ON THE SEMI-SIMPLE CASE OF THE GALOIS BRUMER-STARK CONJECTURE FOR MONOMIAL GROUPS

X.-F. ROBLOT

ABSTRACT. In a previous work, we stated a conjecture, called the Galois Brumer-Stark conjecture, that generalizes the (abelian) Brumer-Stark conjecture to Galois extensions. Other generalizations of the Brumer-Stark conjecture to non-abelian Galois extensions are due to Nickel. Nomura proved that the Brumer-Stark conjecture implies the weak non-abelian Brumer-Stark conjecture of Nickel when the group is monomial. In this paper, we use the methods of Nomura to prove that the Brumer-Stark conjecture implies the Galois Brumer-Stark conjecture for monomial groups in the semi-simple case.

1. INTRODUCTION

Let K/k be an abelian extension of number fields. The Brumer-Stark conjecture [14] predicts that a group ring element, called the Brumer-Stickelberger element, constructed from special values of L-functions associated to K/k, annihilates (after multiplication by a suitable factor) the ideal class group of K and specifies special properties for the generators obtained. In [5], we introduced a generalization of the conjecture to Galois extensions, called the Galois Brumer-Stark conjecture. Later, in [6], we introduced a refined version of the conjecture that focused on the contribution of the non-linear irreducible characters. Since the new version in [6] supersedes the version in [5], we will from now on refer to it as the Galois Brumer-Stark conjecture (and not call it anymore the refined Galois Brumer-Stark conjecture). Also, to avoid confusion, we call the original conjecture the abelian Brumer-Stark conjecture.

In [10], Nickel introduced another generalization of the abelian Brumer-Stark conjecture to Galois extensions and in [12], Nomura proved, among other things, that the abelian Brumer-Stark conjecture implies the (weak) non-abelian Brumer-Stark conjecture of Nickel when the Galois group of K/k is monomial. In this paper, we adapt the method used by Nomura to prove that the abelian Brumer-Stark conjecture implies the Galois Brumer-Stark conjecture in the semi-simple case when the Galois group of K/k is monomial (see Theorem 3.1). Furthermore, using the fact that the local abelian Brumer-Stark conjecture is known to hold in several cases, we prove unconditionally some cases of the local Galois Brumer-Stark conjecture (see Corollary 3.3).

2. The Galois Brumer-Stark conjecture

Before stating the Galois Brumer-Stark conjecture, we recall the statement of the abelian Brumer-Stark conjecture, see [15, IV.§6] or [14]. Let K/k be an abelian extension of number fields. Denote by G its Galois group. Let S be a finite set of places of k containing the infinite places and the finite places ramified in K. To

X.-F. ROBLOT

simplify matters, we assume that the cardinality of S is at least 2. The interested reader can refer to [15, Sec. IV.§6] for the statement of the conjecture when |S| = 1. For $\chi \in \hat{G}$, where \hat{G} denotes the group of irreducible characters of G, denote by $L_{K/k,S}(s,\chi)$ the Hecke *L*-function of the character χ with Euler factors associated to prime ideals in S deleted. The Brumer-Stickelberger element associated to the extension K/k and the set S is defined by

$$\theta_{K/k,S} := \sum_{\chi \in \hat{G}} L_{K/k,S}(0,\chi) \, e_{\bar{\chi}}$$

where $e_{\chi} := \frac{1}{|G|} \sum_{\sigma \in G} \chi(\sigma) \sigma^{-1}$ is the idempotent of χ . It follows from [7] (see also [4]) that

(2.1)
$$\xi \theta_{K/k,S} \in \mathbb{Z}[G]$$

for any $\xi \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mu_K)$, the annihilator in $\mathbb{Z}[G]$ of the group μ_K of roots of unity in K. In particular, we have $w_K \theta_{K/k,S} \in \mathbb{Z}[G]$ where w_K denotes the cardinality of μ_K . We need one last notation before stating the abelian Brumer-Stark conjecture. We say that a non-zero element $\alpha \in K$ is an anti-unit if all its conjugates have absolute value equal to 1. The group of anti-units of K is denoted by K° .

Conjecture 2.1 (The abelian Brumer-Stark conjecture $\mathbf{BS}(K/k, S)$). For any fractional ideal \mathfrak{A} of K, the ideal $\mathfrak{A}^{w_K \theta_{K/k,S}}$ is principal and admits a generator $\alpha \in K^\circ$ such that $K(\alpha^{1/w_K})/k$ is abelian.

We refer to [5, §2] for a review of the current state of the abelian Brumer-Stark conjecture. The following consequence of the abelian Brumer-Stark conjecture will be useful later on. (The conclusion of the proposition is known as the Brumer conjecture; thus, the proposition just states the well-known fact that the Brumer-Stark conjecture implies the Brumer conjecture.)

Proposition 2.2. Assume that the abelian Brumer-Stark conjecture $\mathbf{BS}(K/k, S)$ holds. Let $\xi \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mu_K)$. Then, $\xi \theta_{K/k,S}$ annihilates the class group Cl_K of K.

