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Abstract

The ‘Congruence Conjecture’ was developed by the second author in a previous
paper [So3]. It provides a conjectural explicit reciprocity law for a certain element
associated to an abelian extension of a totally real number field whose existence is
predicted by earlier conjectures of Rubin and Stark. The aim of the present paper is
to design and apply techniques to numerically investigate the Congruence Conjecture.

1 Introduction

The primary purpose of this paper is to provide numerical evidence for the ‘Congruence
Conjecture’. This first appeared as Conjecture 5.4 of [So2] but we shall refer here to the
improved and generalised version appearing as CC(K/k, S, p,n) in [So3]. Thus K/k denotes
an abelian extension of number fields, S a finite set of places of k, p an odd prime number
and n an integer, n > —1. We suppose that k is totally real of degree d and that K is of CM
type and contains n+1 := exp(27i/p"tt). (More precise conditions on S will be explained
later.) In this set-up, we can say that the C'C' is a conjectural, p-adic, explicit reciprocity
law for the so-called Rubin-Stark element ng+,s. We recall that ng+ /s is a particular
element of a certain dth exterior power of the global S-units of KT (tensored with Q) which
is predicted to exist by Stark’s conjectures, as reformulated and refined by Rubin in [Ru]. Tt
is uniquely determined by the dth derivatives at s = 0 of the S-truncated Artin L-functions
of even characters of Gal(K/k).



By way of illustration, consider the simplest case K/k = Q({n+1)/Q, S = {oo,p} (so
d = 1). One can then prove that ng+ s exists and equals —3 @ (1 — &m+1)(1 — fp‘nﬂl).
Moreover, the C'C' then reduces to the explicit reciprocity law proven by Artin and Hasse
in [A-H]. This is a precise formula for the Hilbert symbol (1 — §n+1, )y pnt1, for any
u € U'(Kg), which involves the p-adic logarithms of the conjugates of u over Q,. (Here
Ky denotes the completion of K at the unique prime B dividing p and U'(Kg) its group of
principal units.)

For the general case of the C'C' one must replace u by an element 6 of a certain dth
exterior power of U'(K,) (the principal, p-semilocal units of K). From 6 and ng+ s one
forms a d x d determinant of (additive, group-ring-valued) Hilbert symbols. The conjectural
reciprocity law takes the form of a congruence modulo p"*! between this determinant and
Sk /k,s(0) (for any 6), where sk, s is a map defined explicitly in [So3] and [So2] using a
certain p-adic regulator and the values at s = 1 of the S-truncated Artin L-functions of odd
characters of Gal(K/k). More details of 1+ kg, this determinant, the map sx/x s and the
precise formulation of CC(K/k,S,p,n) are given in Section 2.

In the case where K is absolutely abelian, the CC was proven (with some restrictions)
in [So3]: One reduces first to the case k = Q where 7k s is essentially a cyclotomic unit (as
above) and the C'C' can be proven without restriction, replacing the Artin-Hasse law with
a generalisation due to Coleman. This case of the C'C' (or more precisely the connection it
makes between reciprocity laws and the map sk/q s) finds applications in Iwasawa Theory
related to some new annihilators of the class-groups of real abelian fields (see [So4]). This
gives one motivation for studying the C'C' more generally.

Unfortunately, there are very few cases with K not absolutely abelian in which CC(K/k, S, p,n)
can be proven, even partially (see [So3, §4]). Indeed for such K, one can’t even prove the
existence of N+ k5 except in very special cases (see Section 2.2). On the other hand, tech-
niques for the numerical computation of ng+ /x5 were developed by the authors in [R-S1]. A
slight simplification of these methods is used in the present paper to identify ng+ ;g with
virtual certainty. The rest of the paper is concerned with the detailed numerical verification
of 48 varied cases of the C'C' using the computed values of ng+ is.

In order to make the computations manageable we still need to restrict the parameters
(K/k,S,p,n): in all our test cases k is (real) quadratic, p < 7 and n = 0 or 1. (On the other
hand, K/Q is always non-abelian and frequently non-Galois). The precise set-up is given at
the start of Section 3. We then explain in detail how we computed the objects appearing in
the CC, in order: the map sy s, economical sets of (Galois) generators for U'(K)) and its
exterior square, the element 7+ 5 and the Hilbert-symbol-determinant H Kk (Mic+ k.S 0).
Some of our techniques are well known and even implemented in PARI/GP (which is also the
medium of all our computations). However, we believe that the majority are innovative and
may well find applications elsewhere. It is worth mentioning an important dichotomy which
emerges in our examples, between the minority of cases in which p divides [K : k] and the
majority in which it does not. On the one hand, the former cases provide a more probing test
of the conjecture. For instance, since k is quadratic, the condition n = 1 requires p|[K : k.
On the other hand, cases of the latter type are much quicker to compute.



Finally, Section 4 presents the results of the computations. One simple but characteristic
example is explained in detail. Data from the remaining ones are summarised in tables at
the end of the paper.

Some notations and conventions: All number fields are finite extensions of Q within Q
which is the algebraic closure of Q within C. If F'is any field and m any positive integer, we
shall write p,,(F') for the group of all mth roots of unity in F. We shall abbreviate p,,(C)
to p, and write &, for its generator exp(2mi/m). Suppose L/F is a Galois extension of
number fields and Q a prime ideal of Of, with ¢ = F'N Q. We shall write Dq(L/F) for the
decomposition subgroup of Gal(L/F) at Q and similarly Tq(L/F') for the inertia subgroup.
We shall identify Dq(L/F) with the Galois group of the completed extension Lg/F, and
Tq(L/F) with its inertia group in the usual way. If R is a commutative ring and H is a
finite group, we shall write simply RH for the group-ring often denoted R[H].

The second author wishes to thank Cristian Popescu and UCSD for their hospitality
during the sabbatical year in which part of this paper was written.

2 The Congruence Conjecture

2.1 The Map SK/k,S

Given an abelian extension K/k of number fields as above, we write G for Gal(K/k) and
Seo = Seo(k) and Siam = Sram (K /k) respectively for the set of infinite places of k and the
set of those finite places of k£ which ramify in K. We always identify finite places with prime
ideals so, for instance, Syam consists of the prime factors of the conductor f(K') of K/k. We
denote by S, = S,(k) the set of places of k dividing the prime number p # 2. The finite S
appearing in the C'C' must satisfy the hypothesis

S contains S := S, U Spam U S, (1)

which we assume henceforth. Recall also that we are assuming K is CM so that [K : K] =2
where KT is its maximal real subfield which contains k. The extra assumption that K
contains fi,n+1, which is necessary for the C'C, may be dropped until further notice.
If s is a complex number with Re(s) > 1, we define an Euler product in the complex
group ring CG of G by
Ok/k,s(s) == H (1- ]\7q_sa(}l_1)_1 (2)
q¢s
(The prime ideal q of O, ranges over all those not in S and o4 denotes the corresponding
Frobenius element of G.) Indeed, the condition Re(s) > 1 implies that (1 — Nq~®0,")
lies in CG* and that the product converges absolutely. ©g/; g(s) is sometimes called the
‘equivariant L-function’ because, if G denotes the group of (complex, irreducible) characters
of G, then one can write Ok 5(s) = >, ¢ L/n,s(s, x)ey-1,6. Here, for any x € G, we write
ey, for the corresponding idempotent ﬁ > gec X(9)g~" of CG and Lgjps(s, x) for the (S-
truncated Artin) L-function, i.e. the function whose Euler product for Re(s) > 1 is obtained
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by applying x ' termwise to the R.H.S. of (2). Since Lk x s(s, x) extends to a meromorphic
function on C so does O/x s(s) (with values in CG). Now let ¢ denote the element of G
determined by complex conjugation, so that Gal(K/K*) = {1,¢} = (c). A character y € G
is called odd (resp. even) if and only if x(c) = —1 (resp. x(c) =1). If R is any commutative
ring in which 2 is invertible, we write e* for the two idempotents (1 & ¢) € R{c). Any
R(c)-module M then splits as M+ @ M~ where Mt = eTM is the ‘plus-submodule’ and
M~ = e~ M is the ‘minus-submodule’. Taking R = C and M = CG, we get a corresponding
decomposition Ok i s(5) = €Ok s(s)+e O /ps(s) =: @}g/kﬂ(s)—l-@;(/k’s(s), say. Clearly,
K/k,s(5) = 22 oad Licsk,s(s, x)ex—1,¢ and since Liyrs(s, x) is regular at s = 1 whenever x
is not the trivial character xo, it follows that © Ik, 4(5) is also regular there. We set

N .\ d
_ l _ i
U /ks "= (;) @K/k,S(1> = <;> Z Lik,s(1,x)ey-1.6 (3)

xEé
x odd

In this notation, it is not hard to see that P lies in 4?RG~. In fact it lies in QG~ and
indeed a much finer statement will be proven in Proposition 2.

