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Abstract. In a previous work, we stated a conjecture, called the Galois Brumer-
Stark conjecture, that generalizes the (abelian) Brumer-Stark conjecture to Galois
extensions. We also proved that, in several cases, the Galois Brumer-Stark conjecture
holds or reduces to the abelian Brumer-Stark conjecture. The first open case is the
case of extensions with Galois group isomorphic to SL2(F3). This is the case studied in
this paper. These extensions split naturally into two different types. For the first type,
we prove the conjecture outside of 2. We also prove the conjecture for 59 SL2(F3)-
extensions of Q using computations. The version of the conjecture that we study is a
stronger version, called the Refined Galois Brumer-Stark conjecture, that we introduce
in the first part of the paper.

1. Introduction

Let K/k be an abelian extension of number fields. The Brumer-Stark conjecture
[14] predicts that a group ring element called the Brumer-Stickelberger element and
constructed from special values of L-functions associated to K/k, annihilates (after mul-
tiplication by a suitable factor) the ideal class group of K and specifies special properties
for the generators obtained. In [2], we introduced a generalization of the conjecture to
Galois extensions, called the Galois Brumer-Stark conjecture. To avoid confusion, we
call the original conjecture the abelian Brumer-Stark conjecture. In the paper mentioned
above, we prove also that the Galois Brumer-Stark conjecture holds or reduces to the
abelian Brumer-Stark conjecture in many cases. The first case not being covered by
our results is the case of Galois extensions with Galois group isomorphic to SL2(F3). In
the present paper, we study this case for a stronger version of the conjecture, called the
Refined Galois Brumer-Stark conjecture, that we introduce in the first part of the paper.

The plan of the paper is the following. In the second section, we state the abelian
Brumer-Stark conjecture and the Galois Brumer-Stark conjecture. We recall some of the
properties of the Galois Brumer-Stark conjecture and what is known about it. The third
section is devoted to the statement of the Refined Galois Brumer-Stark conjecture and
our reasons to introduce this stronger version. The next section deals with the properties
of the group SL2(F3) and of SL2(F3)-extensions, and states an explicit expression for the
Brumer-Stickelberger element. We also explain how SL2(F3)-extensions split naturally
into two types depending on the expression of the Brumer-Stickelberger element. In
Section 5, we prove that the Refined Galois Brumer-Stark conjecture holds outside of 2
for SL2(F3)-extensions of the first type. Finally, in the last section, we explain how we
proved, using computations, the Refined Galois Brumer-Stark conjecture for 59 SL2(F3)-
extensions of Q.

�
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2. The Galois Brumer-Stark conjecture

Before stating the Galois Brumer-Stark conjecture, we recall the statement of the
abelian Brumer-Stark conjecture, see [15, IV.§6] for a more complete reference or [2,
§2]. Let K/k be an abelian extension of number fields. Denote by G its Galois group.
Let S be a finite set of places of k containing the infinite places and the finite places
ramified in K. To simplify matters, we assume that the cardinality of S is at least 2.
The interested reader can refer to [15, IV.§6] for the statement of the conjecture when
|S| = 1. For χ ∈ Ĝ, the group of characters of G, denote by LK/k,S(s, χ) the Hecke L-
function associated to χ with Euler factors associated to prime ideals in S deleted. The
Brumer-Stickelberger element associated to the extension K/k and the set S is defined
by

θK/k,S :=
∑
χ∈Ĝ

LK/k,S(0, χ) eχ̄

where eχ is the idempotent associated to χ. It follows from the works of Deligne and
Ribet [3] (see also [1]) that ξ θK/k,S ∈ Z[G] for any ξ ∈ AnnZ[G](µK), the annihilator
in Z[G] of the group µK of roots of unity in K. In particular, denoting by wK the
cardinality of µK , we have wKθK/k,S ∈ Z[G]. We need one last notation before stating
the abelian Brumer-Stark conjecture. We say that a non-zero element α ∈ K is an anti-
unit if all its conjugates have absolute value equal to 1. The group of anti-units of K is
denoted by K◦.

Conjecture (The abelian Brumer-Stark conjecture BS(K/k, S)).
For any fractional ideal A of K, the ideal AwKθK/k,S is principal and admits a generator
α ∈ K◦ such that K(α1/wK )/k is abelian.

We refer to [2, §2] for a review of the current state of the abelian Brumer-Stark conjec-
ture. We now introduce the Galois Brumer-Stark conjecture. Note that generalizations
by Nickel to the non-abelian case of the Brumer-Stark conjecture and also of the Brumer
conjecture are stated in [12].

Let K/k be a Galois extension of number fields. Denote by G its Galois group. Let S
be a finite set of places of k containing the infinite places and the finite places ramified
in K. Assume that the cardinality of S is at least 2. Following Hayes [8], we define the
Brumer-Stickelberger element associated to K/k and S by

θK/k,S :=
∑
χ∈Ĝ

LK/k,S(0, χ) eχ̄

where the sum is over the set Ĝ of irreducible characters of G and, for χ ∈ Ĝ, LK/k,S(s, χ)
denotes the Artin L-function of χ with Euler factors associated to prime ideals in S
deleted and

eχ :=
χ(1)

|G|
∑
σ∈G

χ(σ)σ−1

denotes the central idempotent associated to χ.

Remark. One can prove that, if k is not totally real or K is not totally complex, then
θK/k,S = 0 and thus all the variant of the Brumer-Stark conjecture considered in this
paper are trivially true.

It follows from the principal rank zero Stark conjecture, proved by Tate [15], that
the Brumer-Stickelberger element lies in Q[G]. The first conjecture introduced in [2]
gives a denominator for this element. Recall that the commutator subgroup [Γ,Γ] is the
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subgroup of Γ generated by the commutators [γ1, γ2] := γ1γ2γ
−1
1 γ−1

2 with γ1, γ2 ∈ Γ. We
give here a slightly different but equivalent formulation.

Conjecture (The Integrality Conjecture).
Let mG be the lcm of the cardinalities of the conjugacy classes of G and let sG be the
order of the commutator subgroup [G,G] of G. Let dG be the lcm of mG and sG. Then,
for any σ ∈ G and any nσ ∈ Z such that σ − nσ ∈ AnnZ[G](µK), we have

dG(σ − nσ) θK/k,S ∈ Z[G].

Before stating the Galois Brumer-Stark conjecture, we need to define the notion of
strong central extensions. Let E/F be a Galois extension of number fields. Let N be a
finite extension of E. We say that N is a strong central extension of E/F if the extension
N/F is Galois and A ∩ [Γ,Γ] = {e} where A := Gal(N/E) and Γ := Gal(N/F ). Denote
by Nab the maximal sub-extension of N/F that is abelian over F . Then, N is a strong
central extension of E/F if and only if N = ENab.

Conjecture (The Galois Brumer-Stark conjecture BSGal(K/k, S)).
Let K/k be a Galois extension of number fields and let S be a finite set of places of
k that contains the infinite places and the finite places that ramify in K with |S| ≥ 2.
The Integrality Conjecture holds for the extension K/k and the set of places S, and, for
any fractional ideal A of K, the ideal AdGwK θK/k,S is principal and admits a generator
α ∈ K◦ such that K(α1/wK ) is a strong central extension of K/k.

Remark. Francesc Bars has kindly informed us of the formulation of the abelian Brumer-
Stark conjecture for function fields contained in [13, Chap. 15] and suggested the fol-
lowing formulation for the Galois Brumer-Stark conjecture in positive characteristic.
Assume that K/k is a Galois geometric extension of function fields. The statement of
the Integrality Conjecture stays unchanged (replacing the objects involved by their posi-
tive characteristic counterparts) and, for D a divisor of degree zero of K, dGwK θK/k,SD
is a principal divisor with a generator α ∈ K such that α has absolute value 1 at all
archimedean places of K, if any, and K(α1/wK )/k is a strong central extension of K/k.
We will not investigate the different aspects of the conjecture in positive characteristic
in this paper.

The Galois Brumer-Stark conjecture implies the abelian Brumer-Stark conjecture.
The following theorem sums up the different cases where the Galois Brumer-Stark con-
jecture is proved or is implied by the abelian Brumer-Stark conjecture.

Theorem 2.1 ([2, Th. 5.2]). The Galois Brumer-Stark conjecture is satisfied in the
following cases

(1) Gal(K/k) is a non-abelian simple group,
(2) Gal(K/k) ' D2n where D2n is the dihedral group of order 2n with n odd,
(3) Gal(K/k) ' Sn where Sn is the symmetric group on n letters with n ≥ 1,
(4) Gal(K/k) is non-abelian of order 8.