Proof. Under the assumption that $\mathbf{BS}(K/k, S)$ holds, there exists by [14, Proposition §2] a family $(a_i)_{i \in I}$ of elements of $\operatorname{Ann}_{\mathbb{Z}[G]}(\mu_K)$, generating $\operatorname{Ann}_{\mathbb{Z}[G]}(\mu_K)$, and such that $a_i \theta_{K/k,S}$ annihilates Cl_K for all $i \in I$. The result follows directly. \Box

We now introduce the Galois Brumer-Stark conjecture (more precisely, as noted in the introduction, the refined version stated in [6]). Assume now that K/k is a Galois extension of number fields. Denote by G its Galois group. Let S be a finite set of places of k containing the infinite places and the finite places ramified in K. Assume that the cardinality of S is at least 2. Denote by $\hat{G}^{(>1)}$ the set of non-linear irreducible characters of G and define the non-linear Brumer-Stickelberger element by

(2.2)
$$\theta_{K/k,S}^{(>1)} := \sum_{\chi \in \hat{G}^{(>1)}} L_{K/k,S}(0,\chi) e_{\bar{\chi}}$$

where, for $\chi \in \hat{G}^{(>1)}$, $L_{K/k,S}(s,\chi)$ denotes the Artin *L*-function of χ with Euler factors associated to prime ideals in *S* deleted, and

$$e_{\chi} := \frac{\chi(1)}{|G|} \sum_{\sigma \in G} \chi(\sigma) \sigma^{-1}$$

is the central idempotent of χ . It follows from the principal rank zero Stark conjecture, proved by Tate [15], that the non-linear Brumer-Stickelberger element lies in $\mathbb{Q}[G]$. Denote by [G,G] the commutator subgroup of G, i.e., the subgroup of G generated by the commutators $[g_1,g_2] := g_1g_2g_1^{-1}g_2^{-1}$ with $g_1,g_2 \in G$. Let $G^{ab} := G/[G,G]$ be the maximal abelian quotient of G and let $K^{ab} := K^{[G,G]}$ be the maximal sub-extension of K/k that is abelian over k; we have $\operatorname{Gal}(K^{ab}/k) = G^{ab}$. Let s_G denote the order of [G,G], let m_G be the lcm of the cardinalities of the conjugacy classes of G, and let d_G be the lcm of m_G and s_G .

Conjecture 2.3 (The Galois Brumer-Stark conjecture $\mathbf{BS}_{\text{Gal}}(K/k, S)$). Let K/k be a Galois extension of number fields and let S be a finite set of places of k that contains the infinite places and the finite places that ramify in K with $|S| \ge 2$. Then, $\mathbf{BS}(K^{\text{ab}}/k, S)$ holds, we have $d_G \theta_{K/k,S}^{(>1)} \in \mathbb{Z}[G]$ and, for any fractional ideal

 \mathfrak{A} of K, the ideal $\mathfrak{A}^{d_G \theta_{K/k,S}^{(>1)}}$ is principal and admits a generator in K° .

generator in K° .

For p a prime, denote by $\operatorname{Cl}_{K}\{p\}$ the p-part of Cl_{K} , that is the subgroup of Cl_{K} of classes of p-power order.

Conjecture 2.4 (The local Galois Brumer-Stark conjecture $\mathbf{BS}_{Gal}^{(p)}(K/k, S)$). Let K/k be a Galois extension of number fields and let S be a finite set of places of k that contains the infinite places and the finite places that ramify in K with $|S| \ge 2$. Then, the local abelian Brumer-Stark conjecture at p for the extension K^{ab}/k and the set of places S holds, we have $d_G \theta_{K/k,S}^{(>1)} \in \mathbb{Z}_p[G]$ and, for any fractional ideal \mathfrak{A} of K whose class lies in $\operatorname{Cl}_K\{p\}$, the ideal $\mathfrak{A}^{d_G} \theta_{K/k,S}^{(<)}$ is principal and admits a

The statement of the local abelian Brumer-Stark conjecture at p is that, for all ideals \mathfrak{A} whose class lies in $\operatorname{Cl}_K\{p\}$, the ideal $\mathfrak{A}^{w_K\theta_{K/k,S}}$ is principal and admits a generator $\alpha \in K^\circ$ such that $K(\alpha^{1/w_{K,p}})/k$ is abelian where $w_{K,p}$ is the order of the p-part of the group of roots of unity in K, see [8]. One checks readily that the Galois Brumer-Stark conjecture is equivalent to the local Galois Brumer-Stark conjecture at p for all primes p. Some evidence for these conjectures is given in [6]. Relations between the Galois Brumer-Stark conjecture and the weak non-abelian Brumer-Stark conjecture of Nickel are discussed in the appendix of [5]. To conclude this section, we prove that the local versions of the weak non-abelian Brumer-Stark conjecture and of the Galois Brumer-Stark conjecture are equivalent for primes pnot dividing $w_K|G|$. First, we recall briefly the statement of the local weak nonabelian Brumer-Stark conjecture, see [10] for more details.