For each B € S,(K) we write Kg for the (abstract) completion of K at P and vy
for the natural embedding K — Kg. Let K, denote the ring Hqsesp(K) Kq endowed with
the product topology and the usual (continuous) G action (see e.g. [So3, §2.3]). Thus the
diagonal embedding ¢ := Hgp tp + K — K, is dense and G-equivariant. We fix once and
for all an algebraic closure @, of Q, (equipped with the usual p-adic absolute value | - |,),
an embedding j : Q — @, and a set 71,...,74 of left coset representatives for Gal(Q/k) in
Gal(Q/Q). For each i = 1,...,d, the embedding j o ;| : K — Q, extends to a continuous
embedding Ky, — @, for a unique prime ideal ; € S,(K), and we define §; : K, — Q,
to be its composite with the projection K, — Kg,. (In general, the map i — 3, is not
injective, nor surjective onto S,(K), but the map i — B; N Oy is surjective onto S,(k).)
For each P € S,(K), we write U'(Kgy) for the group of principal units of Ky considered
as a finitely generated Z,-module. We write U'(K,) for the group [y s, U Y(Kg) of ‘p-
semilocal principal units of K7 considered as a ZG-submobule of K° and hence as a f.g.
multiplicative Z,G-module. (Warning: nevertheless, we shall often use an additive notation
for the Z,G-action on U'(K,).) It is clear that |§;(u) — 1], < 1 for every u € U'(K,) and
each i € {1,...,d} so that log,(0;(u)) € Q, is given by the usual logarithmic series. The
formula A; ,(u) := 3 . log,(di(gu))g~" then defines a Z,G-linear map A;, : U'(K,) — Q,G
and letting ¢ vary we get a unique Z,G-linear ‘regulator’ map R, from the exterior power
/\OleG U'(K,) to @pG such that Ry(uy A ... Aug) = det(Xip(w))f,_;. (The dependence on j
of 6;, \ip and R, will be denoted by a superscript ‘j” where necessary.) We can now define
a map

SK/kS - /\%pG UNK, — QG-
| (1)
0 — j(a;(7k,s>Rg)(9>



Some explanations are in order. First, x +— z* is the unique C-linear involution of CG
sending ¢ to ¢g~! for all ¢ € G. Since a;(/k’s lies in QG~, so does a;(’fk’s and we apply j
coefficientwise to get an element of Q,G~. Multiplying the result by Rg(@) in Q,G gives
Sk /k,s(0) which is a priori another element of Q,G~. However one can show that it actually
lies in Q,G~ and, moreover, is independent of the choice of j (see [So2, Prop. 3.4] and [So3,
Prop. 5]). Although the map sk s is not independent of the choice and ordering of the 7;’s,
the dependence is simple and explicit (see [So3, Rem. 2.6] for more details).

It is clear from its construction that sg ¢ is Z,G-linear. This implies in particular that

it vanishes on /\deG Ul(Kp)+, so one loses nothing by regarding it as a map /\%pG UYK,) —
Q,G~. This was the point of view of [So3] but for the present purposes it is slightly more
convenient to take the domain to be the whole of /\CZIPG U'(K,). In this context, the statement
(and proof) of Prop. 6 of ibid. give

Proposition 1

(i). ker(sg/ps) = /\%pc Ul(Kp)Jr + (/\deG Ul(Kp)) and the second summand is finite.

tor

(ii). im(sk/k,s) spans Q,G~ over Q. a

From now on we denote im(sx/k,5) by Sk k,s-

The ‘Integrality Conjecture’ of [So3] is precisely the statement that Sx s C Z,G~. We
shall not deal with this conjecture per se in the present paper because, in the cases we shall
study, it can be subsumed into the stronger Congruence Conjecture.

2.2 Rubin-Stark Elements and the Pairing Hg ;.

Now let G := Gal(K*/k) = G/{1,c}. The C-linear extension of the restriction map
G — G has kernel CG~ and defines an isomorphism CG* =2 CG identifying @;“( /hs(s) =
Zx even L /k,5 (5, X)€x-1,¢ with the function © g+ 1, 5(s) = eré L+ /k,s(8, x)ey-1,6. Rubin-
Stark elements are conjectural elements of a certain exterior power of the S-units of K™
which are supposedly associated with the dth derivative of the Taylor series of O+ s(s)
at s = 0. Indeed, using the functional equation for primitive L-functions, one can show (see
e.g. [Ta, Ch. L, §3]) that ords—oLfc+/r,s(s,x) > d for all x € G. (For x = xo one needs the
fact that |S| > d + 1, by Hypothesis 1.) Thus

Ox+/k,5(8) = @%l/kﬁ(@)sd +o(s?) ass—0

where 09

ic+ /k.5(0) denotes the element 3° & (d%)d ls=0L it k,5(8, X)ey-1,6 of CG. Let egq¢

be the (possibly empty) sum of the idempotents e, -1 g € CG over those y € G for which
ords—o L+ /,5(5, x) is exactly d. We refer to eq. (13) of [So3] for an explicit formula for eg , &



demonstrating that it actually lies in QG. An element m of any QG-module M will be said
to ‘satisfy the eigenspace condition (w.r.t. (S,d,G)) iff it lies in eg M, i.e. m = egqam.

It is not hard to see that @%l/k g

fact, RG@%l/k’S(O) = e54aRG.

Let us write Ug(K™) for the group of all S-units of K, namely those elements of K>
which are local units at each place of KT above a place of k which is not in S. We consider
Us(K*) as a multiplicative ZG-module and the tensor product QUs(K ™) := Q ®7 Us(K™)
and its exterior power /\%G QUs(K™) as natural QG-modules. ( Warning: we shall sometimes
use an additive notation for these.) For each i = 1,...d we define a ZG-linear map ); :
Us(K*) — RG by setting \;(¢) := > geclog|mi(ge)|g~!. This ‘extends’ Q-linearly to a map
QUs(K*) — RG, also denoted \;, which in turn gives rise to a unique QG-linear regulator
map R+ from /\le(—; QUs(K™) to RG such that R+ (1 A ... A xq) = det(Ni(2))¢; -

We now define a Rubin-Stark element for K /k and S to be any element 7 of /\éé QUs(K™)
satisfying the eigenspace condition w.r.t. (S, d, G) and such that

(0) lies in RG and satisfies the eigenspace condition. In

O 1.5(0) = Rice /i (1) (5)

One cannot currently demonstrate the existence of any n € /\leCj QUgs(K™) satisfying (5) un-

less either K is absolutely abelian or all the characters y € G satisfying ord,—oL g+ /es(SX) =
d are of order 1 or 2. On the other hand, certain special cases of Stark’s conjectures for the
extension Kt /k are essentially equivalent to the existence of such an 1 (see [So3, Rem. 2.3])
and one can, if necessary, ensure that it simultaneously satisfies the eigenspace condition
simply by replacing it by eg4sn. This makes n unique once 7i,...,74, and hence Rg+ g,
have been fixed (e.g. by [Ru, Lemma 2.7]). Henceforth we shall therefore refer to such an el-
ement as the Rubin-Stark element for K /k and S and denote it ng+ /5 s. It may be thought
of as a higher-order generalisation of a cyclotomic unit (or number).
From now on we shall assume that

K contains fiyn+1 (6)

where n is the integer of the Introduction, assumed w.l.o.g. to be > 0. Thus, for each
B € Sp(K), vy induces an isomorphism pipn+1 (K) — pin+1(Kg) and the local Hilbert symbol
(@, B) ke pr+1t € Hpnt1(Kp) is defined for any o, 3 € Ky, (We shall use the definition of
the Hilbert symbol given in [Ne] rather than [Se] which reverses the order of o and 3, thus
effectively inverting (o, ) gy prt1.) Given any e € Ug(K™) and u = (ugp)p € U'(K,) we
define [e, u]k,, € Z/p" ' Z by

e ulgn = Z Ind,, (tg' (ep(€), tsp) sy 1) (7)
PESGp(K)

where Ind,, : pynei(K) — Z/p"™'Z is the isomorphism defined by f;ﬁi’}(o = ( for all ( €

ppn+1(K). The pairing [, |k, : Us(KT) x UY(K,) — Z/p"**Z is bilinear and one checks
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(cf [So3, eq. (18)]) that
l9g, gulrcn = kin(9)[e, U]k, foralle € Us(K), u € UNK,) and g € G (8)

where, here and henceforth, we write x,, for the cyclotomic character modulo p™*™'. We shall
regard k, as a homomorphism Gal(Q/Q) — (Z/p"*t'Z)* whose restriction to Gal(Q/k)
factors through G by (6) and is denoted by the same symbol. Thus, whether g lies in
Gal(Q/Q) or in G, we have, by definition g(&n+1) = f;,?ﬁ). Next we consider the pairing
-, -] kn.c defined as follows