Assume that the abelian Brumer-Stark conjecture holds. Then, the Galois Brumer-Stark
conjecture is satisfied in the following cases

(5) Gal(K/k) is abelian,
(6) Gal(K/k) contains a normal abelian subgroup of prime index,
(7) Gal(K/k) is of order < 32 and not isomorphic to SL2(F3).

A main feature of the Galois Brumer-Stark conjecture is the fact that it decomposes
into an abelian part and a non-abelian part. We now explain this decomposition, see
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[2, §3] for details. Let Gab := G/[G,G] be the maximal abelian quotient of G and let
Kab := K [G,G] be the maximal sub-extension of K/k that is abelian over k; we have
Gal(Kab/k) = Gab. Denote by πab : G → Gab the canonical surjection induced by the
restriction to Kab. Let νab be the map from C[Gab] to C[G] defined for g̃ ∈ Gab by

νab(g̃) :=
1

sG

∑
πab(g)=g̃

g

where the sum is over all elements g ∈ G whose image by πab is equal to g̃, and extended
to C[Gab] by linearity. Note that the image of νab is in the center of C[G] and that the
map πab ◦ νab is the identity on C[Gab]. We have

θK/k,S = νab(θKab/k,S) + θ(>1)

K/k,S

where
θ(>1)

K/k,S :=
∑
χ∈Ĝ
χ(1)>1

LK/k,S(0, χ)eχ̄.

We call θ(>1)

K/k,S the non-linear Brumer-Stickelberger element (associated to K/k and S).
Using the properties of θKab/k,S , one can prove easily that the Integrality Conjecture is
equivalent to the fact that dG(σ − nσ) θ(>1)

K/k,S ∈ Z[G] for all σ ∈ G and nσ ∈ Z such
that σ − nσ ∈ AnnZ[G](µK), see [2, Prop. 3.8] for details; in particular, it implies that
dGwK θ

(>1)

K/k,S ∈ Z[G]. Thanks to this decomposition of the Brumer-Stickelberger element,
we have the following result that shows that the Galois Brumer-Stark conjecture splits
into an abelian part, corresponding to the abelian Brumer-Stark conjecture, and a non-
abelian part.

Theorem 2.2 ([2, Th. 6.3]). Assume that BS(Kab/k, S) holds and that the Integrality
Conjecture is satisfied for the extensionK/k and the set of places S. Then, BSGal(K/k, S)

is satisfied if, for any fractional ideal A of K, the ideal AdGwK θ(>1)

K/k,S is principal and ad-
mits a generator β ∈ K◦ such that K(β1/wK ) is a strong central extension of K/k.

3. The Refined Galois Brumer-Stark conjecture

In this section, we introduce a refined version of the Galois Brumer-Stark conjecture.
For that, we start with Theorem 2.2 and the remark before it to deduce that the Galois
Brumer-Stark conjecture is equivalent to the abelian Brumer-Stark conjecture and the
following two assertions
(A1) dG(σ − nσ) θ(>1)

K/k,S ∈ Z[G] for all σ ∈ G and nσ ∈ N such that σ − nσ ∈
AnnZ[G](µK),

(A2) for any fractional ideal A of K, the ideal AdGwK θ(>1)

K/k,S is principal and admits a
generator β ∈ K◦ such that K(β1/wK ) is a strong central extension of K/k.

An interesting consequence of (A1) is the following fact. Write

dG θ
(>1)

K/k,S =
∑
g∈G

tg g

with tg ∈ Q. Assume that there exists h ∈ G such that th = 0. For g ∈ G, use (A1)
with σ := gh−1. It follows that nσtg ∈ Z. On the other hand, we have wKtg ∈ Z since
dGwK θ

(>1)

K/k,S ∈ Z[G]. But, nσ and wK are relatively prime and thus tg ∈ Z. We have
proved the following result.
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Lemma 3.1. Assume that (A1) holds and that there is at least one coefficient in the ex-
pression of θ(>1)

K/k,S as an element of Q[G] that is equal to zero. Then, we have dG θ
(>1)

K/k,S ∈
Z[G]. �

Of course, a similar reasoning could be done for the abelian Brumer-Stickelberger
element and, in fact, this kind of relation for the abelian Brumer-Stickelberger element
was first noticed by Hayes [7]. The point here is that, contrary to the abelian case,
there are many situations where the non-linear Brumer-Stickelberger element has a zero
coefficient. Indeed, by definition, it is a linear combination of the idempotents of the
non-linear irreducible characters of G, and, by a result of Burnside [9, Th. 3.14], if χ
is a non-linear irreducible character of G, there exists g ∈ G such that χ(g) = 0. The
following lemma gives an equivalent condition for all the non-linear irreducible characters
to take the value zero on the same element of G and thus for Lemma 3.1 to apply.

Lemma 3.2. Let σ ∈ G. Then, χ(σ) = 0 for all non-linear irreducible characters of G
if and only if |[σ]| = |[G,G]| where [σ] denote the conjugacy class of σ in G.

Proof. Let φ be the characteristic function of [σ]. Then, φ is a class function and thus
we have

φ =
∑
χ∈Ĝ

λχ χ.

where
λχ =

1

|G|
∑
g∈G

χ̄(g)φ(g) =
|[σ]|
|G|

χ̄(σ).

In particular, we have λχ = 0 if and only if χ(σ) = 0. Therefore, χ(σ) = 0 for all
non-linear irreducible characters of G if and only if φ is a linear combination of the
linear irreducible characters of G. The linear irreducible characters of G are exactly the
irreducible characters that factorize through the canonical surjection πab : G → Gab.
Thus, φ is a linear combination of the linear irreducible characters of G if and only if
there exists a function ψ : Gab → {0, 1} such that φ = ψ ◦ πab. It is immediate to see
that the function ψ is the characteristic function of πab(σ). Hence, χ(σ) = 0 for all
non-linear irreducible characters of G if and only if [σ] = [G,G]σ. Let gσg−1 ∈ [σ], then
gσg−1 = (gσg−1σ−1)σ ∈ [G,G]σ, thus [σ] ⊂ [G,G]σ. It follows that [σ] = [G,G]σ if and
only if |[σ]| = |[G,G]σ| = |[G,G]| and the proof is complete. �

Lemma 3.2 provides a quick way to check whether, for a given group G, there exists
σ ∈ G such that χ(σ) = 0 for all non-linear irreducible characters of G. Using the GAP
system [4], we find that it is the case for 81 678 classes out of the 91 356 isomorphism
classes of non-abelian groups of even order ≤ 500, that is about 85%. So, for extensions
K/k with Galois group isomorphic to one of these groups, the assertion (A1) implies that
dG is a suitable denominator for the non-linear Brumer-Stickelberger element. Observe
furthermore that this is also the case for other groups such as SL2(F3), see next section,
and for groups with a normal abelian subgroup of prime index, see [2, §7]. Indeed, by
a result of Tate, see [15, p. 71], if the character χ is not the inflation of a totally odd
character of a Galois CM sub-extension, we have LK/k,S(0, χ) = 0 and thus it does not
contribute to θ(>1)

K/k,S . Hence, the condition tested by Lemma 3.2 is stronger than what
is actually needed for Lemma 3.1 to apply. With so many occurrences where (A1) is
equivalent to the stronger assertion that dG θ

(>1)

K/k,S is integral, it seems reasonable to
conjecture that this stronger assertion is in fact true in general. With that in mind, it
seems logical to further conjecture that the factor wK may not be necessary in assertion
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(A2) and that A
dG θ

(>1)

K/k,S is principal and admits a generator γ ∈ K◦. Then, up to a
root of unity, γ = β1/wK and the property that K(β1/wK ) is a strong central extension
of K/k is automatically satisfied. This leads us to the following stronger conjecture.

Conjecture (The Refined Galois Brumer-Stark conjecture RBSGal(K/k, S)).
Let K/k be a Galois extension of number fields and let S be a finite set of places of k
that contains the infinite places and the finite places that ramify in K with |S| ≥ 2. Then
BS(Kab/k, S) holds, we have dG θ

(>1)

K/k,S ∈ Z[G] and, for any fractional ideal A of K, the

ideal AdG θ
(>1)

K/k,S is principal and admits a generator in K◦.

We now discuss some evidence for this conjecture. First, using Theorem 2.2, it is
immediate to prove that the Refined Galois Brumer-Stark conjecture implies the Galois
Brumer-Stark conjecture. It is also obvious that it implies the abelian Brumer-Stark
conjecture.