Let K/k be a Galois CM-extension with group G. Let S be a finite set of places of k such that S contains the infinite places of k and the finite places of k that ramify in K/k. Let $\operatorname{Hyp}(S)$ denote the set of finite sets T of places of k such that: S and T are disjoint, and the group $E_K(S,T)$ is torsion-free. Here, $E_K(S,T)$ denotes the group of (S,T)-units of K, that is the group of elements $u \in K^{\times}$ such that $v_{\mathfrak{P}}(u) = 0$ for all prime ideals \mathfrak{P} of K such that $(\mathfrak{P} \cap k) \notin S$ and $u \equiv 1 \pmod{\mathfrak{Q}}$ for all prime ideals \mathfrak{Q} of K such that $(\mathfrak{Q} \cap k) \in T$. For $T \in \operatorname{Hyp}(S)$, define

$$\delta_T := \operatorname{nr}\Big(\prod_{\mathfrak{p}\in T} 1 - \sigma_{\mathfrak{P}}^{-1} \mathcal{N}(\mathfrak{p})\Big)$$

where \mathfrak{P} is a fixed prime ideal of K above \mathfrak{p} , $\sigma_{\mathfrak{P}}$ is the Frobenius element of \mathfrak{P} in G, and $\operatorname{nr} : \mathbb{Q}[G] \to \mathbb{Z}(\mathbb{Q}[G])$ is the reduced norm (see [13, §9]). Let Λ' denote a

fixed maximal order of $\mathbb{Q}[G]$ containing $\mathbb{Z}[G]$ and denote by $\mathfrak{F}(G) := \{x \in Z(\Lambda') : x\Lambda' \subset \mathbb{Z}[G]\}$ the central conductor of Λ' over $\mathbb{Z}[G]$.

Conjecture 2.5 (The local weak non-abelian Brumer-Stark conjecture [10]). Let $\mathfrak{w}_K := \operatorname{nr}(w_K)$. Then $\mathfrak{w}_K \theta_{K/k,S} \in Z(\Lambda') \otimes \mathbb{Z}_p$. Furthermore, for any fractional ideal \mathfrak{A} of K whose class lies in $\operatorname{Cl}_K\{p\}$ and for each $x \in \mathfrak{F}(G)$, there exists an anti-unit $\alpha_x \in K^\circ$ such that

$$\mathfrak{A}^{x\mathfrak{w}_K\theta_{K/k,S}} = \alpha_x \mathcal{O}_K$$

and, for any set of places $T \in \text{Hyp}(S \cup S_{\alpha_x})$, there exists $\alpha_{x,T} \in E_K(S_{\alpha_x},T)$ such that, for all $z \in \mathfrak{F}(G)$

$$\alpha_r^{z\delta_T} = \alpha_r^{z\mathfrak{w}_K}$$

where S_{α_x} is the set of prime ideals \mathfrak{p} of k such that $v_{\mathfrak{p}}(N_{K/k}(\alpha_x)) \neq 0$.

Observe that the conjecture stated above is slightly different from the original conjecture given by Nickel in [10]. Indeed, Nickel does not state explicitly the local conjecture in this paper but writes instead that one should restrict to ideals whose class lies in $\operatorname{Cl}_K\{p\}$ in the global conjecture to get the local conjecture at p. In particular, the local conjecture does not have an specific statement on where $\mathfrak{w}_K \theta_{K/k,S}$ should lie. However, it seems reasonable to only asks for $\mathfrak{w}_K \theta_{K/k,S}$ to be in $Z(\Lambda') \otimes \mathbb{Z}_p$ in this case.

Theorem 2.6. Let K/k be a Galois CM-extension of number fields with Galois group G and let S be a finite set of places of k that contains the infinite places and the finite places that ramify in K with $|S| \ge 2$. Let p be a prime number not dividing $w_K|G|$. Then, the local Galois Brumer-Stark conjecture $\mathbf{BS}_{Gal}^{(p)}(K/k, S)$ is equivalent to the local weak non-abelian Brumer-Stark conjecture at p for the extension K/k and the set of prime ideals S.

Proof. We will use the following fact several times whose proof is direct and left to the reader: let t be an integer not divisible by p and let H be a group of fractional ideals containing the principal ideals and all the ideals \mathfrak{B}^t where \mathfrak{B} runs through the fractional ideals of K whose class lies in $\operatorname{Cl}_K\{p\}$. Then, H is the group of fractional ideals whose class lies in $\operatorname{Cl}_K\{p\}$.

Assume that $\mathbf{BS}_{\text{Gal}}^{(p)}(K/k, S)$ holds. Then, $\theta_{K/k,S} \in Z(\mathbb{Z}_p[G])$ and therefore we have $\mathfrak{w}_K \theta_{K/k,S} \in Z(\Lambda') \otimes \mathbb{Z}_p = Z(\mathbb{Z}_p[G])$. Let \mathfrak{B} be a fractional ideal of K whose class lies in $\operatorname{Cl}_K\{p\}$. By [5, Prop. A.1], for any $x \in \mathfrak{F}(G)$, there exists $\beta_x \in K^\circ$ such that

$$\mathfrak{B}^{d_G x \mathfrak{w}_K \theta_{K/k,S}} = \beta_x \mathcal{O}_K$$

and, for any set of places $T \in \text{Hyp}(S \cup S_{\beta_x})$, there exists $\beta_{x,T} \in K^{\times}$ with $\beta_{x,T}^{w_K} \in E_K(S_{\beta_x},T)$ such that, for all $z \in \mathfrak{F}(G)$