[lkme © Us(EF) x UNKy) — (Z/p"T'Z)G

(S,U) = deG[gagu]K,ng_l

If h lies in G and A is any lift of A in G, then a short calculation using (8) shows that

[he, ulkna = /ﬁn(h)ffl[e, Ul koG 9)

for any ¢ € Us(K*) and u € U'(K,). Taking h = 1, h = ¢ gives [, ulxng = —cle, Ul gn.c
in (Z/p"tZ)G. In other words, [-,-]xnc takes values in (Z/p""™'Z)G~. Let us denote
by k) the unlque ring homomorphlsrn from ZG to (z/ p"1Z)G~ which sends h € G to
2 (/in(]h)hl + /<;n(hg)h2 ), where hy and hy, = chy are the two lifts of h to G. Then
equatlon (9) shows that the pairing [, |k ¢ is Kf-semilinear in the first variable. On
the other hand, it follows from its definition that [-, |k, ¢ is ZG-linear, hence Z,G-linear,
in the second variable. Consequently, we obtain a unique, well-defined pairing Hg/pp :

Noa Us(K*) x Ny o UN(K,) — (Z/p" "' Z)G satistying
HK/k,n(51 N oNEgG UL N LU N Ud) = det([ei, ut]Kﬂl,G)?,t:I

for any e1,...,e4 € Us(K™') and uy,...,uq € UY(K,). By construction, Hgy, is k-
semilinear in the first variable and Z,G-linear in the second and the latter implies

+

Hipn(n,0) =0 forallne /\ZG Us(K™) and 6 € /\Z o U K)) (10)

(So, for fixed n the map Hi/kn(n,-) : /\%pc UYK,) — (Z/p"™'Z)G~ factors through the
projection on /\% cUYK,) , just as Sk/k,s does.) Finally, we can ‘extend” Hg/y, in an

obvious way so that the first variable lies in the tensor product Z,) ®z, N2 o Us(KT), where
Zp) denotes the subring {a/b € Q : p{ b} of Q.

We now explain briefly a further ‘extension’ of the pairing Hg/x,,, which is necessary to
state the Congruence Conjecture properly but — for reasons that will become clear later —
has only a limited importance for the computations of this paper. The reader may refer

0 [So3] for the details. Denote by ag the natural map ALs Us(K*) — /\le(—; QUg(K™).

Following Rubin, we defined in loc. cit., § 2.2, a ZG-lattice Ags(K*/k) in /\(éé QUs(K™)
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which contains the image of ag with finite index. In loc. cit., § 2.3 we defined a pairing
Hyjon @ ZpyNo,s(K k) x /\deG UYK,) — (Z/p"™Z)G~ which has the following property.
If 1 ® ag denotes the Z,-linearly extension of ag to Zg) ® Abg Us(K™), then for any
RS /\%pG U'(K,) there is a commuting diagram

Zipy @ Nog Us(K*) (11)

(Z/pHZ)G

ZpyNo,s(KT [k)

This follows easily from [So3, eq. (20)].

REMARK 1 In fact, the vertical map above is an isomorphism whenever p 1 |G|. (See [So3,
Remark 2.4].) If p||G|, then both the kernel (namely the torsion in Z,) @ Abe Us(K™)) and
the cokernel may be non-trivial, though finite. As far as the present paper is concerned, the
main consequence of (11) is simply that Hg/ (-, ¢) vanishes on the kernel of 1 ® ag, for all

6.

2.3 Statement of the Conjecture
With the above hypotheses the Congruence Conjecture (CC) of [So3] may be stated as

follows.

Conjecture CC(K/k, S, p,n) The Rubin-Stark element g+ i exists and lies in Zpy Mo s(K™T/E).
Furthermore, if 6 € /\%pG UY(K,) then sk, 5(0) lies in Z,G~ and satisfies the following con-

gruence modulo p™*!
Sk/ks(0) = kn(T1 .. Ta) Hi /o (Nic+ .5, 0)  in (Z/p" M 2)G. (12)
REMARK 2 The choice of 71,...,74 affects both s/ 5 and ng+ ;s but not the validity of

CC(K/k,S,p,n) thanks to the ‘normalising factor’ k(7 ... 74) in (12).

REMARK 3 The conjecture behaves well under changing K, S and n. More precisely, it is
shown in [So3, §5] that CC(K /k, S, p,n) implies CC(F/k,S’, p,n’) for any S’ containing S,
any n' such that n > n’ > 0 and any intermediate field F'; K D F D k provided that the
norm map from /\chpG UYK,) to /\%pGal(F/k) U'(F,)™ is surjective. This holds, for instance,
if K/F' is at most tamely ramified at primes in S,(F).

REMARK 4 As already noted, the CC includes the statement &g/, 5 C Z,G~ i.e. the
Integrality Conjecture (/C'). This was treated separately in [So3] since it does not require
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iy C K. Section 4 of loc. cit. contains a survey of evidence for both conjectures. The IC
is known in many cases where the C'C' is not, e.g. when p splits completely in &k (with a
technical condition), when p is unramified in K or when p t |G].

REMARK 5 It is shown in [So3, Rem. 2.3] that Conjecture B’ of [Ru] implies the existence
of nk+ ks and that it lies in %AO,S(KJ“/k), hence it implies the first statement of the C'C'.
However, even in situations where ng+ /¢ is known as an explicit element of %AO,S(K t/k)

(for instance, if & = K1) the congruence (12) can still be elusive. If 6 € /\CleG Ul(Kp)Jr
then (12) clearly holds trivially (i.e. as 0 = 0) and the same thing happens in a couple of
more interesting cases mentioned in [So3, §4]. Apart from these, the full CC is unknown
whenever K is not abelian over Q.

3 Methods of Computation

In this section we describe in detail the method we used to numerically check the C'C' for
the 48 examples listed in Section 4.

3.1 The Set-Up

We take the field k to be a real quadratic field (so d = 2), and always take S = S' (so we
drop it from the notation when possible). In view of Remark 3, CC(K/k, S, p,n) implies
CC(K/k,S,p,n) for all other admissible S. The prime p will be small for computational
reasons: large primes would lead to extensions K/k of too large a degree. Thus we shall
always take p = 3, 5 or 7. For the same reason, we shall usually take n = 0, except for a
few examples with n = 1 and p = 3, which were added for completeness. Since d = 2 < p,
the latter examples necessarily have p||G|. The question as to whether or not p divides |G|
is of importance in the computation of Z,G-generators of /\%pG U'(K,), as we shall see in
Subsection 3.4. All computations take place in the number field F' which is defined to be the
normal closure of K over Q (within Q). They were performed using the PARI/GP system
[PARI].

3.2 Computation of a;, and sk /k(0)

Using the implementation in PARI/GP of the algorithm of [D-T], see also [Co, Section
10.3], we can compute arbitrarily good approximations of the values at s = 1 of the S'-
truncated Artin L-functions of odd irreducible characters of GG, and thus deduce arbitrarily
good approximations of a /) @S an element of i*RG = RG, thanks to (3). In order to

compute sg/, we must however determine a . Ik exactly as an element of FFG~ and to this
end, we use the



Proposition 2 Let f(K) denote the positive generator of the ideal {(K)NZ. Set § = 1 if
(p, f(K)) =1 and § = 0 otherwise, and let

e =PI VANT(K )y, = —p (K VaNH(K)r 205, (1) (13)

The coefficients of Qg . are algebraic integers of FNQ(uyk)) and are stable (as a set) under
the action of Gal(Q/Q).

The proof uses the following group-theoretic lemma whose (simple) verification is left to the
reader.

Lemma 1 Let G be a group and H a subgroup of finite index in G, and let Ver denote the
transfer homomorphism from G* = G /G’ to H*® = H/H'. Suppose J is a normal subgroup
of H containing H' and write J for the largest normal subgroup of G contained in J, i.e.J =
ﬂg gJ g~ where g runs through G (or, indeed, through a set of left-coset representatives for

H in G). Then J is contained in the kernel of the composite homomorphism

gﬁgabEHab_)H/j

O

PROOF OF PROPOSITION 2 Let ® g /;(s) be the function defined in [So2, eq. (9)]. It follows

from [So3, eq. (8)] (dropping ™, since k # Q) that ay, = (TT(Np—0, )| (K)|dp NF(K) @ /x(0)

where the product runs over the set of all primes p € S,(k) not dividing f(X'). (Since K con-
tains u, and [k : Q] = 2, it is easy to see that either this set is empty —so 6 = 0 — or p ramifies
in k and this set consists of the unique prime p € S,(k) — so that Np = p = p°.) Equa-
tion (27) of [So2| shows that the coefficients of | (K )|dr NF(K )Pk, (0) are algebraic integers
of Q(114(x)), hence so are those of Gy . It remains to show that they are Gal(Q/Q)-stable

and lie in F. Consider the automorphism of QG obtained by applying some a € Gal(Q/Q)
to coefficients. It was shown in [So2, Prop. 3.2] that this has the same effect on ® /4 (0) as
multiplying it by Vi (a) where Vg is the composite homomorphism

Gal(Q/Q) — Gal(Q/Q)™ Y= Gal(Q/k)™ — G

The same is therefore true of a Ik hence its coefficients are Gal(Q/Q)-stable. Moreover, they
are fixed by Gal(Q/F) because the latter is contained in ker Vi, as follows from the Lemma.

