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Abstract

The ‘Congruence Conjecture’ was developed by the second author in a previous
paper [So3]. It provides a conjectural explicit reciprocity law for a certain element
associated to an abelian extension of a totally real number field whose existence is
predicted by earlier conjectures of Rubin and Stark. The aim of the present paper is
to design and apply techniques to numerically investigate the Congruence Conjecture.

1 Introduction

The primary purpose of this paper is to provide numerical evidence for the ‘Congruence
Conjecture’. This first appeared as Conjecture 5.4 of [So2] but we shall refer here to the
improved and generalised version appearing as CC(K/k, S, p, n) in [So3]. Thus K/k denotes
an abelian extension of number fields, S a finite set of places of k, p an odd prime number
and n an integer, n ≥ −1. We suppose that k is totally real of degree d and that K is of CM
type and contains ξpn+1 := exp(2πi/pn+1). (More precise conditions on S will be explained
later.) In this set-up, we can say that the CC is a conjectural, p-adic, explicit reciprocity
law for the so-called Rubin-Stark element ηK+/k,S. We recall that ηK+/k,S is a particular
element of a certain dth exterior power of the global S-units of K+ (tensored with Q) which
is predicted to exist by Stark’s conjectures, as reformulated and refined by Rubin in [Ru]. It
is uniquely determined by the dth derivatives at s = 0 of the S-truncated Artin L-functions
of even characters of Gal(K/k).
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By way of illustration, consider the simplest case K/k = Q(ξpn+1)/Q, S = {∞, p} (so
d = 1). One can then prove that ηK+/k,S exists and equals −1

2
⊗ (1 − ξpn+1)(1 − ξ−1

pn+1).
Moreover, the CC then reduces to the explicit reciprocity law proven by Artin and Hasse
in [A-H]. This is a precise formula for the Hilbert symbol (1 − ξpn+1 , u)KP,pn+1 , for any
u ∈ U1(KP), which involves the p-adic logarithms of the conjugates of u over Qp. (Here
KP denotes the completion of K at the unique prime P dividing p and U1(KP) its group of
principal units.)

For the general case of the CC one must replace u by an element θ of a certain dth
exterior power of U1(Kp) (the principal, p-semilocal units of K). From θ and ηK+/k,S one
forms a d×d determinant of (additive, group-ring-valued) Hilbert symbols. The conjectural
reciprocity law takes the form of a congruence modulo pn+1 between this determinant and
sK/k,S(θ) (for any θ), where sK/k,S is a map defined explicitly in [So3] and [So2] using a
certain p-adic regulator and the values at s = 1 of the S-truncated Artin L-functions of odd
characters of Gal(K/k). More details of ηK+/k,S, this determinant, the map sK/k,S and the
precise formulation of CC(K/k, S, p, n) are given in Section 2.

In the case where K is absolutely abelian, the CC was proven (with some restrictions)
in [So3]: One reduces first to the case k = Q where ηK/k,S is essentially a cyclotomic unit (as
above) and the CC can be proven without restriction, replacing the Artin-Hasse law with
a generalisation due to Coleman. This case of the CC (or more precisely the connection it
makes between reciprocity laws and the map sK/Q,S) finds applications in Iwasawa Theory
related to some new annihilators of the class-groups of real abelian fields (see [So4]). This
gives one motivation for studying the CC more generally.

Unfortunately, there are very few cases with K not absolutely abelian in which CC(K/k, S, p, n)
can be proven, even partially (see [So3, §4]). Indeed for such K, one can’t even prove the
existence of ηK+/k,S except in very special cases (see Section 2.2). On the other hand, tech-
niques for the numerical computation of ηK+/k,S were developed by the authors in [R-S1]. A
slight simplification of these methods is used in the present paper to identify ηK+/k,S with
virtual certainty. The rest of the paper is concerned with the detailed numerical verification
of 48 varied cases of the CC using the computed values of ηK+/k,S.

In order to make the computations manageable we still need to restrict the parameters
(K/k, S, p, n): in all our test cases k is (real) quadratic, p ≤ 7 and n = 0 or 1. (On the other
hand, K/Q is always non-abelian and frequently non-Galois). The precise set-up is given at
the start of Section 3. We then explain in detail how we computed the objects appearing in
the CC, in order: the map sK/k,S, economical sets of (Galois) generators for U1(Kp) and its
exterior square, the element ηK+/k,S and the Hilbert-symbol-determinant HK/k,n(ηK+/k,S, θ).
Some of our techniques are well known and even implemented in PARI/GP (which is also the
medium of all our computations). However, we believe that the majority are innovative and
may well find applications elsewhere. It is worth mentioning an important dichotomy which
emerges in our examples, between the minority of cases in which p divides [K : k] and the
majority in which it does not. On the one hand, the former cases provide a more probing test
of the conjecture. For instance, since k is quadratic, the condition n = 1 requires p|[K : k].
On the other hand, cases of the latter type are much quicker to compute.
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Finally, Section 4 presents the results of the computations. One simple but characteristic
example is explained in detail. Data from the remaining ones are summarised in tables at
the end of the paper.

Some notations and conventions: All number fields are finite extensions of Q within Q̄
which is the algebraic closure of Q within C. If F is any field and m any positive integer, we
shall write µm(F ) for the group of all mth roots of unity in F . We shall abbreviate µm(C)
to µm and write ξm for its generator exp(2πi/m). Suppose L/F is a Galois extension of
number fields and Q a prime ideal of OL with q = F ∩Q. We shall write DQ(L/F ) for the
decomposition subgroup of Gal(L/F ) at Q and similarly TQ(L/F ) for the inertia subgroup.
We shall identify DQ(L/F ) with the Galois group of the completed extension LQ/Fq and
TQ(L/F ) with its inertia group in the usual way. If R is a commutative ring and H is a
finite group, we shall write simply RH for the group-ring often denoted R[H].