$$\beta_x^{z\delta_T} = \beta_{x,T}^{z\mathfrak{w}_K}.$$

Observe that the proof of [5, Prop. A.1] uses the original formulation of the (global) Galois Brumer-Stark conjecture but that is not a concern since the refined version that we use now implies the original conjecture; furthermore, one can check readily that the local version of the conjecture is enough for the proof of the result in this case. Let $\mathfrak{A} := \mathfrak{B}^{d_G w_K}$. We set $\alpha_x := \beta_x^{w_K}$ and $\alpha_{x,T} := \beta_{x,T}^{w_K} \in E_K(S_{\beta_x},T) =$ $E_K(S_{\alpha_x},T)$ for all $T \in \text{Hyp}(S \cup S_{\beta_x}) = \text{Hyp}(S \cup S_{\alpha_x})$. Then, it is direct to check that these elements satisfy the required properties for the statement of the local

4

weak non-abelian conjecture to be satisfied for the ideal \mathfrak{A} . Since it is proved in [10] that the set of ideals satisfying the properties of the weak non-abelian Brumer-Stark conjecture is a group containing the principal ideals, it follows by the above remark that the local weak non-abelian Brumer-Stark conjecture holds at p for the extension K/k and the set S.

Reciprocally, assume that the local weak non-abelian Brumer-Stark conjecture holds at p for the extension K/k and the set S. We first prove that this implies that the local abelian Brumer-Stark conjecture holds at p for the extension K^{ab}/k and the set S. Let \mathfrak{b} be a fractional ideal of K^{ab} whose class lies in $\operatorname{Cl}_{K^{ab}}\{p\}$, thus the class of \mathfrak{bO}_K is in $\operatorname{Cl}_K\{p\}$. Thanks to [13, Th. 41.1], we can take $x = |G| \in \mathcal{F}(G)$ in the local weak non-abelian Brumer-Stark conjecture, and thus there exists $\beta_0 \in K^\circ$ such that $(\mathfrak{bO}_K)^{|G|\mathfrak{w}_K\theta_{K/k,S}} = \beta_0\mathcal{O}_K$. Taking norms down to K^{ab} and using the properties of the Brumer-Stickelberger element, we deduce that

$$\mathfrak{b}^{s_G|G|w_K\theta_{K^{\mathrm{ab}}/k,S}} = \mathfrak{a}^{w_K\theta_{K^{\mathrm{ab}}/k,S}} = \alpha_0 \mathcal{O}_{K^{\mathrm{ab}}}$$

where $\mathfrak{a} := \mathfrak{b}^{s_G|G|}$ and $\alpha_0 := N_{K/K^{ab}}(\beta_0) \in (K^{ab})^\circ$. Now, since p does not divide w_K , we have $w_{K,p} = 1$ and thus $K^{ab}(\alpha_0^{1/w_{K,p}}) = K^{ab}$ is abelian over k. The set of ideals that satisfy the local abelian Brumer-Stark conjecture is a group containing the principal ideals therefore, by the remark at the start of the proof, the local abelian Brumer-Stark conjecture holds at p for the extension K^{ab}/k and the set S. To prove the part of the statement of the local Galois Brumer-Stark conjecture concerning the non-linear Brumer-Stickelberger element, we proceed in a similar way. Observe that it follows from [5, Eq. (12)] that one can write $\theta_{K/k,S} = \theta_0 + \theta_{K/k,S}^{(>1)}$ with $s_G w_K \theta_0 \in \mathbb{Z}[G]$. In particular, we have $\theta_0 \in \mathbb{Z}_p[G]$ and thus $\theta_{K/k,S}^{(>1)} \in \mathbb{Z}_p[G]$. Now, let \mathfrak{B} be a fractional ideal of K whose class is in $\operatorname{Cl}_K\{p\}$. Let ℓ be the maximum of the $\chi(1)$'s for $\chi \in \hat{G}$. Let

$$x = |G|^2 \sum_{\chi \in \hat{G}^{(>1)}} w_K^{\ell - \chi(1)} e_\chi \in |G|\mathbb{Z}[G].$$

As noted above $|G| \in \mathcal{F}(G)$, therefore $x \in \mathcal{F}(G)$ and there exists $\alpha \in K^{\circ}$ such that $\mathfrak{B}^{x\mathfrak{w}_{K}\theta_{K/k,S}} = \alpha \mathcal{O}_{K}$. Observe that

$$x\mathfrak{w}_K\theta_{K/k,S} = |G|^2 w_K^\ell \theta_{K/k,S}^{(>1)}.$$

Let $\mathfrak{A} := \mathfrak{B}^{|G|^2 w_K^{\ell}/d_G}$. Then, we have $\mathfrak{A}^{d_G \theta_{K/k,S}^{(>1)}} = \alpha \mathcal{O}_K$. Since the set of ideals that satisfy the statement of the local Galois Brumer-Stark conjecture is group containing the principal ideals, it follows that the local Galois Brumer-Stark conjecture holds at p for the extension K/k and the set of places S. This concludes the proof.