(Take G = Gal(Q/Q), H = Gal(Q/k) and J = Gal(Q/K), so that J = Gal(Q/F)). m

REMARK 6 If we define a . /1, b0 be the second member in (13) with p° replaced by [] 4eS\(S
then both the statement of the Proposition and its proof go through essentially unchanged
for any d > 1 and S D S*. Since the coefficients of a Ik also lie in iR in general, for d = 2
they must actually lie in F' N Q(uypx))™.

Let a. Ik denote the coefficient of o € G in aj Ik Having computed a sy, to high accuracy
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in RG as described above, we obtain good real approximations to the values a Ik forc e G
and hence to the coeflicients of the polynomial [[, (X —ay /lw)‘ But Proposition 2 implies
that this polynomial lies in Z[X], so we may recover it exactly. By recognising the a, Iho
among its roots in I" (embedded in C), we then obtain ay , as an element of O[G] and
dividing by p’|u(K)|VdNf(K) € F* gives ay, as an element of FG.

We now explain how to compute sg,,(0) € Q,G (for 6 € /\%pG U'(K,)) to any pre-
determined (p-adic) accuracy. We shall need only the case 6 = u; A uy with uy,uy €
U'(K,) (which suffices anyway, by linearity). For any integer N > 1 we write the power
series log(1 4+ X) as {y(X) 4+ rn(X) where (y(X) = S0 '(—1)'XY/t € Q[X] and
rn(X) = 22N (D)Xt € Q[[X]]. For i = 1,2 and any u € U'(K,) we define ele-
ments Asp () = M, (1) and pip () = gL,y (w) of @,G by

Nipv(u) =D Un(07(glu—1))g™" and pipn(u) =D ra(d(g(u—1)))g™"
g€G geG
so that \; ,(u) = N pn(u) + pipn(u). It follows easily that A; ,(w;) = impy_ oo Aip v (u;) for
any i,l € {1,2} and consequently that

sk(ur A ug) = ]\}E{l)o](al_(;k) det(/\g,p,N(ul))il:I

The convergence in @pG implied in each of these limits is coefficientwise, w.r.t. the absolute
value | - |, on Q,. The next result gives us the explicit control we require on the rate of
convergence in the second limit. First, we impose a p-adic norm | - ||, on the Q,-algebra
Q,G by setting

lall, = max{|ay|, : g € G} where a =} ,a,9 € Q,G
It is easy to check that ||z + y||, < max{||z||,,||vll,} and [z.y|l, < ||z]y-]y]l,- We define a

rational number my, by p"</ = |lj(ag )l = [l7(ag,)llp- The coefficients of ;. now
being known as elements of a number field /', we may calculate mg/, from their valuations
at the prime ideal in S,(F") determined by j. (Notice, however, that Prop. 2 gives an a priori
upper bound for m g/, and also shows it to be independent of our choice of j.)

Next, for i = 1,2 we set e; = ess, (K /Q) (recall that B; is the element of S, (K) determined
by j7;) and h;(x) = (log(z)/log(p)) — (z/e;) for any real number x > 0. Thus the function
h; decreases monotonically to —oo on [e;/log(p), 00). For i = 1,2, we let b; be the smallest
integer b such that p®(p — 1) > e;. In our examples, b; ranges from 0 to 2. Finally, we write

e for the transposition (1,2) € Xs.

Proposition 3 Suppose that a positive integer M is given. Then for any integer N >
max{ey, es}/log(p) satisfying the inequalities

heiy(N) < —(M + mg, + (b — (pbi/ei))) fori=1 and 2 (14)
we have

I /i (ur A z) = j(agesy) det(X,, y (u)iimalp <~ for alluy,up € UM(K,)  (15)
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PROOF Ift € Z>; and i =1 or 2 then for any g € G and u € U'(K),) we clearly have

(67 (g(u — 1)))"/t],, < p~*/°

t,"

As t varies, the R.H.S. of this inequality attains an absolute maximum of pbi_(pbi/ e) (at
t = p*) and, on the other hand, is always at most p"{*). We deduce that for any i and w,
we have || Aipn(w)|l, < pP=#/e) and ||p;pn (), < pP~#"/¢) for every positive integer N
and also [|p;p n(u)|l, < p"™) provided N > e;/log(p). Therefore, writing s/ (u1 A us) as
Jlaw ) det()\{’p’ Nyl(w) + pf% v(w))?—; and expanding the determinant, we find that for any
N > max{ey, ex}/ log(p) satisfying the inequalities (14), we have

(L.H.S. of (15)) < p™x/x max{phz(N)erl*(Pbl/61)’ph1(N)+bzf(Pb2/€2)} < pr O

REMARK 7
(i) The two inequalities (14) coincide whenever e; = ey and in particular, whenever p does
not split in k.

(ii) In our computations of sk /x(u1 Aug), the elements uy, uo will always be ‘global’ by which
we shall mean that u; = ¢(v;) for { = 1,2 where v; € K* satisfies ordg(v; — 1) > 1 for each
B € Sp(K). (In fact, the v; will be constructed to lie in O.) Thus, for i = 1,2 we can write
)\g,pw(ul) as j(zgeg(ﬁg(ﬂfz,N))g_l) where z; v = (v, — 1) lies in K for [ = 1,2, and so

i) det(, () iy = j (a3, det(,ematann)g™ i) (16)

It follows from Proposition 2 that the quantity inside the large parentheses on the R.H.S.
of (16) has coeflicients in F'. In fact, however, they lie in Q. (Hints for a proof of this fact
are given in Rem. 3.3(i) and Props. 3.3 and 3.4 of [So2| noting that a;{’/*k = Vdp®g1(0)",
by [So3, eq. (8)].) We may therefore drop the ‘5’ on the R.H.S. of (16) and substitute it
into (15).

3.3 Generators of U'(K))

Both sides of the congruence (12) are Z,G-linear in 6 so it suffices to test it on a set of 6’s
generating /\%pG UY(K,) over Z,G, preferably few in number since the R.H.S. is particularly
computationally intensive (see Remark 11). First we explain our construction of a set V'
of Z,G-generators for U'(K,,). This is summarised in the two following Propositions which
hold for any abelian extension of number fields K /k and any prime p. For the rest of this
subsection, we therefore drop the assumption [k : Q] = 2 and return to the notations of
Subsection 2.1. In addition, we shall write S,(k) as {p(1),...,p(t)} where t = |S, (k)| <r
and PB(i,1),...,P(4, h;) for the distinct primes of K dividing p(7), for i = 1,...,¢. For each
pair (7,7) withi =1,...,tand j = 1,..., h; we shall abbreviate the completion Ky, ;) to [A(”
and the embedding v j) : K — K to t;j so that ¢ = H” t;j embeds K in K, = H” KZ] We

write @” for the ring of valuation integers of KZ] and (4, j) for its maximal ideal. For any

12



I > 1 we write U} ; for the Ith term in the filtration of (;);j’ ie. U, =1+ PB(i, ) considered
as a finitely generated, multiplicative Z,-module. In particular U'(K,) = [1:; Uil,j C K.
We write D; for Dy j)(K/k) which depends only on i, since K/k is abelian. The same is
true for T; := TG ) (K/k), € := |Ti| = eg(K/k), fi == |Di/Ti| = fypi(K/k) and for
¢; which we define to be the Frobenius element at 9B(i, j) considered as a generator of the
quotient group D;/T;. For each i we also define a positive integer I; (independent of j) by

li =1+ [pegyi) (K/Q)/(p — 1)] = 1 + [pejeyo) (k/Q)/ (p — 1)]

It follows from the standard properties of log, and exp, as defined by the usual power
series (see [Wa, Ch. 5]) that Uflj is contained in (U};)? for all ¢,7. Indeed, u € Ulll] implies
lu— 1], < p~?/®=Y g0 thatA |713 log,,(u)], = plu—1|, < p~/®=Y. Hence v := expp(% log,,(u)) is
a well-defined element of K; ; satisfying v* = u and |v — 1|, < p~%/®~1 < 1, so0 that v € Ui{j.