Proposition 3.3. RBSGal(K/k, S) implies BSGal(K/k, S). �

Furthermore, in all cases listed in Theorem 2.1 where the Galois Brumer-Stark con-
jecture is satisfied or implied by the abelian Brumer-Stark conjecture, the same is true
for the Refined Galois Brumer-Stark conjecture. That is, we have the following result.

Theorem 3.4. The Refined Galois Brumer-Stark conjecture is satisfied in the following
cases

(1) Gal(K/k) is a non-abelian simple group,
(2) Gal(K/k) ' D2n where D2n is the dihedral group of order 2n with n odd,
(3) Gal(K/k) ' Sn where Sn is the symmetric group on n letters with n ≥ 1,
(4) Gal(K/k) is non-abelian of order 8.

Assume that the abelian Brumer-Stark conjecture holds. Then, the Refined Galois Brumer-
Stark conjecture is satisfied in the following cases

(5) Gal(K/k) is abelian,
(6) Gal(K/k) contains a normal abelian subgroup of prime index,
(7) Gal(K/k) is of order < 32 and not isomorphic to SL2(F3).

Proof. First, note that in all cases for which Proposition 6.5 of [2] applies and re-
duces BSGal(K/k, S) to BS(Kab/k, S), we also have that RBSGal(K/k, S) reduces to
BS(Kab/k, S) since then the non-linear Brumer-Stickelberger element is zero. Cases (1),
(2) and (3) follow from this observation. Case (5) is trivial. For case (6), we see that
dG θ

(>1)

K/k,S is integral using the expression given by Theorem 7.1 of [2] and the results
of Proposition 7.3, ibid. A close look at the proof of Theorem 7.4, ibid., shows that
dG θ

(>1)

K/k,S annihilates the class group of K and that one can find a generator in K◦. For
case (4), using case (6), we reduce its validity to that of BS(Kab/k, S), as it is done
in Proposition 7.7, ibid., and use similar reasoning to prove that BS(Kab/k, S) holds in
that case. Finally, for case (7), we proceed as in the remark after Theorem 5.2, ibid., and
check that for all the extensions considered one can reduce to one of the other cases. �

Our last piece of evidence for the Refined Galois Brumer-Stark conjecture is in the
case of SL2(F3)-extensions, that is extensions with Galois group isomorphic to SL2(F3),
studied in the rest of this paper. These extensions splits naturally into two different
types, see Section 4.2, and we prove in Section 5 that the local version of the Refined
Galois Brumer-Stark conjecture, stated below, holds for SL2(F3) extensions of type I at
p for p odd. Finally, in Section 6, we prove using computations that the Refined Galois
Brumer-Stark conjecture is true for 59 extensions K/Q with Gal(K/Q) ' SL2(F3).
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Conjecture (The local Refined Galois Brumer-Stark conjecture RBS
(p)
Gal(K/k, S)).

Let K/k be a Galois extension of number fields and let S be a finite set of places of k that
contains the infinite places and the finite places that ramify in K with |S| ≥ 2. Then,
the local abelian Brumer-Stark conjecture at p for the extension Kab/k and the set of
places S holds, we have dG θ

(>1)

K/k,S ∈ Zp[G] and, for any fractional ideal A of K whose

class in ClK has p-power order, the ideal AdG θ
(>1)

K/k,S is principal and admits a generator
in K◦.

For the definition of the local abelian Brumer-Stark conjecture, see [6]. One checks
readily that the Refined Galois Brumer-Stark conjecture is equivalent to the local Refined
Galois Brumer-Stark conjecture at p for all primes p.

4. Extensions with Galois group isomorphic to SL2(F3)

In the rest of the paper, we focus on the case of extensions K/k with Galois group
isomorphic to SL(F3). We start with some considerations on the group SL2(F3) itself.

4.1. The group SL2(F3). The group SL2(F3) is the group of 2 × 2 matrices with co-
efficients in F3 and of determinant 1. It is of order 24 and is generated by the two
matrices

a :=

(
1 −1
1 0

)
and b :=

(
0 1
−1 0

)
of order 6 and 4 respectively. Let c = a3 = b2. It is the only element of order 2 in
SL2(F3) and, in fact, it generates the center of SL2(F3) and we have SL2(F3)/〈c〉 ' A4,
the alternating group on 4 letters. The commutator subgroup of SL2(F3) is isomorphic
to the quaternion group, and is generated by b and the commutator [a, b]. We have
SL(F3)ab ' Z/3Z with the quotient being generated by the image of a. For x ∈ SL2(F3),
denote by [x] its conjugacy class. Depending on context, we will also view [x] as the
group ring element obtained by summing all the conjugates of x. The group SL2(F3) has
seven conjugacy classes: [1] and [c] of cardinality 1, [a], [a2], [a4] and [a5] of cardinality 4,
and [b] of cardinality 6. Note in particular that, by Lemma 3.2, there a no σ ∈ SL2(F3)
such that χ(σ) = 0 for all non-linear irreducible characters χ of SL2(F3).

The elements of order 6 will play a crucial role in our study. The relations they satisfy
are described by the following result which can be proved by lengthy hand computations
using matrices or, more conveniently, using the GAP system [4].

Proposition 4.1. Define the following elements of SL2(F3)

a0 := a, a1 := ba0b
−1, a2 := a0a1a

−1
0 , a3 := a0a2a

−1
0 .

Then, the elements ai, i = 0, 1, 2, 3, are of order 6 and form a conjugacy class in SL2(F3).
The other elements of order 6 in SL2(F3) are a5

i , i = 0, 1, 2, 3. Furthermore, for all
i ∈ {0, 1, 2, 3}, there exists a 3-cycle πi such that, for all j ∈ {0, 1, 2, 3} with j 6= i, we
have

aiajaπi(j) = e.

The 3-cycles are π0 = (1, 3, 2), π1 = (0, 2, 3), π2 = (0, 3, 1), and π3 = (0, 1, 2). �

These properties characterize the group SL2(F3). Indeed, we have the following pre-
sentation

SL2(F3) ' 〈a0, a1, a2, a3 | a6
0 = e, a3

j = a3
0, a0ajaπ0(j) = e, j = 1, 2, 3〉.

Thanks to Proposition 4.1, we can deduce further relations between the ai’s.



8 GAELLE DEJOU AND XAVIER-FRANÇOIS ROBLOT

Lemma 4.2. For i, j ∈ {0, 1, 2, 3} with i 6= j, we have

a2
i a

2
j = aπj(i) and aia4

j = a4
i aj = a2

πi(j)
.

Proof. For the first assertion, we have a2
i a

2
j = a2

i cca
2
j = a5

i a
5
j = (ajai)

−1 = (a5
πj(i))

−1 =

aπj(i). The other assertion is proved in a similar way. �

The two next lemmas give relations in the group ring Q[SL2(F3)] that will be used in
the next section.

Lemma 4.3. We have (2 + [a]− [a2])(1− c)(1 + a2
0 + a4

0) = 0.

Proof. We use repeatedly Lemma 4.2. First, we compute( 3∑
i=1

ai −
3∑
i=1

a2
i

)
(1 + a2

0 + a4
0) =

3∑
i=1

ai +
3∑
i=1

aia
2
0 +

3∑
i=1

aia
4
0 −

3∑
i=1

a2
i −

3∑
i=1

a2
i a

2
0 −

3∑
i=1

a2
i a

4
0

=
3∑
i=1

ai +
3∑
i=1

aia
2
0 +

3∑
i=1

a2
i −

3∑
i=1

a2
i −

3∑
i=1

ai −
3∑
i=1

aia
2
0 = 0.

Now, we have

(2+[a]− [a2])(1− c)(1 + a2
0 + a4

0)

=

(
2 +

3∑
i=0

ai −
3∑
i=0

a2
i

)
(1− c)(1 + a2

0 + a4
0)

= (1− c)
(

2 + 2a2
0 + 2a4

0 +
3∑
i=0

ai(1 + a2
0 + a4

0)−
3∑
i=0

a2
i (1 + a2

0 + a4
0)

)

= (1− c)
(

1 + a0 + a2
0 + a3

0 + a4
0 + a5

0 +
( 3∑
i=1

ai −
3∑
i=1

a2
i

)
(1 + a2

0 + a4
0)

)
= (1− c)(1 + a0 + a2

0 + a3
0 + a4

0 + a5
0) = (1− c)(1 + c)(1 + a0 + a2

0) = 0. �

The next lemma is proved by similar methods. We leave the proof to the reader.