3. The semi-simple case for monomial group

In this section, we prove the main result of this paper.

Theorem 3.1. Let K/k be a Galois extension of number fields with Galois group G and let S be a finite set of places of k that contains the infinite places and the finite places that ramify in K with $|S| \ge 2$. Assume that the group G is monomial and that the abelian Brumer-Stark conjecture $BS(E/F, S_F)$ holds for any abelian extension E/F contained in K/k where S_F denotes the set of places of F above

X.-F. ROBLOT

the places in S. Let p be a prime number such that $p \nmid |G|$. Then, the local Galois Brumer-Stark conjecture $\mathbf{BS}^{(p)}_{Gal}(K/k, S)$ holds.

Proof. In order to prove Theorem 3.1, it is enough to prove the following two facts:

- (1) $\theta_{K/k,S}^{(>1)} \in \mathbb{Z}_p[G],$ (2) $\theta_{K/k,S}^{(>1)}$ annihilates $\operatorname{Cl}_K\{p\}.$

Indeed, d_G is a divisor of G and thus it is invertible in $\mathbb{Z}_p[G]$, therefore $d_G \theta_{K/k,S}^{(>1)} \in$ $\mathbb{Z}_p[G]$ if and only if $\theta_{K/k,S}^{(>1)} \in \mathbb{Z}_p[G]$. Now, assume that $\theta_{K/k,S}^{(>1)}$ annihilates $\operatorname{Cl}_K\{p\}$ then, by the previous remark, that means that $d_G \theta_{K/k,S}^{(>1)}$ also annihilates $\operatorname{Cl}_K\{p\}$. The only thing remaining to prove is that, for any ideal \mathfrak{A} of K whose class lies in $\operatorname{Cl}_{K}\{p\}$, one can find a generator of $\mathfrak{A}^{d_{G}\theta_{K/k,S}^{(>1)}}$ that is an anti-unit. But, since p is odd (otherwise the conjecture is trivially true, see Remark 2.2 of [6]), this is always possible using the trick explained on page 299 of [8].

We now prove the two assertions. As we mentioned in the introduction, the method we use is a direct adaptation of the method used by Nomura in [12]. Since the result is trivial if G is abelian, we assume from now on that G is non-abelian. Let ν be a character defined on some subgroup H_{ν} of G. (From now on, we will always use the notation H_{ν} to denote the subgroup of G on which the character ν is defined.) For $g \in G$, define the character $\nu[g]$ of $g^{-1}H_{\nu}g$ by $\nu[g](x) := \nu(gxg^{-1})$ for all $x \in g^{-1}H_{\nu}g$. Note that $\chi[g] = \chi[g']$ if g and g' are in the same right coset of G modulo H_{ν} . Observe that $\nu^{G} = (\nu[g])^{G}$ for all $g \in G$, where we denote by ν^{G} the induced character of ν on G (see [9, Chapter 5]). In particular, for $\chi \in \hat{G}^{(>1)}$, the group G acts on the set of linear characters ν defined on some subgroup H_{ν} of G and such that $\nu^G = \chi$. (This is a non-empty set by hypothesis.) We denote by $\Omega(\chi)$ a fixed orbit of this set under the action of G. Then, we have

(3.3)
$$\chi = \sum_{\nu \in \Omega(\chi)} i$$

where $\dot{\nu}$ denotes the function of G obtained by setting $\dot{\nu}(x) := \nu(x)$ if $x \in H_{\nu}$ and $\dot{\nu}(x) := 0$ otherwise. In particular, it follows that

(3.4)
$$e_{\chi} = \sum_{\nu \in \Omega(\chi)} e_{\nu}.$$

For $\nu \in \Omega(\chi)$, we denote by $\pi_{\nu} : H_{\nu} \to H_{\nu} / \operatorname{Ker}(\nu)$ the canonical surjection and by $\hat{\nu}$ the unique linear character of $H_{\nu}/\operatorname{Ker}(\nu)$ such that $\nu = \hat{\nu} \circ \pi_{\nu}$. We also associate to ν two extensions: $E_{\nu} := K^{\operatorname{Ker}(\nu)}$ and $F_{\nu} := K^{H_{\nu}}$. Thus, E_{ν}/F_{ν} is a cyclic extension with Galois group isomorphic to $H_{\nu}/\operatorname{Ker}(\nu)$. Finally, we define S_{ν} to be the set of places of F_{ν} above the places in S. From the properties of Artin L-functions, we see that

$$\chi(\theta_{K/k,S}^{(>1)}) = L_{K/k,S}(\bar{\chi},0) = L_{K/F_{\nu},S_{\nu}}(\bar{\nu},0) = L_{E_{\nu}/F_{\nu},S_{\nu}}(\bar{\nu},0) = \hat{\nu}(\theta_{E_{\nu}/F_{\nu},S_{\nu}}).$$

Let $\Omega := \bigcup_{\chi \in \hat{G}^{(>1)}} \Omega(\chi)$ (note that it is a disjoint union). Combining the previous equalities with (2.2) and (3.4), we obtain the following identity (which is the nonlinear equivalent of [12, Lemma 4.4])

(3.5)
$$\theta_{K/k,S}^{(>1)} = \sum_{\nu \in \Omega} \hat{\nu}(\theta_{E_{\nu}/F_{\nu},S_{\nu}}) e_{\nu}$$

The following result plays a crucial role in the proof.