Proposition 4 In the above notation, suppose that for each i we are given

(1). a subset X; = {x;1,...,Tin,} of B(i,1) such that the images of t;1(14+xi1),. .., i1 (1+
Tin,) generate the quotient U}J/U,L-lf1 as a module over Z,D; and

(7). an element a; of Ok such that for anyr =1,...,t and j =1,... h, we have

_ [ 1 (mod P(r,j)") ifr=iandj=1, and
“=10 (mod B(r, 7)) otherwise.

Then the set V :={u(1+ ax;s) : i=1,...,t, s=1,...,n;} generates U'(K,) over Z,G.

PROOF By Nakayama’s Lemma, it suffices to show that V generates U'(K,) modulo (U'(K,))?
and hence, by the preceding comments, that the images of the elements ¢(1 + a;x; ) gen-
erate U'(K,)/ [, Ufj As a Z,G-module this is the product (over i) of the sub-modules
H;’Zl (Uil’j / Uf]) so that, by the definition of the a;, it suffices to prove that for each i, the
latter is generated over Z,G by the images of the elements ¢; 1 (14+a;x;¢) X ... X 4, (1 4+ @25 4)
for 1 <t < n;. By the definition of the a; (again) and of X;, these images lie in the subgroup
U/ Uilfl and generate it over Z,D;. Since [[; (UL/ Ullj) is the direct product of G-translates
of U}, /U}Y, we are done. O

To find a set X; as in part (i) of the statement of Proposition 4, one could simply ensure
that the images of ;,(1 + 2;;) generate the finite module U},/ Uilfl over Z, rather than
Z,D;. However, it is straightforward to construct a set that is generally smaller (for f; > 1),
provided that the exact sequence

1—-T,— D; — D;/T; — 1 (17)

splits. This is equivalent to the existence of a lift ¢; € D; of ¢; which is of order f;. A sufficient
condition is that f; be prime to €, or, more generally, to the cardinality of le * (subgroup of
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fi-th powers). Computational constraints on [K : k] mean that D; is a fairly small group in
the examples considered, so it is perhaps not so surprising that the sequence (17) was found
to split in all of them (for all ¢) without any pre-selection. Assuming that this occurs, we
write A; for the subgroup (of order f;) of D; generated by some &;, N; for K4 and ©; for
the prime of N; below (i, 1):

K Bz, 1)
Az‘/
KD
k p(i)

Thus N;/KP: is totally ramified at o; (so f,,(N;/k) = 1). On the other hand, K/N; is
unramified at P(i,1) and A; = Gal(K/N;) maps isomorphically onto the Galois group of
the residue field O /B (i,1) over Oy, /p; = Oy /p(i) (with ¢; acting by Np(i)-th powers). It
follows from the Normal Basis Theorem that Ok /P (i, 1) is freely generated over (O /p(7))A;.
Moreover, a well-known criterion states that a free generator is given by the class &; modulo
PB(i,1) of oy € O if and only if det(gh(a;))gnea, # 0 in Ok /P(i,1); in other words, iff
det(osz(i)a+b)§fb_:10 & B(i,1). Such an «; is easily found by trial and error.

)

Proposition 5 Suppose the sequence (17) splits for some i € {1,...,t}. Using the above
notations, choose any m; € ©;\ @7 and a subset Y; C Oy whose images in Oy /p(i) form a basis
over Z/pZ. Then the set X; .= {rlya; : a=1,...,l; — 1, y € Y;} satisfies the requirements
of part (i) of the statement of Proposition 4 (and even with ‘over Z,D;’, replaced by ‘over
Z,A;").

PROOF The definition of ; ensures that the classes modulo (i, 1) of the 1;;(yey) for
y € Y; freely generate @11/‘13(@, 1) over (Z/pZ)A;. Now t;1(m;) is a local uniformiser for
K;1 so for each @ = 1,...,l; — 1 there is a familiar isomorphism of (finite) Z,-modules
O;1/PB(i,1) — Ui‘fl/Ui‘ffl which sends the class of x to the class of 1 + ¢;1(m;)%x. Since
tia(m;) is fived by A;, this is a Z,A;-isomorphism and it follows that for eacha =1,...,1; —1
the classes modulo U™ of the ;1 (1 + mfyay;) for y € Y; generate Uy /U over Z,A;. The
result follows easily from this. O

For each example tested, we used Propositions 4 and 5 to construct a set of Z,G-generators
for U'(K,) which is denoted V and has cardinality N := ' |X;| = Y2/_ (I, — )|Yi| =
S (L= 1) foiy(B/Q) < p’%dl max{e;:i=1,...,t}.

REMARK 8 By construction, each u € V' is of form ¢(v) for some v € O which is congruent
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to 1 modulo each P € S,(K). At certain points in the computations it can be helpful to
‘perturb’ one or several such v as follows

v~V = v+ p!Tle for some x € O and L € Z, 1 > 1

Clearly, «(v") € U'(K,) and previous arguments involving log, and exp, can be adapted to
show that l
t(v') = 1(v)  (mod U'(K,)")

(Indeed, ¢; ;(v'/v) is the p'th power of expp(p_l logp(1+pl+1Li7j (x/v))) € Ul(f(m-), convergence
being assured by the fact that [+1 >[4 (1/(p—1)) since p > 2.) In particular, Nakayama’s
Lemma implies that such perturbations do not effect the generation of U'(K,) by V. For
example, taking [ = 1, one can modify the v’s corresponding to each u € V' to ensure that
their coefficients with respect to a given Z-basis of O have absolute value at most p?/2.

3.4 Generators of /\%pG UYK,)

Proposition 1(i) and Equation (10) show that both sides of (12) vanish for 6 € /\%pG Ul(Kp)+,
so we only need a set of generators modulo this submodule. For the L.H.S. of (12), Propo-

sition 1(i) shows that the same is true for 6 € (/\Z UMK )) . However for the R.H.S.

we have only managed to prove this under the assumption p { |G | (see [So3, Proposition 8]),

so we proceed as follows. For the minority of examples considered where p divides |G|, we
simply test (12) for all § in the N (N — 1)-element set W := {v, Av, : 1 < s <r < N},
with V' = {v1,...,vn}, which clearly generates all of /\;pG UY(K,) over Z,G. For the rest of
this subsection we will assume p 1 |G| and describe a second procedure to construct a subset

W' C W generating A2  U'(K,) modulo /\Z UK, ) (/\Z UK, )> and such that
P tor

|W’| is much smaller than |[IW| (see below). By the above remarks, it will "then suffice to
test (12) for all # in W’. A generic element of W will be denoted #. Even for integers
M somewhat greater than n + 1, the computation of s/ (0) modulo pM7Z,G~ is relatively
quick compared with that of Hy/kn(nk+/x,s,0) in (Z/p"1Z)G~. We turn this fact to our
advantage by using s/, itself to determine W’. Indeed, it is obvious from Proposition 1(i)
that W’ will have the required property if and only if Sg/; equals the Z,G~-submodule
(sk/k(0) - 0 € W)y e of Q,G™. We construct such a W’ by means of an explicit isomor-
phism from Q,G~ to a product of fields which we now describe.

Since G is small, it is easy to compute a set R~ of representatives of the orbits of the odd,
irreducible characters y : G — Q* under the action of Gal(Q/Q). The Q-linear extension
of each such character x defines a homomorphism from QG~ to F, := Q(x) such that the
product over x € R~ is a ring isomorphism X~ : QG — erR, F,. Tensoring over Q with
Q, we get the first isomorphism, X, below.

Q¢ 5 [[(Fxe) = I I Fux (18)

XER~ XER™ PESp(Fx)
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The second, Z,, is the product over x € R™ of the isomorphisms from F\ ®Q, to the product
of the completions of F) at primes above p, the latter taking a ® x to the vector (zigp(a))yp.
Let us write the composite isomorphism Z, o X as a =[] [[p 9. We identify Z,G~
with ((1 — ¢)ZG) ® Z, considered as a subring of QG~ ® Q, which we are identifying with
Q,G™. It is clear that X sends Z,G™ into [[,z-(Oy ® Z,) where O, = Z[x] = Op,
and that the image surjects onto each component (since p # 2). For a given x € R™, let
us write e(y) for the sum of the idempotents in QG belonging to the irreducible characters
in the Gal(Q/Q)-orbit of y. It is easy to see that e(x) lies in (1 — ¢)|G|'ZG inside QG~
and hence that e(x) ® 1 lies in Z,G~ (since p 1 |G]|). The orthogonality relations imply
that X "(e(x) ® 1) has component 1 at x and 0 elsewhere. It follows that Z,G~ is sent
isomorphically onto er r- (O ® Zy) by X, . Hence a maps it isomorphically onto the
image of the latter under Z; which, by standard facts, is erR— H&BGSP(FX) O,p, where
O, denotes the ring of integers of F) y. The values of x are roots of unity of order prime
to p. It follows that F,/Q is unramified at p so that each O, g is a complete d.v.r. with
maximal ideal pO, .