Lemma 4.4. We have

(1− c)(1 + a2
2 + a4

2) =
1

2
(1− c)

(
(1 + a2

0 + a4
0)(1− a2 + a2

2 + a2
3)

+ (1 + a2
1 + a4

1)(1− a2 + a2
2 − a3)

)
. �

The group SL2(F3) has 3 irreducible linear representations, 3 irreducible representa-
tions of dimension 2 and 1 irreducible representation of dimension 3. The group of linear
representations is generated by λ with

λ(a) := j and λ(b) := 1

where j := e2iπ/3 is a primitive third root of unity. The 3-dimensional irreducible
representation of SL2(F3) is trivial on c, and thus will play no role in this paper as
we will see in the next subsection. Let ρ be the 2-dimensional irreducible representation
of SL2(F3) defined by

ρ(a) :=

(
0 −1
1 1

)
and ρ(b) :=

(
j2 j2

1 −j2

)
.
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The other two irreducible 2-dimensional representations are λρ and λ2ρ. The eigenvalues
of the representations ρ, λρ and λ2ρ are given (with multiplicity) in the following table.

e c a a2 a4 a5 b

ρ 1, 1 −1,−1 −j,−j2 j, j2 j, j2 −j,−j2 −i, i
λρ 1, 1 −1,−1 −1,−j2 1, j 1, j2 −1,−j −i, i
λ2ρ 1, 1 −1,−1 −1,−j 1, j2 1, j −1,−j2 −i, i

(4.1)

Denote by χ the character of ρ. It is a rational character whereas the characters λχ and
λ2χ of λρ and λ2ρ respectively satisfy λχ = λ2χ.

4.2. SL2(F3)-extensions. Let K/k be a Galois extension of number fields with Galois
group G isomorphic to SL2(F3). We identify from now on G with SL2(F3). We take
S to be minimal, that is S is the set of the infinite places of k and of the finite places
that ramify in K/k. Assume that K is totally complex and k is totally real, otherwise
θK/k,S = 0 and the conjecture is trivially true. The element c is the only element of
order 2 in G, thus c is the unique complex conjugation and K is a CM-field. Denote by
K+ := K〈c〉 the maximal totally real subfield of K, and by F and E the subfields of K
fixed respectively by a2 and b (see the field diagram below). Note that E is totally real
and that F is a CM-field. Denote by F+ := F 〈c〉 the maximal totally real subfield of F .
We set A := 〈a〉 = Gal(K/F+) and B := 〈b〉 = Gal(K/E).

K

K+

2

E

2

F

3

Kab

2

F+

2

3

k

3
4

We start by finding an expression for the Brumer-Stickelberger element. First, ob-
serve that Kab/k is of degree 3, thus Kab is totally real and θKab/k,S = 0. Now, let ψ
be a non-trivial irreducible character of G. By [15, Prop. I.3.4], the rank of vanishing
of LK/k(ψ, s) at s = 0 is equal to [k : Q] dimV

〈c〉
ψ where ρψ : G → GL(Vψ) is an irre-

ducible representation of character ψ. In particular, if ψ is the 3-dimensional irreducible
character of G, then, as noted in the previous subsection, ψ is trivial on c, and thus
LK/k,S(0, ψ) = 0. It follows that

θ(>1)

K/k,S = LK/k,S(0, χ) eχ̄ + LK/k,S(0, λχ) eλχ + LK/k,S(0, λ2χ) e
λ2χ

= LK/k,S(0, χ) eχ + LK/k,S(0, λχ) eλχ + LK/k,S(0, λχ) eλχ

= LK/k,S(0, χ) eχ + 2 Re(LK/k,S(0, λχ) eλχ).

We now express the element in terms of the values of the primitive L-functions LK/k(0, χ)
and LK/k(0, λχ). Note that, by the above formula for the rank of vanishing at s = 0,
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these values are non-zero. Recall that, for ψ a character of G, we have

LK/k,S(s, ψ) = LK/k(s, ψ)
∏
p∈S0

Ep(s, ψ)

where S0 is the set of prime ideals contained in S and, for p a prime ideal, we have set

Ep(s, ψ) = 1−Np−s det
(
σP|V

IP
ψ

)
with P a fixed prime ideal of K above p, σP the Frobenius automorphism of P in G
and IP the inertia group of P. By our choice of S, p is ramified in K and thus IP is
non-trivial. Looking at table (4.1), we find that in all cases V IP

χ = {0}, thus Ep(s, χ) = 1

for all p ∈ S0 and LK/k,S(s, χ) = LK/k(s, χ). In the same way, we find that V IP
λχ = {0},

and thus Ep(s, λχ) = 1, unless IP is conjugate to 〈a2〉. Observe that IP is conjugate to
〈a2〉 if and only if the ramification index of P in K/k is 3 since the subgroups of G of
order 3 are exactly the conjugate groups of 〈a2〉. Assume that it is the case. Replacing
P by one of its conjugates, we can assume, without loss of generality, that IP = 〈a2〉.
The quotient DP/IP, where DP is the decomposition group of P, is a cyclic group. Thus
DP is either 〈a2〉 or 〈a〉. If DP = 〈a2〉, then the Frobenius σP acts trivially on V

IP
χ ,

thus Ep(s, λχ) = 1−Np−s and it vanishes at s = 0. If DP = 〈a〉, then the Frobenius is
either a or a5. It acts as an element of order 2 on the 1-dimensional vector space V IP

χ

and thus it acts as the multiplication by −1. It follows that Ep(s, λχ) = 1 +Np−s and
Ep(0, λχ) = 2.

With these considerations in mind, for p a prime ideal in S0, we define a quantity δp
in the following way. Let ep and fp be the ramification index and inertia degree of p in
K/k, we set

δp :=


1 if ep 6= 3,

0 if ep = 3 and fp = 1,
2 if ep = 3 and fp = 2.

We set δK/k :=
∏

p∈S0
δp. We have proved the following proposition.

Proposition 4.5. We have

θKab/k,S = 0 and θ(>1)

K/k,S = LK/k(0, χ) eχ + 2δK/k Re(LK/k(0, λχ) eλχ). �

Remark. Note that one consequence of this expression is that the coefficient of b in
θ(>1)

K/k,S is always zero and thus, by Lemma 3.1, the Galois Brumer-Stark conjecture, or
more precisely the Integrality Conjecture, would imply that dG θ

(>1)

K/k,S ∈ Z[G].

In view of the expression for θ(>1)

K/k,S given by Proposition 4.5, we distinguish between
two types of extensions K/k. Type I extensions are the extensions such that there is a
prime ideal P of K that is totally split in F/k and ramified in K/F , for these we have
δK/k = 0; the other extensions are of type II and satisfy δK/k 6= 0. We will prove in the
next section that the local Refined Galois Brumer-Stark conjecture is true at p for all
odd primes p for type I extensions.

Let ν be the linear character of A defined by ν(a) = −j2 and let φ be the linear
character of B defined by φ(b) = i. The characters ν and φ generate respectively the
group of characters of A and of B. We compute that

χ = IndGB(φ)− IndGA(ν3) and λχ = IndGB(φ)− IndGA(ν).



THE GALOIS BRUMER-STARK CONJECTURE FOR SL2(F3)-EXTENSIONS 11

By the properties of Artin L-functions, this implies that

LK/k(s, χ) =
LK/E(s, φ)

LK/F+(s, ν3)
and LK/k(s, λχ) =

LK/E(s, φ)

LK/F+(s, ν)
.

Observe that

ζK(s) = ζK+(s) · LK/E(s, φ) · LK/E(s, φ3) = ζK+(s) · LK/E(s, φ)2.

Indeed, IndGB(φ) = IndGB(φ3) thus the Artin L-functions associated to φ and φ3 are equal.
By the formula for the leading term at s = 0 of Dedekind zeta functions, see for example
[15, Cor. I.1.2], we obtain that

LK,E(0, φ)2 = lim
s→0

ζK(s)

ζK+(s)
=

hKRK
hK+RK+

.

Here, we used the fact that wK = 2 since Kab is totally real. Now, the kernel of ν3 is
the subgroup 〈a2〉 of A and therefore

LK/F+(s, ν3) = LF/F+(s, η)

where η is the non-trivial character of the quadratic extension F/F+. It follows that

LF/F+(0, η) = lim
s→0

ζF (s)

ζF+(s)
=

hFRF
hF+RF+

.

Putting everything together, we have proved the following result.

Theorem 4.6. We have

θ(>1)

K/k,S = ±
( hKRK
hK+RK+

)1/2
(
hF+RF+

hFRF
eχ + 2δK/k Re

(
LK/F+(0, ν)−1 eλχ

))
. �

Remark. Using similar methods, one can prove that

|LK/F+(0, ν)|2 =
hKRK
hK+RK+

hF+RF+

hFRF
.