 $\mathbf{6}$

Lemma 3.2. Let $\nu \in \Omega$. Define $T_{\nu} := \pi_{\nu}(H_{\nu} \cap [G,G])$ and

$$\mathcal{A}_{\nu} := \sum_{c \in T_{\nu}} (1 - c).$$

Then, the element \mathcal{A}_{ν} annihilates the group of roots of unity of E_{ν} and we have $\hat{\nu}(\mathcal{A}_{\nu}) = t_{\nu}$ where $t_{\nu} := |T_{\nu}|$.

Proof of the lemma. The first assertion follows from the fact that elements of T_{ν} are image of elements of [G, G], thus they act trivially on roots of unity. For the second assertion, fix $g \in G \setminus H_{\nu}$ (g exists since χ is non-linear). Since ν^{G} is irreducible, it follows from Mackey's irreducibility criterion that the restriction to $H_{\nu} \cap g^{-1}H_{\nu}g$ of ν and $\nu[g]$ do not have a common irreducible constituent. Since the characters ν and $\nu[g]$ are linear characters, this implies that there exists $h \in H_{\nu} \cap g^{-1}H_{\nu}g$ such that $\nu[g](h) \neq \nu(h)$, i.e., $\nu(ghg^{-1}h^{-1}) \neq 1$. Therefore, $H_{\nu} \cap [G, G]$ is not contained in the kernel of ν and T_{ν} is non-trivial. It follows that

$$\hat{\nu}(\mathcal{A}_{\nu}) = t_{\nu} - \sum_{c \in T_{\nu}} \hat{\nu}(c) = t_{\nu}$$

and the lemma is proved.

6

We prove the first assertion, that is $\theta_{K/k,S}^{(>1)} \in \mathbb{Z}_p[G]$. Let $\nu \in \Omega$. First, note that $t_{\nu}\hat{\nu}(\theta_{E_{\nu}/F_{\nu},S_{\nu}}) = \hat{\nu}(\mathcal{A}_{\nu}\,\theta_{E_{\nu}/F_{\nu},S_{\nu}})$ is an algebraic integer. Indeed, since the extension E_{ν}/F_{ν} is abelian, it follows from (2.1) and Lemma 3.2 that $\mathcal{A}_{\nu}\,\theta_{E_{\nu}/F_{\nu},S_{\nu}}$ lies in $\mathbb{Z}[H_{\nu}/\operatorname{Ker}(\nu)]$. But, the integer t_{ν} divides |G| and therefore $|G|\,\hat{\nu}(\theta_{E_{\nu}/F_{\nu},S_{\nu}})$ is an algebraic integer for all $\nu \in \Omega$. Since $|G|e_{\nu}$ is also an algebraic integer for all $\nu \in \Omega$, we deduce using (3.5) that the coefficients of $|G|^2 \theta_{K/k,S}^{(>1)}$ are all algebraic integers and, since it is rational, it lies in $\mathbb{Z}[G]$. Finally, since p does not divide |G|, we get that $\theta_{K/k,S}^{(>1)} \in \mathbb{Z}_p[G]$.

We prove the second assertion, i.e., $\theta_{K/k,S}^{(>1)}$ annihilates $\operatorname{Cl}_K\{p\}$. Let ν be a character of a subgroup H_{ν} of G and let $\sigma \in \Gamma := \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$. We denote by ν^{σ} the character of H_{ν} defined by $\nu^{\sigma}(x) := \sigma(\nu(x))$ for all $x \in H_{\nu}$. The group Γ acts on ν via its quotient $\Gamma(\nu) := \Gamma/\operatorname{Stab}_{\Gamma}(\nu)$ which is also the Galois group of $\mathbb{Q}(\nu)/\mathbb{Q}$ where $\mathbb{Q}(\nu)$ is the extension of \mathbb{Q} generated by the values of ν . Assume now that $\nu \in \Omega(\chi)$ with $\chi \in \hat{G}^{(>1)}$. We see that $\Gamma(\nu) = \Gamma(\hat{\nu})$, but $\Gamma(\chi)$ is a quotient of $\Gamma(\nu)$ where $\chi := \nu^G$ (although we will not use this fact). Observe that, for $\sigma \in \Gamma(\nu)$, we have $H_{\nu^{\sigma}} = H_{\nu}$, $\operatorname{Ker}(\nu^{\sigma}) = \operatorname{Ker}(\nu)$, $\pi_{\nu^{\sigma}} = \pi_{\nu}$, $T_{\nu^{\sigma}} = T_{\nu}$, $\mathcal{A}_{\nu^{\sigma}} = \mathcal{A}_{\nu}$, $E_{\nu^{\sigma}} = E_{\nu}$, $F_{\nu^{\sigma}} = F_{\nu}$, and $S_{\nu^{\sigma}} = S_{\nu}$. Let Ω_0 be a set of representatives of Ω under the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Then, we can rewrite equation (3.5) as