The second author wishes to thank Cristian Popescu and UCSD for their hospitality
during the sabbatical year in which part of this paper was written.

2 The Congruence Conjecture

2.1 The Map sK/k,S

Given an abelian extension K/k of number fields as above, we write G for Gal(K/k) and
S∞ = S∞(k) and Sram = Sram(K/k) respectively for the set of infinite places of k and the
set of those finite places of k which ramify in K. We always identify finite places with prime
ideals so, for instance, Sram consists of the prime factors of the conductor f(K) of K/k. We
denote by Sp = Sp(k) the set of places of k dividing the prime number p 6= 2. The finite S
appearing in the CC must satisfy the hypothesis

S contains S1 := S∞ ∪ Sram ∪ Sp (1)

which we assume henceforth. Recall also that we are assuming K is CM so that [K : K+] = 2
where K+ is its maximal real subfield which contains k. The extra assumption that K
contains µpn+1 , which is necessary for the CC, may be dropped until further notice.

If s is a complex number with Re(s) > 1, we define an Euler product in the complex
group ring CG of G by

ΘK/k,S(s) :=
∏
q6∈S

(
1−Nq−sσ−1

q

)−1
(2)

(The prime ideal q of Ok ranges over all those not in S and σq denotes the corresponding
Frobenius element of G.) Indeed, the condition Re(s) > 1 implies that (1 − Nq−sσ−1

q )
lies in CG× and that the product converges absolutely. ΘK/k,S(s) is sometimes called the

‘equivariant L-function’ because, if Ĝ denotes the group of (complex, irreducible) characters
of G, then one can write ΘK/k,S(s) =

∑
χ∈Ĝ LK/k,S(s, χ)eχ−1,G. Here, for any χ ∈ Ĝ, we write

eχ,G for the corresponding idempotent 1
|G|

∑
g∈G χ(g)g−1 of CG and LK/k,S(s, χ) for the (S-

truncated Artin) L-function, i.e. the function whose Euler product for Re(s) > 1 is obtained
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by applying χ−1 termwise to the R.H.S. of (2). Since LK/k,S(s, χ) extends to a meromorphic
function on C so does ΘK/k,S(s) (with values in CG). Now let c denote the element of G

determined by complex conjugation, so that Gal(K/K+) = {1, c} = 〈c〉. A character χ ∈ Ĝ
is called odd (resp. even) if and only if χ(c) = −1 (resp. χ(c) = 1). If R is any commutative
ring in which 2 is invertible, we write e± for the two idempotents 1

2
(1 ± c) ∈ R〈c〉. Any

R〈c〉-module M then splits as M+ ⊕ M− where M+ = e+M is the ‘plus-submodule’ and
M− = e−M is the ‘minus-submodule’. Taking R = C and M = CG, we get a corresponding
decomposition ΘK/k,S(s) = e+ΘK/k,S(s)+e−ΘK/k,S(s) =: Θ+

K/k,S(s)+Θ−
K/k,S(s), say. Clearly,

Θ−
K/k,S(s) =

∑
χ odd LK/k,S(s, χ)eχ−1,G and since LK/k,S(s, χ) is regular at s = 1 whenever χ

is not the trivial character χ0, it follows that Θ−
K/k,S(s) is also regular there. We set

a−K/k,S :=

(
i

π

)d

Θ−
K/k,S(1) =

(
i

π

)d ∑
χ∈Ĝ

χ odd

LK/k,S(1, χ)eχ−1,G (3)

In this notation, it is not hard to see that a−K/k,S lies in idRG−. In fact it lies in Q̄G− and
indeed a much finer statement will be proven in Proposition 2.

For each P ∈ Sp(K) we write KP for the (abstract) completion of K at P and ιP
for the natural embedding K → KP. Let Kp denote the ring

∏
P∈Sp(K) KP endowed with

the product topology and the usual (continuous) G action (see e.g. [So3, §2.3]). Thus the
diagonal embedding ι :=

∏
P ιP : K → Kp is dense and G-equivariant. We fix once and

for all an algebraic closure Q̄p of Qp (equipped with the usual p-adic absolute value | · |p),
an embedding j : Q̄ → Q̄p and a set τ1, . . . , τd of left coset representatives for Gal(Q̄/k) in
Gal(Q̄/Q). For each i = 1, . . . , d, the embedding j ◦ τi|K : K → Q̄p extends to a continuous
embedding KPi

→ Q̄p for a unique prime ideal Pi ∈ Sp(K), and we define δi : Kp → Q̄p

to be its composite with the projection Kp → KPi
. (In general, the map i 7→ Pi is not

injective, nor surjective onto Sp(K), but the map i 7→ Pi ∩ Ok is surjective onto Sp(k).)
For each P ∈ Sp(K), we write U1(KP) for the group of principal units of KP considered
as a finitely generated Zp-module. We write U1(Kp) for the group

∏
P∈Sp(K) U1(KP) of ‘p-

semilocal principal units of K’ considered as a ZG-submobule of K×
p and hence as a f.g.

multiplicative ZpG-module. (Warning: nevertheless, we shall often use an additive notation
for the ZpG-action on U1(Kp).) It is clear that |δi(u) − 1|p < 1 for every u ∈ U1(Kp) and
each i ∈ {1, . . . , d} so that logp(δi(u)) ∈ Q̄p is given by the usual logarithmic series. The
formula λi,p(u) :=

∑
g∈G logp(δi(gu))g−1 then defines a ZpG-linear map λi,p : U1(Kp) → Q̄pG

and letting i vary we get a unique ZpG-linear ‘regulator’ map Rp from the exterior power∧d
ZpG U1(Kp) to Q̄pG such that Rp(u1 ∧ . . . ∧ ud) = det(λi,p(ul))

d
i,l=1. (The dependence on j

of δi, λi,p and Rp will be denoted by a superscript ‘j’ where necessary.) We can now define
a map

sK/k,S :
∧d

ZpG U1(Kp) −→ QpG
−

θ 7−→ j(a−,∗
K/k,S)Rj

p(θ)