However, there does not appear to be a way to deduce an explicit expression for LK/F+(0, ν).

One last simplification to the formula appearing in Theorem 4.6 is to compute the
quotients of regulators.

Lemma 4.7. If all the units of K are totally real, then we have
RK
RK+

= 211 and
RF+

RF
= 23.

Otherwise, the units of K that are not totally real are totally imaginary and we have
RK
RK+

= 210 and
RF+

RF
= 22.

Proof. It follows from [17, Prop. 4.16] that
RK
RK+

=
1

QK
211 and

RF
RF+

=
1

QF
23

where QK := (UK : UK+) and QF := (UF : UF+). It is also known, see ibid., that
QK , QF ∈ {1, 2} with QK = 2, resp. QF = 2, if and only if the map ε 7→ ε/ε̄ from UK to
{±1}, resp. UF to {±1}, is surjective. Assume that QK = 2 and let ε ∈ UK be such that
ε is not totally real. Then ε/ε̄ = −1 and ε is totally imaginary. Furthermore, NK/F (ε)
is also totally imaginary and thus QF = 2. The result follows in that case. Assume now
that QK = 1. Then UK = UK+ and the units of K are totally real. Since UF ⊂ UK , it
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follows that UF = UK ∩F = UK+ ∩F = UF+ and QF = 1. This proves the result in the
second case and concludes the proof. �

Remark. Since the character χ is rational, the value LK/k(0, χ) is also rational, that is
we have ( hKRK

hK+RK+

)1/2hF+RF+

hFRF
∈ Q.

Therefore, using Lemma 4.7, we find that the p-adic valuation of hK/hK+ is even for
p odd, and the 2-adic valuation of hK/hK+ is odd if all the units of K are totally real
and even otherwise. We will give in passing an algebraic proof of the statement for odd
primes p in the next section.

To conclude this section, we compute the expressions of the needed idempotents, We
have

eχ =
2

24

(
2− 2c+ [a]− [a2]− [a4] + [a5]

)
=

1− c
12

(
2 + [a]− [a2]

)
(4.2)

since [a4] = [ca] = c[a] and [a5] = [ca2] = c[a2]. In the same way, we find that

eλχ =
1− c

12

(
2 + j2[a]− j[a2]

)
.

5. The Conjecture for SL2(F3)-extensions of type I

In this section, we prove the following result.

Theorem 5.1. Let K/k be a Galois extension of number fields with Galois group iso-
morphic to SL2(F3) and let S be the set of infinite places of k and of the finite places that
ramify in K/k. Assume that K/k is of type I. Then, the local Refined Galois Brumer-
Stark conjecture RBS

(p)
Gal(K/k, S) holds for all odd primes p.

Recall that type I extensions are the ones for which where there exists a prime ideal
P of K that is totally split in F/k and totally ramified in K/F . For these extensions,
we have δK/k = 0 and only the character χ contributes in the definition of the non-linear
Brumer-Stickelberger element. The order of [G,G] is 8, and the conjugacy classes of G
are of size 1, 4 or 6, thus dG = 24. From this and the results of the previous section, we
get the following expression

dG θ
(>1)

K/k,S = ±2ε
( hK
hK+

)1/2 hF+

hF
(1− c)

(
2 + [a]− [a2]

)
(5.3)

for some ε ∈ 1
2N.

Let p be an odd prime number. For M a finite abelian group, we denote by M{p} :=
M ⊗Z Zp its p-part. In order to prove Theorem 5.1, we study the structure of ClK{p}.
From now on, we use the additive notation to denote the action of group rings on class
groups. For L a subfield of K, denote by ιK/L : IL → IK the map that sends an ideal a
of L to the ideal aOK of K and by NK/L : IK → IL the norm map. By abuse, we use
the same notation for the induced maps on class groups. Let C0 ∈ ClL, then we have
(NK/L ◦ ιK/L)(C0) = [K : L] C0. It follows that ιK/L(ClL{p}) ' ClL{p} if p does not
divide the degree [K : L]. If C ∈ ClK , then we have (ιK/L ◦NK/L)(C) =

∑
h∈H h C where

H := Gal(K/L).
Define Cl−K and Cl−F to be respectively the kernels of the norm maps NK/K+ : ClK →

ClK+ andNF/F+ : ClF → ClF+ . Let C ∈ Cl−K . Observe that (1+c) C = ιK/K+(NK/K+(C)) =

0 and therefore c C = −C. Similarly, c acts as the multiplication by −1 on Cl−F . The
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extensions K/K+ and F/F+ are ramified at the infinite places, thus the norm maps on
class groups are surjective by Class Field theory and we have the following result.

Lemma 5.2. We have |Cl−K | = hK/hK+ and |Cl−F | = hF /hF+. �

It is easy to see then (1−c) ClK{p} is included in Cl−K{p} and similarly (1−c) ClF {p} ⊂
Cl−F {p} . For the inclusions in the other direction, we have the following lemma.

Lemma 5.3. We have Cl−K{p} = (1 − c) ClK{p} = ((1 − c) ClK){p}. The same result
holds with K replaced by F .

Proof. Let C ∈ Cl−K{p}. Then, as noted above, we have (1+c) C = 0. But,H1(〈c〉,ClK{p})
is trivial since the orders of the groups 〈c〉 and ClK{p} are relatively prime. Therefore,
C ∈ (1 − c) ClK{p} and the equality Cl−K{p} = (1 − c) ClK{p} follows. It is immedi-
ate to see that (1 − c) ClK{p} ⊂ ((1 − c) ClK){p}. Now, let C ∈ ((1 − c) ClK){p}, say
C = (1 − c)D with D ∈ ClK . Let C0 ∈ ClK{p} be such that 2C0 = C. Observe that
(1 − c) C = (1 − c)2D = 2(1 − c)D = 2C, thus C = (1 − c) C0 ∈ (1 − c) ClK{p} and
(1− c) ClK{p} = ((1− c) ClK){p}. The assertions for F are proved in a similar way. �

Recall that F is the subfield of K fixed by a2 = a2
0.

Lemma 5.4. We have (1 + a2
0 + a4

0) Cl−K{p} = ιK/F (Cl−F {p}) ' Cl−F {p}.
Proof. By hypothesis, the extension K/F is ramified and thus NK/L(ClK{p}) = ClF {p}
by Class Field theory. (Note that, for p 6= 3, this can be proved directly by the above
remarks without the assumption that K/F is ramified.) We have (1+a2

0 +a4
0) ClK{p} =

(ιK/F ◦ NK/F )(ClK{p}) = ιK/F (ClF {p}). Multiplying both sides by (1 − c) and using
Lemma 5.3 gives the first equality.

It remains to prove that the map ιK/F : Cl−F {p} → Cl−K{p} is injective. For p 6= 3, the
result is direct by the remarks at the beginning of the section. Assume now that p = 3.
The kernel of this map is studied in general in [5]. We adapt the methods of this article
to our case. Let H := Gal(K/F ) = 〈a2

0〉. To simplify notations, let Cl◦K and Cl◦F denote
respectively (1 − c) ClK and (1 − c) ClF . Define (Cl◦K)Hstr to be the subgroup of strong
ambiguous classes of Cl◦K , that is the group of the classes in Cl◦K generated by ideals
fixed by H. Observe that ιK/F (Cl◦F ) is a subgroup of (Cl◦K)Hstr. Furthermore, we have
the commutative diagram with exact rows and the vertical maps are the natural maps

1 // PF ∩ I1−c
F

//

��

I1−c
F

//

��

Cl◦F
//

ιK/F

��

1

1 // (PK ∩ I1−c
K )H // (I1−c

K )H // (Cl◦K)Hstr // 1

(5.4)

where PL denote the groups of principal ideals of a number field L. The map I1−c
F →

(I1−c
K )H is injective and thus we get from the Snake Lemma that Ker(ιK/F : Cl◦F →

(Cl◦K)Hstr) = Ker(ιK/F : Cl◦F → Cl◦K) is isomorphic to a subgroup of Coker(PF ∩ I1−c
F →

(PK ∩ I1−c
K )H). Now, consider the following variation of the classical exact sequence

1 // UK ∩ (K×)1−c // (K×)1−c // P 1−c
K

// 1.