Both &g/, and Z,G sk /() (for any 6 € W) are Z,G~ submodules of Q,G~. Hence,
for each pair (x,B) and each 6 € W there exist m(x,P) and m(x,P;0) in Z U {oo} such
that (taking p™ = 0):

(Sryp) = H H PO, ¢ and (Z,G sk (0)) = H H pmeBNO o

XER™ PESp(Fy) XER™ PeSp(Fy)

Of course, m(x,P;0) is just ord,(c,qp(sk/k(0))), while m(x,B) < oo by Proposition 1(ii)
and m(x,P) > 0 since the Integrality Conjecture is known for p 1 |G| by [So3, Cor. 1]. The
properties of d.v.r.’s give the equivalence

Sk = (5x/k(0) : 0 € W)z,6- <= m(x,B) = min{m(x,B;0) : 0 € W} for all (X,&Bg |

19

Since the first equality holds by construction of W, so must the second and in particular

m(x,B;0) > 0 Vy,PB,0. For each pair (x,P) we define Wi (x,B) to be the non-empty

subset of W on which m(x,J;0) attains its minimum. By the above, Wiy (x, ) = {0 €
W m(x, :60) = m(x, F)}-

The construction of W’ begins by using Proposition 3 to compute an approximation to
sg/k(0) for each 0 € W, with a guaranteed p-adic precision of p~M for a moderate value of
M >n+1, e.g. M =n+3. Since each 6 is already expressed as u; Ausy for ‘global’” elements
u; and wug in the sense of Remark 7(ii)), the latter and Proposition 3 naturally give rise
to an approximation in QG ™, which we somewhat abusively write as sx/;(6; M), such that
sk(0) — s(0; M) € pMZ,G~. Now, fixing x € R~ and P € S,(F)), we may compute the
values ord,(c,, p(s(6; M))) one by one for each § € W, since these are just ordg(x(s(6; M))),
by construction of a. Suppose W_y(x, B, M) is the subset of those 6 in W for which we find
ord, (o, p(s(6; M))) < M. By the ultrametric inequality, if 6 lies in W (x, B, M) then we
must have m(x,B; ) = ord, (o, u(s(0; M))). Otherwise we know only that m(x,;60) > M.
This means that if Wy, (x, P, M) is non-empty, we may compute Wi (x,B) as the subset
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of Wen(x, B, M) on which ord, (o, p(s(6; M))) attains its minimum, and then pass to the
next pair (,P). However, in a very small number of examples we encountered a pair (x, )
for which W_p(x, B, M) = & for the initial value of M. In this case we simply recalculated
the s(0; M)’s with a larger value of M until W_y(x, B, M) # @ for that pair and then
continued with the increased value of M. This simple hit-and-miss procedure terminated
rapidly enough: in all cases we were able to determine Wi, (x, B) for all pairs (x, B) without
ever taking M > n + 5.

The equivalence obtained by replacing W by W' in (19) shows that a subset W’ C W will
have the required property iff W’ N Wiin(x,B) # @ for all pairs (x, ). Picking an element
at random from each Wi, (,B) would give a subset W’ whose cardinality could not exceed
the number of pairs (x,9) which in turn is at most dimg,Q,G~ = |G|, by (18). This is
already much smaller than || in most cases. In practice, however, there was a tendency
for mx,‘ﬁ Winin (X, PB) to be non-empty, so we could simply take W’ = {6y} for any 6, in this
intersection. This tendency is explained by the fact that, as a submodule of finite index
in Z,G~ (which is a product of d.v.r.’s), G/ is automatically free over Z,G~ with one
generator. While there is no guarantee that W contains such a generator, it is not surprising
that it often does. In fact, if this failed for our initial choice of W, the best practical solution
was simply to randomly modify W once or twice until it did (e.g. by changing the elements
a; and x; ; used in Prop. 4 to construct V'). We thus achieved |W’| =1 in all cases without
too much difficulty.

REMARK 9 The procedure described above for p { |G| determines the values m(y,P) for
all (x,B) as a by-product. However, they are also given explicitly by ‘index formula’ (31)
of [So3] (see also (32) of ibid.). One should take ‘¢’ to be the composition of y with any
embedding Q — @p inducing B. Using this formula, one could in principle select the
initial value of M to be greater than the maximum of the m(x,B)’s, thereby ensuring that

Wen(x, B, M) # @ for all (x, ).

3.5 Computation of ng+ ;. 1

We need to determine the Rubin-Stark element 7+ g1, that is, the unique (conjectural)
element of /\?QGQUSl(KJF) that satifies the eigenspace condition w.r.t. (S!,d,G) and Equa-
tion (5). The first statement in the Congruence Conjecture tells us to expect N+ /x5 to lie
in ZgyNo,s(K*/k). (As noted in Remark 5, this is also predicted by Conjecture B’ of [Ru].)
Assuming this and also p 1 |G|, we shall now sketch a proof that ng+ ;g1 must in fact be of
the rather more precise form

1
Nr+ kst = (1 ® ag) (5 ® (g1 A 82)) for some €1,e5 € Uspy(K+) anda € Z, pta (20)

where S(p) := S, US,. First, by Remark 1, these hypotheses imply ng+ /.51 = (1 ® ag1)(7)
for a (unique) 7 € Z,) ® /\%G Usi(KT). Identifying the latter module with /\dZ(p)@ Zpy @
Usi(K™T), we may write 7 = ZZL T1,; A xa; where &1, 29, € Zp) @ Ugi (KT). Writing eg:
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for the idempotent eg1 54 € |G|7'ZG C Z(p)é, the eigenspace condition gives

N

N+ /kst = est(1® ag) () = (1@ ag)(es) = (1® Ofsl)(z es1y; N eg1y ;)
i1

Now consider Ag1 := eg1(Zp) ® Usi (KT)) as a module over the ring es1Z )G which is a
product of p.i.d.’s (again because p 1 |G|). Since p # 2, Ag: is Z-torsionfree. Moreover QAg:
is free of rank 2 over es1QG. (This follows from the definition of egi 5 ¢ and the fact that

dime(e,-1,6CUs1 (KT)) = ords—oLgc+ 11 (s, x) for all x € G.) It follows easily that Ag: is
free of rank 2 over eg1Z,)G and it is not hard to see that any pair of basis elements can be
written - ® ay, - ® ag where p{ ay,ay € Z and and ay, oy lie in (|Gleg)Ugi (KT). Writing
each eg11; and eg1 29 in such a basis, we conclude that 7 is a Z ) G-multiple of 1® (1 Aag).
Equation (20) will clearly follow if we can show (|Gles1)Usi (K1) C Uggy(K™T). It ST = S(p),
this is immediate. Otherwise [S*| > d + 1 and [So3, eq. (13)] shows that Np, eg1 = 0 where
Np, € ZG is the norm element of the decomposition subgroup Dy C G for any prime
q € S'\ Sx. Thus every element of (|Gleg:)Ugi(K™) is killed by every such Np, which
implies that, in fact, (|Gles1)Usi(KT) C Us(K*) i.e. in this case, we can actually take
1,62 € Op, in (20).

Let us write U (p) for Q@ A} 5 Us(p) (K ) considered as a QG-submodule of A%GQUSI (KT).
If p 1 |G|, we have just shown that the Congruence Conjecture implies (20) or, equivalently,

1
Mic+ /st = ® (61 Neg) € esild(p)  for some e1,e5 € Ugpy(Kt) anda € Z, pta  (21)

If p||G| and we assume only that the Rubin-Stark element ny+ ;51 exists, then similar but
simpler arguments (replacing Z,) by Q) still show that

1
NK+/k,st = a X (61 A 62) S 6512/{(]9) for some £1,€9 € Us(p)(K+) (22)

and also that egil (p) is free of rank 1 over eg1QG. These observations motivate the follow-
ing procedure for determining 7x+/;,s1 which is much simpler than the one used in [R-S1]
but still sufficient for present purposes. First we compute an eg1QG-generator of egild(p)
in the form 1 ® (71 A 72). For this, we compute a Z-basis modulo {+1} of the f.g. mul-
tiplicative abelian group Ugp)(K*). (Note that functions to perform this computation
are implemented in PARI/GP.) Once a basis is known, we use it to construct two ran-
dom elements 71, 72 in Ugp)(KT). If 1 ® (11 A 72) does not lie in esild (p) we replace,
say, 71 by (|Gles:)y1 so that it does. Then 1 ® (v A7) will generate eild (p) if (and, in
fact, only if) x(Rx+ /.50 ((1 ® 71) A (1 ® 71))) is non-zero for all characters xy € G such
that ords—oL g+ /k,s(s, x) = 2. These conditions can be unconditionally tested using a good
enough approximation to Rx+ /5.5 ((1®71) A (1® 1)), calculated as a group-ring determi-
nant involving real logarithms of (absolute values of) conjugates of 7, and ~,. If they are not
satisfied, we recommence with two new random elements +; and ~,. (For our initial ‘random’
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choices of v; and v, we actually took pairs of distinct elements of the computed Z-basis of
Usp)(K). In the few cases where this did not provide a generator, we then looked at pairs
consisting of ‘simple’ random linear combinations of these basis elements.)