(4)
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Some explanations are in order. First, x 7→ x∗ is the unique C-linear involution of CG
sending g to g−1 for all g ∈ G. Since a−K/k,S lies in Q̄G−, so does a−,∗

K/k,S and we apply j

coefficientwise to get an element of Q̄pG
−. Multiplying the result by Rj

p(θ) in Q̄pG gives
sK/k,S(θ) which is a priori another element of Q̄pG

−. However one can show that it actually
lies in QpG

− and, moreover, is independent of the choice of j (see [So2, Prop. 3.4] and [So3,
Prop. 5]). Although the map sK/k,S is not independent of the choice and ordering of the τi’s,
the dependence is simple and explicit (see [So3, Rem. 2.6] for more details).

It is clear from its construction that sK/k,S is ZpG-linear. This implies in particular that

it vanishes on
∧d

ZpG U1(Kp)
+
, so one loses nothing by regarding it as a map

∧d
ZpG U1(Kp)

−
→

QpG
−. This was the point of view of [So3] but for the present purposes it is slightly more

convenient to take the domain to be the whole of
∧d

ZpG U1(Kp). In this context, the statement

(and proof) of Prop. 6 of ibid. give

Proposition 1

(i). ker(sK/k,S) =
∧d

ZpG U1(Kp)
+

+
(∧d

ZpG U1(Kp)
)

tor
and the second summand is finite.

(ii). im(sK/k,S) spans QpG
− over Qp. 2

From now on we denote im(sK/k,S) by SK/k,S.
The ‘Integrality Conjecture’ of [So3] is precisely the statement that SK/k,S ⊂ ZpG

−. We
shall not deal with this conjecture per se in the present paper because, in the cases we shall
study, it can be subsumed into the stronger Congruence Conjecture.

2.2 Rubin-Stark Elements and the Pairing HK/k,n

Now let Ḡ := Gal(K+/k) ∼= G/{1, c}. The C-linear extension of the restriction map
G → Ḡ has kernel CG− and defines an isomorphism CG+ ∼= CḠ identifying Θ+

K/k,S(s) =∑
χ even LK/k,S(s, χ)eχ−1,G with the function ΘK+/k,S(s) =

∑
χ∈ ˆ̄G

LK+/k,S(s, χ)eχ−1,Ḡ. Rubin-

Stark elements are conjectural elements of a certain exterior power of the S-units of K+

which are supposedly associated with the dth derivative of the Taylor series of ΘK+/k,S(s)
at s = 0. Indeed, using the functional equation for primitive L-functions, one can show (see

e.g. [Ta, Ch. I, §3]) that ords=0LK+/k,S(s, χ) ≥ d for all χ ∈ ˆ̄G. (For χ = χ0 one needs the
fact that |S| ≥ d + 1, by Hypothesis 1.) Thus

ΘK+/k,S(s) = Θ
(d)

K+/k,S(0)sd + o(sd) as s → 0

where Θ
(d)

K+/k,S(0) denotes the element
∑

χ∈ ˆ̄G
1
d!

(
d
ds

)d |s=0LK+/k,S(s, χ)eχ−1,Ḡ of CḠ. Let eS,d,Ḡ

be the (possibly empty) sum of the idempotents eχ−1,Ḡ ∈ CḠ over those χ ∈ ˆ̄G for which
ords=0LK+/k,S(s, χ) is exactly d. We refer to eq. (13) of [So3] for an explicit formula for eS,d,Ḡ
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demonstrating that it actually lies in QḠ. An element m of any QḠ-module M will be said
to ‘satisfy the eigenspace condition (w.r.t. (S, d, Ḡ))’ iff it lies in eS,d,ḠM , i.e. m = eS,d,Ḡm.

It is not hard to see that Θ
(d)

K+/k,S(0) lies in RḠ and satisfies the eigenspace condition. In

fact, RḠΘ
(d)

K+/k,S(0) = eS,d,ḠRḠ.

Let us write US(K+) for the group of all S-units of K+, namely those elements of K+,×

which are local units at each place of K+ above a place of k which is not in S. We consider
US(K+) as a multiplicative ZḠ-module and the tensor product QUS(K+) := Q⊗Z US(K+)
and its exterior power

∧d
QḠ QUS(K+) as natural QḠ-modules. (Warning: we shall sometimes

use an additive notation for these.) For each i = 1, . . . d we define a ZḠ-linear map λi :
US(K+) → RḠ by setting λi(ε) :=

∑
g∈G log |τi(gε)|g−1. This ‘extends’ Q-linearly to a map

QUS(K+) → RḠ, also denoted λi, which in turn gives rise to a unique QḠ-linear regulator
map RK+/k from

∧d
QḠ QUS(K+) to RḠ such that RK+/k(x1 ∧ . . . ∧ xd) = det(λi(xl))

d
i,l=1.

We now define a Rubin-Stark element for K+/k and S to be any element η of
∧d

QḠ QUS(K+)

satisfying the eigenspace condition w.r.t. (S, d, Ḡ) and such that

Θ
(d)

K+/k,S(0) = RK+/k(η) (5)

One cannot currently demonstrate the existence of any η ∈
∧d

QḠ QUS(K+) satisfying (5) un-

less either K+ is absolutely abelian or all the characters χ ∈ ˆ̄G satisfying ords=0LK+/k,S(s, χ) =
d are of order 1 or 2. On the other hand, certain special cases of Stark’s conjectures for the
extension K+/k are essentially equivalent to the existence of such an η (see [So3, Rem. 2.3])
and one can, if necessary, ensure that it simultaneously satisfies the eigenspace condition
simply by replacing it by eS,d,Ḡη. This makes η unique once τ1, . . . , τd, and hence RK+/k,
have been fixed (e.g. by [Ru, Lemma 2.7]). Henceforth we shall therefore refer to such an el-
ement as the Rubin-Stark element for K+/k and S and denote it ηK+/k,S. It may be thought
of as a higher-order generalisation of a cyclotomic unit (or number).