Note that (K×)1−c is also the kernel of the map NK/K+ : K× → (K+)× by Hilbert’s
Theorem 90. Hence ((K×)1−c)H = (F×)1−c and, taking invariants for the action of H,
we get the short exact sequence

(F×)1−c // (P 1−c
K )H // H1(H,UK ∩ (K×)1−c).
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Let u ∈ UK ∩ (K×)1−c. Then, all conjugates of u have absolute value 1 and thus u is a
root of unity. But the only roots of unity in K are ±1 and thus UK ∩ (K×)1−c ⊂ {±1}.
It follows that H1(H,UK ∩ (K×)1−c) is trivial and the natural map P 1−c

F → (P 1−c
K )H is

surjective (it is in fact an isomorphism). Now, we have the commutative diagram with
exact rows and the vertical maps are the natural maps

1 // P 1−c
F

//

��

PF ∩ I1−c
F

//

��

Q0
//

��

1

1 // (P 1−c
K )H // (PK ∩ I1−c

K )H // Q1
// 1.

(5.5)

As noted above the map P 1−c
F → (P 1−c

K )H is surjective and thus Coker(PF ∩ I1−c
F →

(PK∩I1−c
K )H) is isomorphic to a subgroup of Coker(Q0 → Q1). Let A ∈ (PK∩I1−c

K )H , say
A = (α) = B1−c for some α ∈ K× and B ∈ IK . Note that A1−c = (α1−c) = B(1−c)2 =
(B1−c)2 = A2, hence A2 ∈ (P 1−c

K )H . Therefore, Q1 = Coker((P 1−c
K )H → (PK ∩ I1−c

K )H)

is killed by 2. Thus, the same is true for Coker(PF ∩ I1−c
F → (PK ∩ I1−c

K )H) and for
Ker(ιK/F : Cl◦F → Cl◦K). It follows that Ker(ιK/F : Cl◦F {3} → Cl◦K{3}) is injective. By
Lemma 5.3, this implies that the map ιK/F : Cl−F {3} → Cl−K{3} is injective and the proof
is complete. (In fact, since the non-trivial classes in Ker(ιK/F : Cl−F → Cl−K) have order
3, we have proved that this kernel is trivial.) �

Lemma 5.5. LetMp denote the subgroup of Cl−K{p} generated by (1 + a2
0 + a4

0) Cl−K{p}
under the action of Zp[G]. ThenMp ' Cl−F {p}2.
Proof. First, note that b(1 + a2

0 + a4
0)b−1 = 1 + a2

1 + a4
1, thus b(1 + a2

0 + a4
0) Cl−K{p} =

(1 + a2
1 + a4

1)bCl−K{p} = (1 + a2
1 + a4

1) Cl−K{p} is also contained in Mp. We prove that
Mp = (1+a2

0+a4
0) Cl−K{p}⊕(1+a2

1+a4
1) Cl−K{p}. Since it is clear that (1+a2

0+a4
0) Cl−K{p}

and (1 + a2
1 + a4

1) Cl−K{p} are isomorphic, the result will follow using Lemma 5.4.
We first prove that the sum is direct. Let C be a class in (1 + a2

0 + a4
0) Cl−K{p} ∩

(1 + a2
1 + a4

1) Cl−K{p}. Then, it is fixed by a2
0 and a2

1 and thus by c = (a2
0a

2
1)3. Thus,

2 C = (1 + c) C = 0. Hence C is trivial and the sum between (1 + a2
0 + a4

0) Cl−K{p}
and (1 + a2

1 + a4
1) Cl−K{p} is direct. To conclude the proof, it is enough to prove that

(1 +a2
0 +a4

0) Cl−K{p}⊕ (1 +a2
1 +a4

1) Cl−K{p} is stable under the action of G. It is clear by
the above that it is stable under the action of b. Now, observe that (1 + a2

0 + a4
0) Cl−K{p}

is stable under the action of a0; in fact a0 C = −C for all C ∈ (1 + a2
0 + a4

0) Cl−K{p}. Let
C ∈ (1 + a2

1 + a4
1) Cl−K{p}. Since a2 = a0a1a

−1
0 , we have a0 C ∈ (1 + a2

2 + a4
2) Cl−K{p}.

But, by Lemma 4.4 and Lemma 5.3, we get that (1 + a2
2 + a4

2) Cl−K{p} is contained in
(1 + a2

0 + a4
0) Cl−K{p}⊕ (1 + a2

1 + a4
1) Cl−K{p}. Therefore, (1 + a2

0 + a4
0) Cl−K{p}⊕ (1 + a2

1 +

a4
1) Cl−K{p} is also stable under the action of a, and thus it is stable under the action of
G = 〈a, b〉. The proof is complete. �

Lemma 5.6. The subgroupMp of Cl−K{p} is annihilated by 2 + [a]− [a2].

Proof. We have (1 + a2
0 + a4

0) Cl−K{p} = (1− c)(1 + a2
0 + a4

0) ClK{p} by Lemma 5.3 and
thus, by Lemma 4.3, 2 + [a]− [a2] kills (1 + a2

0 + a4
0) Cl−K{p}. The result follows by the

definition ofMp and the fact that 2 + [a]− [a2] is in the center of Zp[G]. �

We prove Theorem 5.1 for p ≡ 1 (mod 4). In this case, there exists i ∈ Zp with
i2 = −1 and i acts on ClK{p}. Define

e∧ :=
1 + ib

2
and e∨ :=

1− ib
2

.
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Then e∧ and e∨ are orthogonal idempotents acting on Cl−K{p}, and thus we have the
decomposition

Cl−K{p} = Cl∧K{p} ⊕ Cl∨K{p} (5.6)

where Cl∧K{p} := e∧Cl−K{p} and Cl∨K{p} := e∨Cl−K{p}. We define in the same way
M∧p := e∧Mp andM∨p := e∨Mp. Clearly, M∧p ⊂ Cl∧K{p},M∨p ⊂ Cl∨K{p}, and we have
the decomposition

Mp =M∧p ⊕M∨p . (5.7)

Observe now that (a0a
2
1)b(a0a

2
1)−1 = b3, thus the map C 7→ a0a

2
1 C yields an isomorphism

between Cl∧K{p} and Cl∨K{p} that restricts to an isomorphism between M∧p and M∨p .
In particular, there exist integers n ≥ m ≥ 0 such that |Cl∧K{p}| = |Cl∨K{p}| = pn

and |M∧p | = |M∨p | = pm. Furthermore, |Cl−K{p}| = p2n by (5.6) and, by (5.7) and
Lemma 5.5, |Cl−F {p}| = pm.

From (5.3) and Lemma 5.2, there exists u ∈ Z×p such that

dG θ
(>1)

K/k,S = upn−m(1− c)
(
2 + [a]− [a2]

)
(5.8)

and therefore dG θ
(>1)

K/Q,S ∈ Zp[G]. Now, let C ∈ ClK{p} be a class with p-power order.
Write C = C∧ + C∨ with C∧ := e∧ C and C∨ := e∨ C. Then (1 − c) C∧ ∈ Cl∧K{p} and
thus pn−m(1 − c) C∧ ∈ M∧p since (Cl∧K{p} : M∧p ) = pn−m. In the same way, we have
pn−m(1− c) C∨ ∈ M∨p . Therefore, by (5.7), we get that pn−m(1− c) C ∈ Mp. It follows

from Lemma 5.6 that dG θ
(>1)

K/k,S C = 0. Hence, for any A ∈ C, the ideal AdGθ
(>1)

K/k,S is
principal. To prove that it admits a generator that is also an anti-unit, we use the same
method as in [6, p. 299]. Since p is odd, there exists an ideal B of K and an element
η ∈ K× such that A = (η)B2 and the class of B lies in ClK{p}. Thus there exists
β ∈ K× such that B

dGθ
(>1)

K/k,S = (β). We have (1 + c) θ(>1)

K/k,S = 0 by a straightforward

modification of [2, Cor. 3.5], hence (1 − c) θ(>1)

K/k,S = 2θ(>1)

K/k,S and α := η
dGθ

(>1)

K/k,Sβ1−c is
a generator of A. Note that α1+c = 1 and therefore α is indeed an anti-unit and the
theorem is proved in this case.

We now turn to the case p ≡ 3 (mod 4). Let i ∈ Q̄p be such that i2 = −1, thus
Zp[i] ' Zp[X]/(X2 +1). Observe that b2 = c acts as −1 on Cl−K{p} by the remark before
Lemma 5.2. Therefore, one can see Cl−K{p} andMp as Zp[i]-modules with i acting via
b.

Lemma 5.7. Let Γ be an finite abelian p-group. Assume that Γ is also a Zp[i]-module.
Then there exists subgroups Γ∧ and Γ∨ of Γ such that Γ∧ ' Γ∨ and Γ = Γ∧ ⊕ Γ∨.

