ideals 9 of K such that (PNk) € S and u =1 (mod™ Q) for
all prime ideals Q of K such that (QNk) € T. For T € Hyp(S), define

Op = nr( H 1- Uq_gl/\f(p))
peT
where B is a fixed prime ideal of K above p and nr : Q[G] — Z(Q|[G]) is the reduced norm (see
[18, §9]). Let A’ denote a fixed maximal order of Q[G] containing Z[G]. Denote by F(G) := {z €
Z(N') : 2\’ C Z|G]} the central conductor of A’ over Z[G].

Conjecture (The weak non-abelian Brumer-Stark conjecture of Nickel).
Let wi = nr(wg). Then wiO g € Z(N'). Furthermore, for any fractional ideal A of K and
for each x € F(G), there exists an anti-unit oy, € K° such that

QYrwrbr/ks — a; Ok

and, for any set of places T € Hyp(S U S, ), there exists cp v € Ex(Sa,,T) such that, for all
z € §(G)

207 __  2ZWK
Qy - aw,T

where Se,, is the set of prime ideals p of k such that vy(Ng /i (az)) # 0.

Remark. The strong version of the conjecture is similar with the modules Z(A’) and §(G)
replaced respectively by the modules Z(G) and H(G) where Z(G) is the module generated by
the reduced norms of matrices with coefficients in Z[G]; the definition of H(G) is more intricate,
see [14, p. 2582]

The results of Greither-Popescu [I0], mentioned at the end of Section 2, have been generalized
by Nickel in [I6] where he proves that the p-part of his non-abelian Brumer conjecture and
non-abelian Brumer-Stark conjecture hold if S contains all the prime ideals above p and some
appropriate pu-invariant vanishes. As mentioned in the previous section, Nomura [I7] proves that
the weak non-abelian Brumer-Stark conjecture of Nickel is implied by the abelian Brumer-Stark
conjecture when the Galois group of K/k is monomial (and also obtain additional results on the
strong version and local versions of the conjecture).

We now briefly compare our conjecture with the weak non-abelian Brumer-Stark conjecture of
Nickel. Both conjectures have two parts: an integrality statement for the Brumer-Stickelberger
element and an annihilation of the class group statement that also predicts special properties
for the generators obtained. We first prove that the Galois Brumer-Stark conjecture implies the
annihilation statement in the weak non-abelian Brumer-Stark conjecture of Nickel up to a factor
dg, including the existence of generators that satisfy almost all the required properties.
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Proposition 7.8. Assume that BSqa(K/k,S) holds. Let 2 be a fractional ideal of K. Then,
for all x € F(G), there exists an anti-unit o, € K° such that

dgrwib
Yderwrli/Ks — axOK

and, for any set of places T' € Hyp(S U S, ), there exists a7 € K* with of € Ex(Sa,,T)
such that, for all z € §(G)

ar’ !l =gt

Proof. Let a € K° be such that A%wx%x/k5 = 0Ok and K (a'/"K) is a strong central extension
of K/k. For z € F(G), let a, := a™™¥ where my = wi}lmK. Note that by below, we have
mg € Z(A') and thus zmg € Z[G]. We compute

derwrfi/k,s — (Q[deK9K/k,s)xmK = a,0k.

Now, let T' € Hyp(S U S,,). Let My be the product of the prime ideals of K above the prime
ideals in T'. Then, for any a € §(G), the element adr € Z[G] kills (O /Mr)*. We give the proof
of this result due to Nickel (personal communication). Let ¢ be a prime number. The module
(Ok /Mr)* @ Zy admits a quadratic presentation induced by the following exact sequences

Zy|Dyp] —— Zy[Dyp] —— (O /B)* @ Zy —1

where p ranges through the prime ideals in 7', B is a fixed prime ideal of K above p, Dy is
the decomposition group of B in G, the first map is the multiplication by 1 — 0;;31./\/' (p) and the
second map is induced by the action of Dy on a fixed generator of (Ox /B)*. Thus, the Fitting
invariant of (O /Mr)* ® Zy is generated by dr, see [I4, p. 2580]. By Theorem 1.2, ibid., we
get that adr annihilates (O /9Mr)™ @ Zy. Since this is true for all primes ¢ and (O /M) is
a finite abelian group, the result follows. In particular, because Ek (S, T) is torsion-free, we get
that xor lies in Anngq (k). Using Lemma we can write

t
o = Z)\i(mﬁi —J\/‘(Pz)),
i=1

where \;’s are rational integers and the ;’s are prime ideals of K such that Theorem zm)
applies. Let v := a'/*x [ := K() and ' := Gal(L/K). Define