From now on we shall assume that

K contains µpn+1 (6)

where n is the integer of the Introduction, assumed w.l.o.g. to be ≥ 0. Thus, for each
P ∈ Sp(K), ιP induces an isomorphism µpn+1(K) → µpn+1(KP) and the local Hilbert symbol
(α, β)KP,pn+1 ∈ µpn+1(KP) is defined for any α, β ∈ K×

P . (We shall use the definition of
the Hilbert symbol given in [Ne] rather than [Se] which reverses the order of α and β, thus
effectively inverting (α, β)KP,pn+1 .) Given any ε ∈ US(K+) and u = (uP)P ∈ U1(Kp) we
define [ε, u]K,n ∈ Z/pn+1Z by

[ε, u]K,n =
∑

P∈Sp(K)

Indn

(
ι−1
P (ιP(ε), uP)KP,pn+1

)
(7)

where Indn : µpn+1(K) → Z/pn+1Z is the isomorphism defined by ξ
Indn(ζ)

pn+1 = ζ for all ζ ∈
µpn+1(K). The pairing [·, ·]K,n : US(K+) × U1(Kp) → Z/pn+1Z is bilinear and one checks
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(cf [So3, eq. (18)]) that

[gε, gu]K,n = κn(g)[ε, u]K,n for all ε ∈ US(K+), u ∈ U1(Kp) and g ∈ G (8)

where, here and henceforth, we write κn for the cyclotomic character modulo pn+1. We shall
regard κn as a homomorphism Gal(Q̄/Q) → (Z/pn+1Z)× whose restriction to Gal(Q̄/k)
factors through G by (6) and is denoted by the same symbol. Thus, whether g lies in

Gal(Q̄/Q) or in G, we have, by definition g(ξpn+1) = ξ
κn(g)

pn+1 . Next we consider the pairing
[·, ·]K,n,G defined as follows

[·, ·]K,n,G : US(K+)× U1(Kp) −→ (Z/pn+1Z)G

(ε, u) 7−→
∑

g∈G[ε, gu]K,ng
−1

If h lies in Ḡ and h̃ is any lift of h in G, then a short calculation using (8) shows that

[hε, u]K,n,G = κn(h̃)h̃−1[ε, u]K,n,G (9)

for any ε ∈ US(K+) and u ∈ U1(Kp). Taking h = 1, h̃ = c gives [ε, u]K,n,G = −c[ε, u]K,n,G

in (Z/pn+1Z)G. In other words, [·, ·]K,n,G takes values in (Z/pn+1Z)G−. Let us denote
by κ∗n the unique ring homomorphism from ZḠ to (Z/pn+1Z)G− which sends h ∈ Ḡ to
2̄−1(κn(h̃1)h̃

−1
1 + κn(h̃2)h̃

−1
2 ), where h̃1 and h̃2 = ch̃1 are the two lifts of h to G. Then

equation (9) shows that the pairing [·, ·]K,n,G is κ∗n-semilinear in the first variable. On
the other hand, it follows from its definition that [·, ·]K,n,G is ZG-linear, hence ZpG-linear,
in the second variable. Consequently, we obtain a unique, well-defined pairing HK/k,n :∧d

ZḠ US(K+)×
∧d

ZpG U1(Kp) → (Z/pn+1Z)G− satisfying

HK/k,n(ε1 ∧ . . . ∧ εd, u1 ∧ . . . ∧ ud) = det([εi, ut]K,n,G)d
i,t=1

for any ε1, . . . , εd ∈ US(K+) and u1, . . . , ud ∈ U1(Kp). By construction, HK/k,n is κ∗n-
semilinear in the first variable and ZpG-linear in the second and the latter implies

HK/k,n(η, θ) = 0 for all η ∈
∧d

ZḠ US(K+) and θ ∈
∧d

ZpG U1(Kp)
+

(10)

(So, for fixed η the map HK/k,n(η, ·) :
∧d

ZpG U1(Kp) → (Z/pn+1Z)G− factors through the

projection on
∧d

ZpG U1(Kp)
−
, just as sK/k,S does.) Finally, we can ‘extend’ HK/k,n in an

obvious way so that the first variable lies in the tensor product Z(p) ⊗Z
∧d

ZḠ US(K+), where
Z(p) denotes the subring {a/b ∈ Q : p - b} of Q.

We now explain briefly a further ‘extension’ of the pairing HK/k,n which is necessary to
state the Congruence Conjecture properly but – for reasons that will become clear later –
has only a limited importance for the computations of this paper. The reader may refer
to [So3] for the details. Denote by αS the natural map

∧d
ZḠ US(K+) →

∧d
QḠ QUS(K+).

Following Rubin, we defined in loc. cit., § 2.2, a ZḠ-lattice Λ0,S(K+/k) in
∧d

QḠ QUS(K+)
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which contains the image of αS with finite index. In loc. cit., § 2.3 we defined a pairing
HK/k,n : Z(p)Λ0,S(K+/k)×

∧d
ZpG U1(Kp) → (Z/pn+1Z)G− which has the following property.

If 1 ⊗ αS denotes the Z(p)-linearly extension of αS to Z(p) ⊗
∧d

ZḠ US(K+), then for any

θ ∈
∧d

ZpG U1(Kp) there is a commuting diagram

Z(p) ⊗
∧d

ZḠ US(K+)

1⊗αS

��

HK/k,n(·,θ)

,,XXXXXXXXXXXXXXXXXXXXXXXXX

(Z/pn+1Z)G−

Z(p)Λ0,S(K+/k)

HK/k,n(·,θ)

22ffffffffffffffffffffffffff

(11)

This follows easily from [So3, eq. (20)].