Proof. Let O := Zp[i]. Observe that pO is the only prime ideal of O. Let γ ∈ Γ, then
AnnO(γ) = pwO for some w ≥ 0. We have

O γ ' O/pwO = Zp/pwZp ⊕ iZp/pwZp.

We now construct the required subgroups. The ring O is principal thus, by the elemen-
tary divisors theorem, there exists γ1, . . . , γs ∈ Γ such that

Γ =
s⊕

k=1

O γk.

We define Γ∧ :=
⊕

k Zp γk and Γ∨ :=
⊕

k Zp (iγk). It is clear from the above discussion
that these groups satisfy the required properties. �
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The proof now goes along the same lines as in the case p ≡ 1 (mod 4). We apply
Lemma 5.7 to the groups Cl−K{p} and Mp to obtain the subgroups Cl∧K{p}, Cl∨K{p},
M∧p and M∨p . Let n ≥ m ≥ 0 be integers such that |Cl∧K{p}| = |Cl∨K{p}| = pn and
|M∧p | = |M∨p | = pm. The equations (5.6) and (5.7) are still verified and thus we have
|Cl−K{p}| = p2n and |Cl−F {p}| = pm.

As above, from (5.3) and Lemma 5.2, there exists u ∈ Z×p such that

dG θ
(>1)

K/k,S = upn−m(1− c)
(
2 + [a]− [a2]

)
and therefore dG θ

(>1)

K/k,S ∈ Zp[G]. Now, consider the quotient group Cl−K{p}/Mp. Its
order is p2(n−m) and, since it is also a Zp[i]-module, its exponent divides pn−m by
Lemma 5.7. Therefore, for C ∈ ClK{p} a class with p-power order, we have pn−m(1 −
c) C ∈ Mp. It follows from Lemma 5.6 that dG θ

(>1)

K/k,S C = 0. Hence, for any ideal A ∈ C,

the ideal AdGθ
(>1)

K/k,S is principal. We prove that it admits a generator that is also an
anti-unit as above. This concludes the proof of Theorem 5.1.

Remark. To conclude this section, we remark that most of the results of this section
apply also in the general case, see the proposition below. For p = 3, we need the fact
that there is prime ideal that is ramified in K/F in the proof of Lemma 5.4.

Proposition 5.8. Let K/k be a Galois extension with Galois group G isomorphic to
SL2(F3). Let p ≥ 5 be a prime number. Then, LK/k(0, χ) eχ ∈ Zp[G] and annihilates
ClK{p}. �

6. Numerical verifications

In this section, we explain how we proved the Refined Galois Brumer-Stark conjecture
for many extensions K/Q with Galois group isomorphic to SL2(F3) using the PARI/GP
system [16]. First, we say a few words on how we found these extensions. The database
[10], created by Klüners and Malle, contains tables of number fields up to degree 19. We
extracted from the database all degree 8 totally complex number fields whose normal
closure has Galois group over Q isomorphic to SL2(F3). These fields correspond to the
field F . The database contains 73 such fields. For each field, we compute its Galois
closure, corresponding to the field K. Then, we compute the class group of K; we find
that only one field K is principal and discard it since the Refined Galois Brumer-Stark
conjecture is satisfied for principal fields. For the 72 remaining fields, the class numbers
range from 8 to 87 684 589 640 025. Of these 72 fields, 43 fields correspond to extensions
of type I and 29 to extensions of type II. Fix S to be the set containing the infinite
place of Q and the prime numbers that ramify in K. Among the 43 extensions of type
I, 13 have odd class number and thus the Refined Galois Brumer-Stark conjecture for
these extensions and the set of places S follows from Theorem 5.1. For the remaining 59
fields, we prove that the Refined Galois Brumer-Stark conjecture holds using the method
explained below on an example.

Theorem 6.1. The Refined Galois Brumer-Stark conjecture RBSGal(K/Q, S) holds for
the 30 extensions K of type I with even class number listed in Table 1 and the 29 non-
principal extensions of type II listed in Table 2.

Tables 1 and 2 are given below and contains for each extension: an irreducible monic
polynomial defining a totally complex degree 8 extension F of Q whose Galois closure
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is a field K with Gal(K/Q) ' SL2(F3); the discriminant of F ; the structure of the class
group ClK as a vector (da11 , . . . , d

ar
r ) with di+1 | di such that

ClK '
r⊕
i=1

(Z/diZ)ai .

Polynomial defining F dF ClK

X8 − 2X7 + 15X6 − 22X5 + 68X4 − 37X3 + 188X2 − 269X + 599 1632 (182, 23)

X8 − 3X7 + 7X6 − 5X5 + 16X4 − 31X3 + 289X2 − 180X + 69 2772 (36, 18, 2)
X8 + 13X6 + 52X4 + 65X2 + 9 2772 (422, 24)
X8 + 18X6 + 92X4 + 112X2 + 16 1632 (842, 4, 2)

X8 −X7 + 8X6 + 8X5 + 32X4 + 66X3 + 128X2 + 204X + 179 72 · 732 (182, 2)
X8 + 20X6 + 42X4 + 24X2 + 4 26 · 312 (182, 6, 3)
X8 + 12X6 + 42X4 + 40X2 + 4 26 · 312 (782, 2)

X8 − 4X7 + 23X6 − 34X5 + 74X4 + 102X3 + 465X2 + 686X + 296 3492 (602, 12, 6)
X8 − 3X7 + 16X6 − 35X5 + 153X4 − 325X3 + 1148X2 + 841X + 571 2772 (420, 210, 2)

X8 + 27X6 + 207X4 + 378X2 + 81 1632 (168, 84, 4, 24)
X8 − 4X7 + 4X6 − 47X5 + 194X4 − 95X3 + 169X2 − 1582X + 1960 34 · 1272 (252, 126, 6)
X8 − 2X7 + 8X6 + 6X5 − 106X4 − 6X3 + 260X2 + 325X + 502 192 · 372 (252, 126, 6, 22)

X8 −X7 + 19X6 + 11X5 + 291X4 − 37X3 + 227X2 + 1523X + 1557 1632 (1262, 62, 2)
X8 − 3X7 + 19X6 − 84X5 + 216X4 − 699X3 + 1930X2 − 36X + 751 32 · 612 (120, 60, 42, 22)

X8 + 15X6 + 47X4 + 38X2 + 9 6072 (3902, 22)
X8 + 30X6 + 252X4 + 432X2 + 144 32 · 612 (2102, 25)
X8 + 12X6 + 44X4 + 52X2 + 9 28 · 432 (1262, 22)

X8 −X7 + 28X6 + 12X5 + 467X4 − 13X3 + 753X2 + 2929X + 2996 1632 (1262, 63, 3)
X8 + 17X6 + 60X4 + 29X2 + 1 34 · 792 (468, 234, 6, 25)

X8 + 57X6 + 1017X4 + 5508X2 + 1296 312 · 432 (602, 122, 3)
X8 + 28X6 + 204X4 + 148X2 + 25 28 · 34 · 72 (2102, 6, 2)

X8 −X7 + 13X6 + 41X5 + 233X4 − 423X3 + 3197X2 − 1768X + 2836 8532 (2102, 62, 2)
X8 + 63X6 + 1127X4 + 4802X2 + 2401 1632 (2184, 1092, 4, 24)

X8 + 17X6 + 78X4 + 53X2 + 4 34 · 1272 (46622, 6, 2)
X8 + 21X6 + 108X4 + 81X2 + 9 32 · 132 · 192 (2102, 6, 26)

X8 − 2X7 + 2X6 − 66X5 + 157X4 − 554X3 + 1827X2 − 1831X + 5575 17772 (842, 28, 14, 2)
X8 + 30X6 + 240X4 + 280X2 + 16 72 · 972 (7742, 63)
X8 + 44X6 + 188X4 + 184X2 + 16 192 · 372 (1116, 558, 63)
X8 + 40X6 + 268X4 + 560X2 + 324 26 · 72 · 192 (11102, 6)
X8 + 57X6 + 882X4 + 4229X2 + 1296 34 · 6012 (587762, 12, 23)

Table 1. Extensions of type I

We illustrate our method of verification using an example of type II. The field F is
the extension of Q generated by a root of the irreducible degree 8 polynomial

X8 + 45X6 + 707X4 + 4430X2 + 8649.