(3.6)
$$\theta_{K/k,S}^{(>1)} = \sum_{\nu \in \Omega_0} \sum_{\sigma \in \Gamma(\nu)} \hat{\nu}^{\sigma}(\theta_{E_{\nu}/F_{\nu},S_{\nu}}) e_{\nu^{\sigma}}.$$

Now, for $\nu \in \Omega_0$ and $\sigma \in \Gamma(\nu)$, one checks readily that $e_{\nu\sigma} = \iota_{\nu\sigma} \mathcal{N}_{\mathrm{Ker}(\nu)}$ where $\iota_{\nu} \in \overline{\mathbb{Q}}[H_{\nu}]$ is such that $\pi_{\nu}(\iota_{\nu\sigma}) = e_{\hat{\nu}\sigma}$ and $\mathcal{N}_{\mathrm{Ker}(\nu)} := \sum_{x \in \mathrm{Ker}(\nu)} x$. Thus, we have

$$\sum_{\sigma \in \Gamma(\nu)} \hat{\nu}^{\sigma}(\theta_{E_{\nu}/F_{\nu},S_{\nu}}) e_{\nu^{\sigma}} = \bigg(\sum_{\sigma \in \Gamma(\nu)} \hat{\nu}^{\sigma}(\theta_{E_{\nu}/F_{\nu},S_{\nu}}) \iota_{\nu^{\sigma}}\bigg) \mathcal{N}_{\mathrm{Ker}(\nu)}.$$

Let \mathcal{C} be a class in Cl_K of *p*-power order. We compute

$$\begin{split} t_{\nu} \sum_{\sigma \in \Gamma(\nu)} \hat{\nu}^{\sigma}(\theta_{E_{\nu}/F_{\nu},S_{\nu}}) e_{\nu^{\sigma}} \mathcal{C} &= \bigg(\sum_{\sigma \in \Gamma(\nu)} t_{\nu} \hat{\nu}^{\sigma}(\theta_{E_{\nu}/F_{\nu},S_{\nu}}) \iota_{\nu^{\sigma}}\bigg) \mathcal{N}_{\mathrm{Ker}(\nu)} \mathcal{C} \\ &= \bigg(\sum_{\sigma \in \Gamma(\nu)} \hat{\nu}^{\sigma}(\mathcal{A}_{\nu} \, \theta_{E_{\nu}/F_{\nu},S_{\nu}}) \iota_{\nu^{\sigma}}\bigg) N_{K/E_{\nu}}(\mathcal{C}) \\ &= \pi_{\nu} \bigg(\sum_{\sigma \in \Gamma(\nu)} \hat{\nu}^{\sigma}(\mathcal{A}_{\nu} \, \theta_{E_{\nu}/F_{\nu},S_{\nu}}) \iota_{\nu^{\sigma}}\bigg) N_{K/E_{\nu}}(\mathcal{C}) \\ &= \bigg(\sum_{\sigma \in \Gamma(\nu)} \hat{\nu}^{\sigma}(\mathcal{A}_{\nu} \, \theta_{E_{\nu}/F_{\nu},S_{\nu}}) e_{\hat{\nu}^{\sigma}}\bigg) N_{K/E_{\nu}}(\mathcal{C}) \\ &= \bigg(\sum_{\sigma \in \Gamma(\nu)} \mathcal{A}_{\nu} \, \theta_{E_{\nu}/F_{\nu},S_{\nu}} e_{\hat{\nu}^{\sigma}}\bigg) N_{K/E_{\nu}}(\mathcal{C}) \\ &= \mathcal{A}_{\nu} \, \theta_{E_{\nu}/F_{\nu},S_{\nu}} \bigg(\sum_{\sigma \in \Gamma(\nu)} e_{\hat{\nu}^{\sigma}}\bigg) N_{K/E_{\nu}}(\mathcal{C}). \end{split}$$

The element $\sum_{\sigma \in \Gamma(\nu)} e_{\hat{\nu}^{\sigma}}$ is *p*-integral and thus $\left(\sum_{\sigma \in \Gamma(\nu)} e_{\hat{\nu}^{\sigma}}\right) N_{K/E_{\nu}}(\mathcal{C})$ is welldefined and is a class in $\operatorname{Cl}_{E_{\nu}}\{p\}$. But, by Lemma 3.2 and Proposition 2.2, $\mathcal{A}_{\nu} \, \theta_{E_{\nu}/F_{\nu},S_{\nu}}$ annihilates $\operatorname{Cl}_{E_{\nu}}$. Since t_{ν} is prime to *p*, we deduce that the element $\sum_{\sigma \in \Gamma(\nu)} \hat{\nu}^{\sigma}(\theta_{E_{\nu}/F_{\nu},S_{\nu}}) e_{\hat{\nu}^{\sigma}}$ kills $\operatorname{Cl}_{K}\{p\}$. This is true for all $\nu \in \Omega_{0}$, hence we get by (3.6) that $\theta_{K/k,S}^{(>1)}$ annihilates $\operatorname{Cl}_{K}\{p\}$. This concludes the proof of Theorem 3.1.