Remark 1 In fact, the vertical map above is an isomorphism whenever p - |Ḡ|. (See [So3,
Remark 2.4].) If p||G|, then both the kernel (namely the torsion in Z(p)⊗

∧d
ZḠ US(K+)) and

the cokernel may be non-trivial, though finite. As far as the present paper is concerned, the
main consequence of (11) is simply that HK/k,n(·, θ) vanishes on the kernel of 1⊗ αS, for all
θ.

2.3 Statement of the Conjecture

With the above hypotheses the Congruence Conjecture (CC) of [So3] may be stated as
follows.

Conjecture CC(K/k, S, p, n) The Rubin-Stark element ηK+/k,S exists and lies in Z(p)Λ0,S(K+/k).

Furthermore, if θ ∈
∧d

ZpG U1(Kp) then sK/k,S(θ) lies in ZpG
− and satisfies the following con-

gruence modulo pn+1

sK/k,S(θ) = κn(τ1 . . . τd)HK/k,n(ηK+/k,S, θ) in (Z/pn+1Z)G−. (12)

Remark 2 The choice of τ1, . . . , τd affects both sK/k,S and ηK+/k,S but not the validity of
CC(K/k, S, p, n) thanks to the ‘normalising factor’ κn(τ1 . . . τd) in (12).

Remark 3 The conjecture behaves well under changing K, S and n. More precisely, it is
shown in [So3, §5] that CC(K/k, S, p, n) implies CC(F/k, S ′, p, n′) for any S ′ containing S,
any n′ such that n ≥ n′ ≥ 0 and any intermediate field F , K ⊃ F ⊃ k provided that the

norm map from
∧d

ZpG U1(Kp)
−

to
∧d

ZpGal(F/k) U1(Fp)
− is surjective. This holds, for instance,

if K/F is at most tamely ramified at primes in Sp(F ).

Remark 4 As already noted, the CC includes the statement SK/k,S ⊂ ZpG
− i.e. the

Integrality Conjecture (IC). This was treated separately in [So3] since it does not require
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µp ⊂ K. Section 4 of loc. cit. contains a survey of evidence for both conjectures. The IC
is known in many cases where the CC is not, e.g. when p splits completely in k (with a
technical condition), when p is unramified in K or when p - |G|.
Remark 5 It is shown in [So3, Rem. 2.3] that Conjecture B′ of [Ru] implies the existence
of ηK+/k,S and that it lies in 1

2
Λ0,S(K+/k), hence it implies the first statement of the CC.

However, even in situations where ηK+/k,S is known as an explicit element of 1
2
Λ0,S(K+/k)

(for instance, if k = K+) the congruence (12) can still be elusive. If θ ∈
∧d

ZpG U1(Kp)
+

then (12) clearly holds trivially (i.e. as 0 = 0) and the same thing happens in a couple of
more interesting cases mentioned in [So3, §4]. Apart from these, the full CC is unknown
whenever K is not abelian over Q.

3 Methods of Computation

In this section we describe in detail the method we used to numerically check the CC for
the 48 examples listed in Section 4.

3.1 The Set-Up

We take the field k to be a real quadratic field (so d = 2), and always take S = S1 (so we
drop it from the notation when possible). In view of Remark 3, CC(K/k, S1, p, n) implies
CC(K/k, S, p, n) for all other admissible S. The prime p will be small for computational
reasons: large primes would lead to extensions K/k of too large a degree. Thus we shall
always take p = 3, 5 or 7. For the same reason, we shall usually take n = 0, except for a
few examples with n = 1 and p = 3, which were added for completeness. Since d = 2 < p,
the latter examples necessarily have p||G|. The question as to whether or not p divides |G|
is of importance in the computation of ZpG-generators of

∧2
ZpG U1(Kp), as we shall see in

Subsection 3.4. All computations take place in the number field F which is defined to be the
normal closure of K over Q (within Q̄). They were performed using the PARI/GP system
[PARI].

3.2 Computation of a−K/k and sK/k(θ)

Using the implementation in PARI/GP of the algorithm of [D-T], see also [Co, Section
10.3], we can compute arbitrarily good approximations of the values at s = 1 of the S1-
truncated Artin L-functions of odd irreducible characters of G, and thus deduce arbitrarily
good approximations of a−K/k as an element of i2RG = RG, thanks to (3). In order to

compute sK/k we must however determine a−K/k exactly as an element of FG− and to this
end, we use the

9



Proposition 2 Let f(K) denote the positive generator of the ideal f(K) ∩ Z. Set δ = 1 if
(p, f(K)) = 1 and δ = 0 otherwise, and let

ã−K/k := pδ|µ(K)|
√

dkN f(K)a−K/k = −pδ|µ(K)|
√

dkN f(K)π−2Θ−
K/k(1) (13)

The coefficients of ã−K/k are algebraic integers of F ∩Q(µf(K)) and are stable (as a set) under

the action of Gal(Q̄/Q).

The proof uses the following group-theoretic lemma whose (simple) verification is left to the
reader.