The field K is the Galois closure of F and it is generated over Q by a root of the
irreducible polynomial

X24 − 9X23 + 118X22 − 566X21 + 3283X20 − 13171X19 + 50621X18 − 543733X17

− 1072192X16 + 2804188X15 + 60060688X14 + 135957502X13 − 452543574X12

−2828250562X11−2262669513X10 +7810609167X9 +8314237510X8 +15300973158X7

+ 292802218851X6 + 872090144149X5 + 378022263593X4 − 1912472285563X3
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Polynomial defining F dF ClK

X8 +X6 − 3X5 − 3X4 − 6X3 + 4X2 + 16 32 · 612 (23)

X8 −X7 − 10X6 + 32X5 + 43X4 − 245X3 + 393X2 − 192X + 68 8532 (112)
X8 − 3X7 + 6X5 − 6X4 + 8X3 + 162X2 + 284X + 173 9372 (192)

X8 + 19X6 + 116X4 + 255X2 + 169 132 · 732 (33, 11)
X8 + 15X6 + 63X4 + 54X2 + 9 32 · 612 (52, 26, 24)

X8 + 19X6 − 12X5 + 96X4 − 189X3 + 130X2 − 687X + 871 32 · 612 (76, 38, 24)
X8 + 26X6 + 208X4 + 520X2 + 144 2772 (1402, 43)
X8 + 25X6 + 187X4 + 506X2 + 441 23112 (952)

X8 −X7 + 41X6 + 53X5 + 346X4 + 1018X3 + 1475X2 + 478X + 2425 32 · 612 (182, 25)
X8 + 30X6 + 143X4 + 205X2 + 49 132 · 1992 (159, 53)

X8 −X7 + 10X6 + 50X5 + 92X4 − 12X3 + 842X2 − 202X + 361 5472 (1642, 4, 2)
X8 + 20X6 + 140X4 + 396X2 + 361 28 · 432 (144)
X8 + 29X6 + 263X4 + 774X2 + 81 28032 (1172)
X8 + 22X6 + 47X4 + 23X2 + 1 192 · 372 (924, 154, 24)

X8 − 3X7 + 29X6 − 66X5 + 375X4 − 738X3 + 3084X2 + 2050X + 2027 2772 (1612, 806, 2)
X8 + 19X6 + 79X4 + 98X2 + 9 72 · 1092 (1302, 434, 22)

X8 −X7 − 7X6 + 24X5 + 363X4 − 1144X3 + 518X2 − 244X + 1471 72 · 972 (546, 182, 23)
X8 + 25X6 + 167X4 + 330X2 + 49 37272 (2072)

X8 + 54X6 + 828X4 + 3024X2 + 1296 1632 (592, 296, 8, 4, 23)
X8 − 3X7 + 42X6 − 97X5 + 701X4 − 1329X3 + 6436X2 + 3965X + 5215 2772 (140, 70, 142, 23)

X8 + 34X6 + 284X4 + 752X2 + 400 5472 (9002, 4, 2)
X8 − 2X7 + 30X6 − 5X5 − 192X4 + 56X3 + 339X2 + 1411X + 2843 192 · 372 (3108, 518, 23)

X8 + 19X6 + 113X4 + 204X2 + 16 312 · 432 (1974, 658, 24)
X8 + 65X6 + 1300X4 + 8125X2 + 5625 2772 (5402, 42, 26)
X8 + 45X6 + 707X4 + 4430X2 + 8649 372 · 1512 (8769, 2923)

X8 − 2X7 + 32X6 − 93X5 + 267X4 − 1782X3 + 9004X2 − 8936X + 14864 34 · 72 · 192 (8042, 4, 2)
X8 + 20X6 + 130X4 + 280X2 + 36 26 · 72 · 192 (1982, 6, 32)

X8 + 90X6 + 2300X4 + 14000X2 + 10000 1632 (36862, 27)
X8 + 51X6 + 639X4 + 2538X2 + 2025 5472 (11182, 27)

Table 2. Extensions of type II

− 2264522611330X2 + 1176633991400X + 2202625519192.

The discriminant of K is 3716 15116, thus we take S = {∞, 37, 151} where ∞ is the
infinite place of Q. We have

ClK ' Z/8 769Z× Z/2 923Z. (6.9)

Observe that 8 769 = 3 · 37 · 79 and 2 923 = 37 · 79. The first step is to compute the
expression of θ(>1)

K/k,S . For that, we use the expression given by Theorem 4.6. We have
hK = 25 631 787, hK+ = 3, hF = 79 and hF+ = 1. One checks that some units of K are
not totally real and thus, using Lemma 4.7, we compute that

hKRK
hK+RK+

= 93 5362 and
hFRF
hF+RF+

= 316.

It remains to compute the value of LK/F+(0, ν). For this, we use the function bnrL1
that computes approximations of the first non-zero coefficient of the Taylor expansion
at s = 0 of Hecke L-functions. We find that

LK/F+(0, ν) ≈ −1184.00000000 + 5126.87039040i.

Although we have only a numerical approximation, we can still deduce an exact value in
the following way. Let S0 be the set of places consisting of the infinite places of F+ and
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of the finite places that ramify in K/F+. One can check easily using the formula [15,
Prop. I.3.4] for the order of vanishing of L-functions at s = 0 that LK/F+,S0

(0, νt) = 0
for t ∈ {0, 2, 3, 4}. Thus, we have

θK/F+,S0
= LK/F+(0, ν) eν̄ + LK/F+(0, ν5) eν̄5

= LK/F+(0, ν) eν̄ + LK/F+(0, ν̄) eν = LK/F+(0, ν) eν̄ + LK/F+(0, ν) eν

≈ −2368.00− 10064.00 a− 7696.00 a2 + 2368.00 a3 + 10064.00 a4 + 7696.00 a5.

By the properties of the abelian Brumer-Stickelberger element, we know that 2θK/F+,S0

has integral coefficients and thus we find its exact value

θK/F+,S0
= −2368− 10064 a− 7696 a2 + 2368 a3 + 10064 a4 + 7696 a5.

Coming back to the expression of θK/F+,S0
given above, we deduce that

LK/F+(0, ν) = 1776 + 5920j

where j := e2iπ/3 is a third root of unity. Note that this method provides a proof that this
is the exact value of LK/F+(0, ν). The prime numbers ramified in K/Q are 37 and 151.
We compute their index of ramification and residual degree, we find that e37 = e151 = 3,
f37 = f151 = 2, and therefore δK/k = 4. From these computations, we obtain that

θ(>1)

K/k,S = ±93 536

(
1

316
eχ + 8 Re

( 1

1776 + 5920j
eλχ

))
= ±1− c

12
(592 + 296[a]− 296[a2]− 64− 104[a]− 136[a2])

= ±(1− c)
3

(132 + 48[a]− 108[a2]).

Recall that dG = 24 and, therefore, we have

dG θ
(>1)

K/k,S = ±(1− c)(1056 + 384[a]− 864[a2]).

The first statement of the Refined Galois Brumer-Stark conjecture is satisfied: dG θ
(>1)

K/k,S

lies in Z[G]. Observe, in fact, that dG θ
(>1)

K/k,S ∈ 2Z[G]. This is actually true in all
the examples that we have computed. This property makes it slightly easier to check
the conjecture as we do not have to worry about finding generators that are anti-units.
Indeed, we use the following lemma whose proof is left to the reader and is very similar
to the reasoning used in the previous section, see the discussion after (5.8).

Lemma 6.2. Let A be a fractional ideal of K. Assume that dG θ
(>1)

K/k,S is in 2Z[G]

and that A
(dG/2) θ(>1)

K/k,S is principal. Then, there exists an anti-unit α of K such that
A
dG θ

(>1)

K/k,S = (α). �

Therefore, it is enough to check that (1−c)(528+192[a]−432[a2]) annihilates ClK . We
compute two classes C1 and C2 in ClK that realize the isomorphism in (6.9). That is, these
classes are respectively of order 8769 and 2923, and the map from Z/8769Z× Z/2923Z
to ClK that sends (s1, s2) to s1C1 + s2C2 is an isomorphism. We do not give explicit
expressions for ideals generating these classes since these expressions are too big. We
compute the action of a and b on these generating classes. We find that these are given
by the following matrices

Ma :=

(
988 1797
1597 2195

)
and Mb :=

(
1513 3741
782 1410

)
.
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These matrices are to be understood with the first row defined modulo 8769 and the
second one modulo 2923. The first column of Ma says that a C1 = 988C1 + 1597C2, and
so on. Using these matrices and the definitions of a1, a2 and a3, we compute the action
of [a] and [a2] on ClK . We find that [a] acts on ClK as the multiplication by 520 and [a2]
as the multiplication by 5 104. From that we compute that (528 + 192[a]− 432[a2]) acts
on ClK as the multiplication by 0. (Note that the factor (1− c) is not needed.) Hence,
(dG/2) θ(>1)

K/k,S annihilates the class group of K and RBSGal(K/Q, S) is proved.
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