The local abelian Brumer-Stark conjecture is known to hold unconditionally in many cases. Combining Theorem 3.1 and several results in [1] by Burns and Flach, and in [2] and [3] by Burns, Kurihara, and Sano, we can thus deduce cases where the local Galois Brumer-Stark conjecture is satisfied.

Corollary 3.3. Let K/k be a Galois CM-extension of number fields and let S be a finite set of places of k that contains the infinite places and the finite places that ramify in K with $|S| \ge 2$. Assume that $\operatorname{Gal}(K/k)$ is monomial. Then, for any odd prime p such that p does not divide [K : k] and at least one of the two following condition is satisfied: (1) p is unramified in K/\mathbb{Q} , or (2) at most one prime ideal of k above p splits in K/K^+ , the local Galois Brumer-Stark conjecture $\operatorname{BS}_{\operatorname{Gal}}^{(p)}(K/k, S)$ holds.

Proof. Let E/F be an abelian CM-extension of number fields. It is known that the abelian Brumer-Stark conjecture for the extension E/F follows from the equivariant Tamagawa number conjecture [1] for the pair $(h^0(\operatorname{Spec}(E)), \mathbb{Z}[H])$ where $H := \operatorname{Gal}(E/F)$. For example, using the results of [3], we get that this special case of the equivariant Tamagawa number conjecture is equivalent to Conjecture 3.1 of *ibid* by Remark 3.2 of *ibid*, which is in turn equivalent to the 'leading term conjecture' (Conjecture 3.6 of *ibid*) and 'the leading term conjecture' implies the abelian Brumer-Stark conjecture by Remark 1.11(i) of *ibid*. More precisely, the equivariant Tamagawa number conjecture for $(h^0(\operatorname{Spec}(E)), \mathbb{Z}_p[H]^-)$ implies the local abelian Brumer-Stark conjecture at p for E/F. (Here, $\mathbb{Z}_p[H]^- := \mathbb{Z}_p[H]/(1 + \tau)$ where τ is the complex conjugation in H.) Therefore, cases where this special case of the equivariant Tamagawa number conjecture is proved together with Theorem 3.1 yield cases where the local Galois Brumer-Stark conjecture holds unconditionally. Case (1) follows from Theorem 4 of [11]. Indeed, for any CM-subextension E/F of K/k, the prime p is unramified in E and thus the conditions of the theorem are satisfied by the remark just before the theorem; since $p \nmid [E : F]$, the condition on the vanishing of the Iwasawa μ -invariant is not necessary (see Remark 6 of *ibid*). For case (2), we use [2, Cor. 1.2] since, in every abelian subextension E/F of K/k, there is at most one prime ideal of F above p that splits in E/E^+ ; for the same reasons as in case (1), the condition on the vanishing of the Iwasawa μ -invariant is not necessary.

References

- D. Burns and M. Flach. Tamagawa numbers for motives with (non-commutative) coefficients. Doc. Math., 6:501–570 (electronic), 2001.
- [2] D. Burns, M. Kurihara, and T. Sano. Iwasawa theory and zeta elements for G_m. ArXiv e-prints, ArXiv:1506.07935, 2015.
- [3] D. Burns, M. Kurihara, and T. Sano. On zeta elements for \mathbb{G}_m . Doc. Math., 21:555–626, 2016.
- [4] Pi. Cassou-Noguès. Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques. Invent. Math., 51(1):29–59, 1979.
- [5] G. Dejou and X.-F. Roblot. A Brumer-Stark conjecture for non-abelian Galois extensions. J. Number Theory, 142:51–88, 2014.
- [6] G. Dejou and X.-F. Roblot. The Galois Brumer-Stark conjecture for SL₂(F₃)-extensions. Int. J. Number Theory, 12(1):165–188, 2016.
- [7] P. Deligne and K. Ribet. Values of abelian L-functions at negative integers over totally real fields. Invent. Math., 59(3):227–286, 1980.
- [8] C. Greither, X.-F. Roblot, and B. Tangedal. The Brumer-Stark conjecture in some families of extensions of specified degree. *Math. Comp.*, 73(245):297–315, 2004.
- [9] I. M. Isaacs. Character theory of finite groups. Dover Publications, Inc., New York, 1994. Corrected reprint of the 1976 original.
- [10] A. Nickel. On non-abelian Stark-type conjectures. Ann. Inst. Fourier (Grenoble), 61(6):2577–2608, 2011.
- [11] A. Nickel. On the equivariant Tamagawa number conjecture in tame CM-extensions. Math. Z., 268(1-2):1–35, 2011.
- [12] J. Nomura. On non-abelian Brumer and Brumer-Stark conjecture for monomial CMextensions. Int. J. Number Theory, 10(4):817–848, 2014.
- [13] I. Reiner. Maximal orders, volume 28 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, Oxford, 2003.
- [14] J. Tate. Brumer-Stark-Stickelberger. In Seminar on Number Theory, 1980–1981 (Talence, 1980–1981), pages 16, Exp. No. 24. Univ. Bordeaux I, Talence, 1981.
- [15] J. Tate. Les conjectures de Stark sur les fonctions L d'Artin en s = 0, volume 47 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1984.