Lemma 1 Let G be a group and H a subgroup of finite index in G, and let Ver denote the
transfer homomorphism from Gab = G/G ′ to Hab = H/H′. Suppose J is a normal subgroup
of H containing H′ and write J̃ for the largest normal subgroup of G contained in J , i.e.J̃ =⋂

g gJ g−1 where g runs through G (or, indeed, through a set of left-coset representatives for

H in G). Then J̃ is contained in the kernel of the composite homomorphism

G −→ Gab Ver−→ Hab −→ H/J

2

Proof of Proposition 2 Let ΦK/k(s) be the function defined in [So2, eq. (9)]. It follows
from [So3, eq. (8)] (dropping e−, since k 6= Q) that ã−K/k = (

∏
(Np−σ−1

p ))|µ(K)|dkN f(K)ΦK/k(0)

where the product runs over the set of all primes p ∈ Sp(k) not dividing f(K). (Since K con-
tains µp and [k : Q] = 2, it is easy to see that either this set is empty – so δ = 0 – or p ramifies
in k and this set consists of the unique prime p ∈ Sp(k) – so that Np = p = pδ.) Equa-
tion (27) of [So2] shows that the coefficients of |µ(K)|dkN f(K)ΦK/k(0) are algebraic integers
of Q(µf(K)), hence so are those of ã−K/k. It remains to show that they are Gal(Q̄/Q)-stable

and lie in F . Consider the automorphism of Q̄G obtained by applying some α ∈ Gal(Q̄/Q)
to coefficients. It was shown in [So2, Prop. 3.2] that this has the same effect on ΦK/k(0) as
multiplying it by VK(α) where VK is the composite homomorphism

Gal(Q̄/Q) −→ Gal(Q̄/Q)ab Ver−→ Gal(Q̄/k)ab −→ G

The same is therefore true of ã−K/k, hence its coefficients are Gal(Q̄/Q)-stable. Moreover, they

are fixed by Gal(Q̄/F ) because the latter is contained in kerVK , as follows from the Lemma.
(Take G = Gal(Q̄/Q), H = Gal(Q̄/k) and J = Gal(Q̄/K), so that J̃ = Gal(Q̄/F )). 2

Remark 6 If we define ã−K/k to be the second member in (13) with pδ replaced by
∏

q∈S\(Sram∪S∞) Nq,
then both the statement of the Proposition and its proof go through essentially unchanged
for any d > 1 and S ⊃ S1. Since the coefficients of ã−K/k also lie in idR in general, for d = 2

they must actually lie in F ∩Q(µf(K))
+.

Let ã−K/k,σ denote the coefficient of σ ∈ G in ã−K/k. Having computed a−K/k to high accuracy
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in RG as described above, we obtain good real approximations to the values ã−K/k,σ for σ ∈ G

and hence to the coefficients of the polynomial
∏

σ∈G(X− ã−K/k,σ). But Proposition 2 implies

that this polynomial lies in Z[X], so we may recover it exactly. By recognising the ã−K/k,σ

among its roots in F (embedded in C), we then obtain ã−K/k as an element of OF [G] and

dividing by pδ|µ(K)|
√

dkN f(K) ∈ F× gives a−K/k as an element of FG.

We now explain how to compute sK/k(θ) ∈ QpG (for θ ∈
∧d

ZpG U1(Kp)) to any pre-

determined (p-adic) accuracy. We shall need only the case θ = u1 ∧ u2 with u1, u2 ∈
U1(Kp) (which suffices anyway, by linearity). For any integer N ≥ 1 we write the power

series log(1 + X) as `N(X) + rN(X) where `N(X) :=
∑N−1

t=1 (−1)t−1X t/t ∈ Q[X] and
rN(X) :=

∑∞
t=N(−1)t−1X t/t ∈ Q[[X]]. For i = 1, 2 and any u ∈ U1(Kp) we define ele-

ments λi,p,N(u) = λj
i,p,N(u) and ρi,p,N(u) = ρj

i,p,N(u) of Q̄pG by

λi,p,N(u) :=
∑
g∈G

`N(δj
i (g(u− 1)))g−1 and ρi,p,N(u) :=

∑
g∈G

rN(δj
i (g(u− 1)))g−1

so that λi,p(u) = λi,p,N(u) + ρi,p,N(u). It follows easily that λi,p(ul) = limN→∞ λi,p,N(ul) for
any i, l ∈ {1, 2} and consequently that

sK/k(u1 ∧ u2) = lim
N→∞

j(a−,∗
K/k) det(λj

i,p,N(ul))
2
i,l=1

The convergence in Q̄pG implied in each of these limits is coefficientwise, w.r.t. the absolute
value | · |p on Q̄p. The next result gives us the explicit control we require on the rate of
convergence in the second limit. First, we impose a p-adic norm ‖ · ‖p on the Q̄p-algebra
Q̄pG by setting

‖a‖p = max{|ag|p : g ∈ G} where a =
∑

g∈G agg ∈ Q̄pG

It is easy to check that ‖x + y‖p ≤ max{‖x‖p, ‖y‖p} and ‖x.y‖p ≤ ‖x‖p.‖y‖p. We define a
rational number mK/k by pmK/k = ‖j(a−K/k)‖p = ‖j(a−,∗

K/k)‖p. The coefficients of a−K/k now
being known as elements of a number field F , we may calculate mK/k from their valuations
at the prime ideal in Sp(F ) determined by j. (Notice, however, that Prop. 2 gives an a priori
upper bound for mK/k and also shows it to be independent of our choice of j.)

Next, for i = 1, 2 we set ei = ePi
(K/Q) (recall that Pi is the element of Sp(K) determined

by jτi) and hi(x) = (log(x)/ log(p))− (x/ei) for any real number x > 0. Thus the function
hi decreases monotonically to −∞ on [ei/ log(p),∞). For i = 1, 2, we let bi be the smallest
integer b such that pb(p− 1) ≥ ei. In our examples, bi ranges from 0 to 2. Finally, we write
ε for the transposition (1, 2) ∈ Σ2.