We now know that the unique element 7+, g1 — if it exists — will be equal to A(1 ®
(71 A2)) for any A € QG satisfying

AR+ prosi (1@ 1) A (1@ 7)) = O% 4 6 (0) (23)
(by (5)). We compute an approximation of @%l kst (0) in RG using its expression in terms
of Artin L-functions (see the beginning of Section 2.2), once again using the methods of
[D-T], or [Co, Section 10.3]. Then we can find a solution A € RG of Equation (23) to a
high precision. Standard methods allow us to compute an element Ay € QG very close to
A and with coefficients of small height. We then write Ag as %Bg where a € Z-y and By
is an element of ZG, the g.c.d. of whose coefficients is prime to a. Assuming that A is in
fact an ezact solution of Equation (23) (see below) we now have the desired expression (22)
with £ = 71, €9 = By 2. However, we shall see in the next section that the computations of
Hy e (Mict .51, 0) are much easier if (21) holds. Thus if p divides a we find a new generator
1 ® (71 A 72) and repeat the process. We have justified above the expectation that (21) is
possible whenever p { |G| and indeed the above process terminated with such an expression in
all our examples of this type. More surprisingly, perhaps, it also terminated with a solution
of (21) in all our examples with p||G|. Very similar behaviour was observed in [R-S1] (see
also [Sol, Rem. 3.4]). Thus it seems, experimentally at least, that Rubin-Stark elements
are ‘usually’ better-behaved in this sense than the various conjectures predict, although no
convincing sharpening has yet been proposed along these lines.

REMARK 10 We need to convince ourselves that this is indeed the Rubin-Stark element
and not some ad hoc element of egild, constructed simply to satisfy Equation (5) to the
working precision. A first significant fact is that while we are working with a large precision
— usually of 100 digits — the coefficients of Ay are of very small height. In almost all examples
numerators and denominators of the coefficients of Ay are less than 10 in absolute value,
the largest ones being in example E6 where they have up to 6 digits. However this is still
considerably smaller than one would expect if A were a random element of RG. A second
and even more convincing way to reassure ourselves that we really have the Rubin-Stark
clement is as follows. Once we have calculated an element 7 = £ ® (g1 A e2), say, of esild (p)
as a candidate for ng+ /i 51, we significantly increase the working precision, say from 100 to

150 digits. We then recompute Rg+ /(7)) and @%l/k 51(0) to the new precision and check

whether they still agree. If 7 were an ad hoc element, constructed to satisfy Equation (5) to
a precision of 100 digits, then there would be no reason for it to satisfy it to 150 digits. The
fact that it always did so, without readjustment, was, we felt, convincing enough evidence
to take ng+/p.51 = 1.
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3.6 Computation of Hy/., and Verification of the Conjecture

To complete the verification of the Congruence Conjecture, it suffices to check that sk (6)
lies in Z,G~ and that the two sides of (12) agree, for all # in an appropriate subset of
/\%pa U'(K,). The determination of this subset, as well as the treatment of the L.H.S., is
divided into three cases. In Case 1 (i.e. examples B6, C8, D7, D9 and D11) ng+ /51 = 0
because eg1 = 0. It then suffices to calculate an approximation to sx/.(0) up to an element
of p"™Z,G~ for each 6 in W, the initial Z,G-generating set for /\;pG U'(K,) constructed in
Section 3.4. These approximations are calculated using Proposition 3 with M =n + 1 and
the conjecture is verified if and only if each actually lies in p"™'Z,G~. In the remainder of our
examples, N+ k51 is non-zero and the computation of the R.H.S. of (12) is usually lengthy.
In Case 2, p 1 |G| and we explained at the beginning of Subsection 3.4 why it is sufficient

to check (12) for each @ in the much smaller set W’ generating modulo /\%pc U 1(Kp)Jr +
(/\%pG U 1(Kp)> constructed there. This very construction included the computation of

tor

an element of QG~ approximating sx/x s(€) up to an element of p"*'Z,G~ (at least) for all
0 € W’. In Case 3, p||G| and we are unable to reduce W. So, once again we use Proposition 3
to calculate an approximation to s /x(6) up to an element of p"*'Z,G~ for each 0 in the full
set W.

It remains to explain the computation of the R.H.S. of (12) in the second and third
cases above, where N+, = ng+/;s1 # 0. The 7; are realised as elements of Gal(F/Q)
and since F' contains K and hence fi,»+1, the quantity s, (7172) may be determined directly
by calculating 5;}1?1. The computation of H pn(nx+ k. 0) is greatly facilitated by the fact
that Equation (21) — hence also (20) — holds in every case, as already noted. Indeed, from
diagram (11) it follows that

Heprom(Mict i 0) = @ " Hicpn(er A2, 0) forall 0 € A; o U'(K,) (24)

where @ is the reduction of a modulo p"*!. Recall that every # € W is ‘global’ by con-
struction, i.e. of the form ¢(vy) A t(vq) for some vy,vy € K*. Therefore, using (24), the
conditions satisfied by the ¢; and the definitions of Hy /i, and [, -]k n.q, it suffices to be able
to calculate [, ¢(v)]k,, for any v € K* and € € Ug,) (K ™). The next Proposition shows how
we did this. (The basic idea is well-known, see e.g. [Gr, § I1.7.5].) Let Q be any prime ideal
of Okg. If Q ¢ S,(K) then reduction modulo 9 gives an injection jin+1(K) — (O /Q)* so
that p"™|(NQ —1) and the image is the subgroup of (NQ —1)/p"*!-th powers in (Ox/Q)*.
Thus, for each such Q there is a homomorphism apry,, : (Ox/Q)* — Z/p"*'Z (the addi-

tive, p"TL-th power residue symbol modulo Q) uniquely defined by f_apro""(b) = p(va-1/ptt

— pn+1
for all b € (O /Q)*. For the small values of p"*' occurring here, apry,, is quick to calculate
directly and we have:

Proposition 6 Ife € Ugy,)(K") and v € K*, then

e, (@)=Y orda(v)aprg,()

0¢Sp(K)
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where Q runs over the (finite) set of prime ideals Q of Ok not dividing p (and such that
ordg(v) #0).

PROOF Let L be the Kummer extension K (¢'/?""") and write h. for the isomorphism
Gal(L¢/K) — Z/p"™'Z given by h.(g) = Ind,(g(s'/?""")/e"/?"™). (Everything is indepen-
dent of the choice of root £'/7"™" ) For each prime ideal Q of Ok we choose a prime ideal Q
dividing 9 in O and write recgq for the composite homomorphism

K* =% KZ — Dg(L°/K) — Gal(LF/K)

where the second homomorphism is the local reciprocity map. (This is independent of the
choice of .) It follows easily from the definition and alternating property of the local Hilbert
symbol (-, ) g, prtt (see [Ne, Prop. 3.2]) for B € S,(K) that

he(recy(v)) = Indn(L;(Lm(U), tp(e))) = —Indn(bgil(l/qg(&f), 1p(V)) ke prt1)  for all P € S, (K)
(25)
On the other hand, if Q ¢ S,(K) then the extension L°/K is unramified at Q (since € €

Usp) (K™)) and so recq(v) = agi‘zﬁg where 0g e/ denotes the Frobenius element. Since

/7" is alocal unit at 9, the definition of oo 1<k tells us that the image of the p™*'th root
of unity UQ,LE/K(Z‘?UPWI)/f‘fl/pn+1 in (O /Q)* C (Op-/Q)* is equal to that of {NVA-D/F"""
It follows that

he(recg(v)) = ordg(v)he(0g Le/x) = ordg(v)aprg,(€) for all Q € S,(K) (26)

In particular h.(recq(v)), and therefore recq(v), is trivial for almost all Q. Finally, global
class-field theory tells us that the product of recq(v) over all prime ideals is equal to 1 €
Gal(Lf/K). (Since K is totally complex the local reciprocity map is trivial at archimedean
places.) Using this and equations (7), (25) and (26), we get

e, (v Z he(recg(v Z he(recq(v Z ordg(v)aprg ,(€)