T = Z)\i(%}i —N(pi)) € Z[I']

where P, is a fixed prime ideal of L above ; and O, 18 the Frobenius automorphism of J;

in I'. We set a, 7 := 7*7. From the proof of Theorem zzz), we see that va‘ﬁi_N(pi) is an
element of K* (it is equal to csp, with the notations of Theorem m)) and thus a, 7 € K*.
Furthermore, we have

o (Q[dceK/k,s@L)iT — Q[dG15T9K/k.sOL

and, using the fact that dgxdrfk /i s € Z[G] by the Integrality Conjecture, we get that a, 71Ok =
dc@drfi/k.s. Now, let N be a large enough integer such that Nmy'dr € Z[G]. Then, we find
(compare with proof of [14] Lemma 2.12])

Nm'ép Nm'é
O‘IIYTOK — (Q‘dc$mK0K/k,S) K =y K TOk

and o, 7 is supported only by prime ideals above S, . Also, we have a;‘jj}f = ™7 =1 (mod* M)
and therefore o'} € Ex(Sa,,T). Finally, for z € §(G), we compute

ZWK _ _ TTZW0K

ap =y ="

K)szmK — amészK — (axmK)ZJT — Q;JT I:l
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It is an interesting question to ask if there is any result in the other direction: assuming
the non-abelian Brumer-Stark conjecture of Nickel, can we deduce some results on our Galois
Brumer-Stark conjecture? We were not able yet to obtain significant results on this question.
Similarly, it appears that the connections between the Integrality Conjecture and the integrality
statement in the conjectures of Nickel are quite thin and, indeed, the two statements appear
to be of quite different nature. To illustrate this point, we look at the proof of the integrality
statement of the weak non-abelian Brumer-Stark conjecture in the setting of the previous section.
(Of course, this case also follows from the results of [17].)

We start with some general results and facts. Let X be the set of irreducible Q-characters
of G or, equivalently, the set of orbits of G under the action of Gal(Q/Q). For X € X, define
ex =) 4cx ¢ € Q[G]. Then, as a Q[G]-module, one has

QG] = P exQ[G].

Xex

For each X € X, fix a character ¢x € X and set Qx = Q(¢x) and nx = ¢x(1). Indeed
these do not depend on the choice of the character ¢x € X. Then €y, Qx is isomorphic to
Z(Q|G)) by the map
(ax)xex = >, Y. akesp, (17)
X€X 0eGal(Qx /Q)

where ¢% := oo¢x. This map restricts to an isomorphism between P y . Ox and Z(A") where
Ox denotes the ring of integers of Qx. A direct computation shows that

W = Z w}?‘ex (18)
Xex
and thus

Wilbrms =, Y. Wi Li/rs(0,6x) e,
XeX 0eGal(Qx/Q)

using @ Thus, the assertion that w0k /i g lies in Z(A’) is equivalent to the fact that
Wi L ji,s(0,¢x) lies in Ox for all X € X. Assume that X € X is such that nx = 1. Let bx
be the unique character of G* whose inflation to G is equal to ¢x. Then, we have

WX Licyi,5(0, ¢x) = Wi Lcan 11, 5(0, dx) € Ox

using (1) and (3). Thus wx by is € Z(A') if and only if wx8{7) ¢ € Z(A).

We now specialize to the setting of the last section and assume that G contains a normal
abelian subgroup H of prime index ¢. Thanks to the above remark and Theorem we have
WOk ks € Z(A') if and only if ew%@K/KHSH € Z(A") where

1
e:=1— fN[ng] = E ex € Z(A/) (19)
G Xex
nx>1

Since wi b xn 5, € L[H] C Z(A') by (3), we recover the fact that wx b/, s € Z(A’) in that
setting.

The different roles played by the idempotent ¢ in both proofs show, in our opinion, that the
integrality statements of the two conjectures are, somewhat, of different nature (at least in this
setting). Indeed, for the weak non-abelian Brumer-Stark conjecture of Nickel, this factor plays
no role at all whereas it plays an essential part in the proof of the Integrality Conjecture, see the
proof of Proposition This leads us to believe that there is no direct easy connection between
the two integrality conjectures.
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