Proposition 3 Suppose that a positive integer M is given. Then for any integer N >
max{e1, e2}/ log(p) satisfying the inequalities

hε(i)(N) ≤ −(M + mK/k + (bi − (pbi/ei))) for i = 1 and 2 (14)

we have

‖sK/k(u1 ∧ u2)− j(a−,∗
K/k) det(λj

i,p,N(ul))
2
i,l=1‖p ≤ p−M for all u1, u2 ∈ U1(Kp) (15)

11



Proof If t ∈ Z≥1 and i = 1 or 2 then for any g ∈ G and u ∈ U1(Kp) we clearly have

|(δj
i (g(u− 1)))t/t|p ≤ p−t/ei|t|−1

p

As t varies, the R.H.S. of this inequality attains an absolute maximum of pbi−(pbi/ei) (at
t = pbi) and, on the other hand, is always at most phi(t). We deduce that for any i and u,
we have ‖λi,p,N(u)‖p ≤ pbi−(pbi/ei) and ‖ρi,p,N(u)‖p ≤ pbi−(pbi/ei) for every positive integer N
and also ‖ρi,p,N(u)‖p ≤ phi(N) provided N > ei/ log(p). Therefore, writing sK/k(u1 ∧ u2) as

j(a−,∗
K/k) det(λj

i,p,N(ul) + ρj
i,p,N(ul))

2
i,l=1 and expanding the determinant, we find that for any

N > max{e1, e2}/ log(p) satisfying the inequalities (14), we have

(L.H.S. of (15)) ≤ pmK/k max{ph2(N)+b1−(pb1/e1), ph1(N)+b2−(pb2/e2)} ≤ p−M 2

Remark 7
(i) The two inequalities (14) coincide whenever e1 = e2 and in particular, whenever p does
not split in k.

(ii) In our computations of sK/k(u1∧u2), the elements u1, u2 will always be ‘global’ by which
we shall mean that ul = ι(vl) for l = 1, 2 where vl ∈ K× satisfies ordP(vl − 1) ≥ 1 for each
P ∈ Sp(K). (In fact, the vl will be constructed to lie in OK .) Thus, for i = 1, 2 we can write
λj

i,p,N(ul) as j(
∑

g∈G(τig(xl,N))g−1) where xl,N = `N(vl − 1) lies in K for l = 1, 2, and so

j(a−,∗
K/k) det(λj

i,p,N(ul))
2
i,l=1 = j

(
a−,∗

K/k det(
∑

g∈Gτig(xl,N)g−1)2
i,l=1

)
(16)

It follows from Proposition 2 that the quantity inside the large parentheses on the R.H.S.
of (16) has coefficients in F . In fact, however, they lie in Q. (Hints for a proof of this fact
are given in Rem. 3.3(i) and Props. 3.3 and 3.4 of [So2] noting that a−,∗

K/k =
√

dkΦK/k(0)
∗,

by [So3, eq. (8)].) We may therefore drop the ‘j’ on the R.H.S. of (16) and substitute it
into (15).

3.3 Generators of U 1(Kp)

Both sides of the congruence (12) are ZpG-linear in θ so it suffices to test it on a set of θ’s
generating

∧2
ZpG U1(Kp) over ZpG, preferably few in number since the R.H.S. is particularly

computationally intensive (see Remark 11). First we explain our construction of a set V
of ZpG-generators for U1(Kp). This is summarised in the two following Propositions which
hold for any abelian extension of number fields K/k and any prime p. For the rest of this
subsection, we therefore drop the assumption [k : Q] = 2 and return to the notations of
Subsection 2.1. In addition, we shall write Sp(k) as {p(1), . . . , p(t)} where t = |Sp(k)| ≤ r
and P(i, 1), . . . ,P(i, hi) for the distinct primes of K dividing p(i), for i = 1, . . . , t. For each
pair (i, j) with i = 1, . . . , t and j = 1, . . . , hi we shall abbreviate the completion KP(i,j) to K̂i,j

and the embedding ιP(i,j) : K → K̂ to ιi,j so that ι =
∏

i,j ιi,j embeds K in Kp =
∏

i,j K̂i,j. We

write Ôi,j for the ring of valuation integers of K̂i,j and P̂(i, j) for its maximal ideal. For any
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l ≥ 1 we write U l
i,j for the lth term in the filtration of Ô×

i,j, i.e. U l
i,j = 1 + P̂(i, j)l considered

as a finitely generated, multiplicative Zp-module. In particular U1(Kp) =
∏

i,j U1
i,j ⊂ K×

p .
We write Di for DP(i,j)(K/k) which depends only on i, since K/k is abelian. The same is
true for Ti := TP(i,j)(K/k), e′i := |Ti| = eP(i,j)(K/k), fi := |Di/Ti| = fP(i,j)(K/k) and for
φi which we define to be the Frobenius element at P(i, j) considered as a generator of the
quotient group Di/Ti. For each i we also define a positive integer li (independent of j) by

li := 1 + [peP(i,j)(K/Q)/(p− 1)] = 1 + [pe′iep(i)(k/Q)/(p− 1)]

It follows from the standard properties of logp and expp as defined by the usual power

series (see [Wa, Ch. 5]) that U li
i,j is contained in (U1

i,j)
p for all i, j. Indeed, u ∈ U li

i,j implies

|u− 1|p < p−p/(p−1) so that |1
p
logp(u)|p = p|u− 1|p < p−1/(p−1). Hence v := expp(

1
p
logp(u)) is

a well-defined element of K̂i,j satisfying vp = u and |v− 1|p < p−1/(p−1) < 1, so that v ∈ U1
i,j.

Proposition 4 In the above notation, suppose that for each i we are given

(i). a subset Xi = {xi,1, . . . , xi,ni
} of P(i, 1) such that the images of ιi,1(1+xi,1), . . . , ιi,1(1+

xi,ni
) generate the quotient U1

i,1/U
li
i,1 as a module over ZpDi and

(ii). an element ai of OK such that for any r = 1, . . . , t and j = 1, . . . , hr we have

ai ≡
{

1 (mod P(r, j)lr) if r = i and j = 1, and
0 (mod P(r, j)lr) otherwise.

Then the set V := {ι(1 + aixi,s) : i = 1, . . . , t, s = 1, . . . , ni} generates U1(Kp) over ZpG.