PeSp (K QO Sp (K QZSp(K)

as required. O

REMARK 11 In order to compute Hy /xn N+, 0) for 6 in W (or W') using the Proposition,
one needs to compute the prime-ideal factorisation of (v;) and (vg) in K where 6 = ¢(vy) A
t(vg). Since, moreover, the v;’s lie in O, the first step is to factor the absolute norm of v;,
1 = 1,2. Unfortunately, the v;’s constructed by the method of Propositions 4 and 5 tend
to have very large norms which can be divisible by more than one large prime number and
hence virtually impossible to factor. We get around this problem by perturbing one or more
of the v;’s, i.e. replacing v; by v} := v; + p"*2x; for a random element z; € O for i = 1,2.
Remark 8 (with [ = n + 1) implies that ¢(v]) A ¢(v}) = 6 modulo p™*? /\EPG U'(K,) and so
Hy jion (it /1, 0) = Hicpon(Mict e, t(07) A o(vh)). Thus we may proceed as follows. We set
some time limit, say two minutes during which we try to factor the norm of of each v;. If
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we fail, we just perturb one or more of the v;’s as above and try again. Indeed, although
vi’s usually have norms of about the same size as those of the v;’s, it usually happens that
after several tries, we find norms that are (relatively) easy to factor, allowing us to calculate

Hic e (M iy 1(07) A 1(v)) 4.6 Hypen (Nt a5 0)-

4 Results of the Computations

4.1 An Example

We illustrate the numerical computations with example B1 (see next subsection). We have
p=3and n = 0, k is the real quadratic field Q(v/6) (thus p ramifies in k/Q), K is the
ray-class field of k of conductor 4p where p is the unique prime ideal of £ dividing 3, and
K = K*(&). The extension K+ /k is of degree 4 with Galois group G isomorphic to CZ, and
the extension K/k has degree 8 and its Galois group G is isomorphic to C3. In particular,
p does not divide |G]|.

The extension K/Q is a Galois extension, but is not abelian, and we have K = Q(v)
where v is a root of the irreducible polynomial

X160 —8X1 448X M — 196X ™ + 642X 1% — 1668 XM + 3580X 10 — 6328 X + 9297 X8
— 11276 X7 + 11224 X% — 9024 X° + 5736 X* — 2780X 3 + 972X2% — 220X + 25

We find pOg+ = P2 (so that e, (KT/k) = fp, (KT/k) = 2) and POk = PP
Finally, we have S = S! = {00y, 009, p, g2} where 20;, = g3.

Let 01, 09, 03 be three distinct k-automorphisms of K of order 2 such that G = (o1, 09, 03),
with the convention that o3 : v +— 1—v is the complex conjugation of the CM field K. Using
the method of Subsection 3.2, we find that

1
Gp = g3 (05— 1) (3+2V8+ 01 +010m + (3—2v8) o)

With the notations of Subsection 3.3, we have t = 1, hy = 2 (with p(1) = p, B(1,1) =B,
PB(1,2) = P') and egp1 ;) (K/Q) = 4for j = 1,2. Thusl; = 7, and Propositions 4 and 5 enable
us to construct 6 elements such that the set W of wedge product of two of these generate
/\EPG U'(K,) over Z,G. We now use the method (and the notations) of Subsection 3.4 to find
a smaller generating subset. Let x;, i = 1,2, 3, be the character of G defined by x;(0;) = —1
and x;(o;) = 1 for j # i. It is easy to see that the set R~ := {x3, X1X3, X2X3: X1X2X3} 18
a system of representatives of the orbits of the odd, irreducible characters of G under the
action of Gal(Q/Q). Thus, we have F, = Q for all y in Equation (18), and the equation
gives

QG ~Q,
We compute that

m(xs, (p)) = m(x2x3, (p)) = m(xix2x3, (p)) =0 and m(x1xs, (p)) =1
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and after several tries, we find a set W such that ﬂxe - Wain(X, p) is non-empty and we
take in this set the element 6y = ¢(v1) A ¢(v2) where

UL = Trooe ——(10582210" — 79154861'* + 465515100 — 182313497v'* + 5793968261/
— 14443186730 + 29767160041 — 50026606972° + 694520797517
— 78511024250° + 71702330861° — 51552801831* + 28224565371°
— 11058857141 + 2783287861 — 33994775)
and

o1 _ 15 14 13 12 11
Vg = 17095( 383541v°° 4 2749923 16006808y + 61029582v 190600453

+ 46266223500 — 93034692007 + 15130045241° — 202623641707
+21841910920° — 18818368871° + 1247007651v* — 6097670731/°
+ 1985802881 — 361189661 + 1344335)

By the result of Subsection 3.4, we know that 6, generates /\%pG U'(K,) over Z,G modulo
/\Z UK, ) </\Z UK, )) so to prove CC(K/k,S*, p,n) it suffices to establish (12)

with @ = 6. Note that the L.H. S “of (12) has already been computed. For the R.H.S., the
field Kt is generated over Q by a root A of the irreducible polynomial

PA(X) = X5 —4XT —4X5 +20X° +4X* — 20X° —4X? +4X + 1

Using the methods described in Subsection 3.5, we find that the Rubin-Stark element is
given by
1
NK+/k = 16(51 A €g)

where
= —(6A7 — 22X% — 33\ 4+ 119A* + 52 — 121\* — 31\ + 7)

Cﬂl»—t

and

1
£y = 2—5( — 102282\ + 463929X° + 152556A° — 2073598)\"
+ 604836A% + 1722767\* — 413178 — 221449).

Note that e; and €, lie in O, and not just in Ug,) (K ™).
We now compute by Subsection 3.6!

Hrcjio(Nic+ 1, 00) = (03 — 1) (01 — 02 — 1) € (Z/37)G

I As mentioned in Remark 11, one needs to factor the norm of v; and v, to do this computation, but since
these are of about 17 digits, it is easy in this case.
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Finally, we can check that

5K/k(6’0) = HK/k,O(nKJr/k, 90) (mod 3)

and therefore CC(K/k, S, p,n) is satisfied (since we compute that our choice of 7 and 7
implies that ko(m72) =1 (mod 3)).

4.2

Tables

We have numerically verified that the conjecture C'C is satisfied in 48 examples. These
examples are divided into 4 types? of differing significance.

12 examples of type B: p =3, 5 or 7, n = 0, p does not divide |G|, K/Q is Galois but
not abelian;

16 examples of type C: p =3, 5 or 7, n = 0, p does not divide |G|, K/Q is non-Galois;

14 examples of type D: p =3 or 5, n = 0, p divides |G|, K/Q non-Galois (resp. Galois
but not abelian) if p = 3 (resp. p = 5);

6 examples of type E: p = 3, n = 1, p necessarily divides |G|, K/Q not abelian but
possibly Galois.

The examples are summarized in four tables, with one table for each type. The columns
of the tables have the following meaning:

the number of the example,

the value of p (it is either 3, 5 or 7),

the discriminant dj, of the real quadratic base field k (thus k = Q(\/dy)),
‘R’, ‘S’ or ‘I’ according to whether p is ramified, split or inert in k,

the conductor f(K) of K/k with the following notations: p = p(1), and p’ = p(2) if p is
split in k, q, is a prime ideal of k£ above a primer number ¢, and gj, is the other prime
ideal of k above g if ¢ is split in &,

the structure of the Galois group G as a product of cyclic groups,
the structure of the Galois group G as a product of cyclic groups,

the minimal polynomial Py of a generating element A of K over Q, so K+ = Q(\)
and K = Q(\, &),

2A fifth, type A, for which the extension K/Q is abelian, was used for testing purposes only. It is not
included because the CC' then follows from [So3, Thm. 5]. (Hypothesis 4, ibid. holds since pt2 = [k : Q)]).
3Note that the examples B8 and B9 differ only by the prime ideal in k above 7 dividing the conductor.
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e the decomposition in K /k of the primes ideals above p given as (e, 1) (K/k), fopi,1) (K/k), hi)
for i =1,...,t (see Subsection 3.3 for the notations),

e the cardinality of S!,
e the value of a (see Equation (21)),

e the nature of the Rubin-Stark element: a ‘0’ means that it is trivial, a ‘U’ means
that we found a representation as in (21) with ¢, € Oy, for i = 1,2. Recall from
Subsection 3.5 that this is to be expected in examples where p { |G| and |S*| > 4.
Interestingly, it turned out to be possible in most of our other examples as well. In
the remainder, indicated by a ‘p’ in this column, we were only able to satisfy (21) with
€1 € OIX(+ and g5 € Us(p)(K+).
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