Proof By Nakayama’s Lemma, it suffices to show that V generates U1(Kp) modulo (U1(Kp))
p

and hence, by the preceding comments, that the images of the elements ι(1 + aixi,s) gen-
erate U1(Kp)/

∏
i,j U li

i,j. As a ZpG-module this is the product (over i) of the sub-modules∏hi

j=1

(
U1

i,j/U
li
i,j

)
so that, by the definition of the ai, it suffices to prove that for each i, the

latter is generated over ZpG by the images of the elements ιi,1(1+aixi,t)× . . .×ιi,hi
(1+aixi,t)

for 1 ≤ t ≤ ni. By the definition of the ai (again) and of Xi, these images lie in the subgroup
U1

i,1/U
li
i,1 and generate it over ZpDi. Since

∏
j

(
U1

i,j/U
li
i,j

)
is the direct product of G-translates

of U1
i,1/U

li
i,1, we are done. 2

To find a set Xi as in part (i) of the statement of Proposition 4, one could simply ensure
that the images of ιi,t(1 + xi,t) generate the finite module U1

i,1/U
li
i,1 over Zp rather than

ZpDi. However, it is straightforward to construct a set that is generally smaller (for fi > 1),
provided that the exact sequence

1 → Ti −→ Di −→ Di/Ti → 1 (17)

splits. This is equivalent to the existence of a lift φ̃i ∈ Di of φi which is of order fi. A sufficient
condition is that fi be prime to e′i or, more generally, to the cardinality of Dfi

i (subgroup of
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fi-th powers). Computational constraints on [K : k] mean that Di is a fairly small group in
the examples considered, so it is perhaps not so surprising that the sequence (17) was found
to split in all of them (for all i) without any pre-selection. Assuming that this occurs, we
write Ai for the subgroup (of order fi) of Di generated by some φ̃i, Ni for KAi and ℘i for
the prime of Ni below P(i, 1):

K

Ai

P(i, 1)

Ni ℘i

KDi

k p(i)

Thus Ni/K
Di is totally ramified at ℘i (so f℘i

(Ni/k) = 1). On the other hand, K/Ni is
unramified at P(i, 1) and Ai = Gal(K/Ni) maps isomorphically onto the Galois group of
the residue field OK/P(i, 1) over ONi

/℘i = Ok/p(i) (with φ̃i acting by Np(i)-th powers). It
follows from the Normal Basis Theorem thatOK/P(i, 1) is freely generated over (Ok/p(i))Ai.
Moreover, a well-known criterion states that a free generator is given by the class ᾱi modulo
P(i, 1) of αi ∈ OK if and only if det(gh(ᾱi))g,h∈Ai

6= 0 in OK/P(i, 1); in other words, iff

det(α
Np(i)a+b

i )fi−1
a,b=0 6∈ P(i, 1). Such an αi is easily found by trial and error.

Proposition 5 Suppose the sequence (17) splits for some i ∈ {1, . . . , t}. Using the above
notations, choose any πi ∈ ℘i\℘2

i and a subset Yi ⊂ Ok whose images in Ok/p(i) form a basis
over Z/pZ. Then the set Xi := {πa

i yαi : a = 1, . . . , li− 1, y ∈ Yi} satisfies the requirements
of part (i) of the statement of Proposition 4 (and even with ‘over ZpDi’, replaced by ‘over
ZpAi’).

Proof The definition of αi ensures that the classes modulo P̂(i, 1) of the ιi,1(yαi) for

y ∈ Yi freely generate Ôi,1/P̂(i, 1) over (Z/pZ)Ai. Now ιi,1(πi) is a local uniformiser for
Ki,1 so for each a = 1, . . . , li − 1 there is a familiar isomorphism of (finite) Zp-modules

Ôi,1/P̂(i, 1) → Ua
i,1/U

a+1
i,1 which sends the class of x to the class of 1 + ιi,1(πi)

ax. Since
ιi,1(πi) is fixed by Ai, this is a ZpAi-isomorphism and it follows that for each a = 1, . . . , li−1
the classes modulo Ua+1

i,1 of the ιi,1(1 + πa
i yαi) for y ∈ Yi generate Ua

i,1/U
a+1
i,1 over ZpAi. The

result follows easily from this. 2

For each example tested, we used Propositions 4 and 5 to construct a set of ZpG-generators
for U1(Kp) which is denoted V and has cardinality N :=

∑t
i=1 |Xi| =

∑t
i=1(li − 1)|Yi| =∑t

i=1(li − 1)fp(i)(k/Q) ≤ pd
p−1

max{e′i : i = 1, . . . , t}.

Remark 8 By construction, each u ∈ V is of form ι(v) for some v ∈ OK which is congruent
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to 1 modulo each P ∈ Sp(K). At certain points in the computations it can be helpful to
‘perturb’ one or several such v as follows

v ; v′ := v + pl+1x for some x ∈ OK and l ∈ Z, l ≥ 1

Clearly, ι(v′) ∈ U1(Kp) and previous arguments involving logp and expp can be adapted to
show that

ι(v′) ≡ ι(v) (mod U1(Kp)
pl

)

(Indeed, ιi,j(v
′/v) is the plth power of expp(p

−l logp(1+pl+1ιi,j(x/v))) ∈ U1(K̂i,j), convergence
being assured by the fact that l+1 > l+(1/(p−1)) since p > 2.) In particular, Nakayama’s
Lemma implies that such perturbations do not effect the generation of U1(Kp) by V . For
example, taking l = 1, one can modify the v’s corresponding to each u ∈ V to ensure that
their coefficients with respect to a given Z-basis of OK have absolute value at most p2/2.

3.4 Generators of
∧2

ZpG
U 1(Kp)

Proposition 1(i) and Equation (10) show that both sides of (12) vanish for θ ∈
∧2

ZpG U1(Kp)
+
,

so we only need a set of generators modulo this submodule. For the L.H.S. of (12), Propo-

sition 1(i) shows that the same is true for θ ∈
(∧2

ZpG U1(Kp)
)

tor
. However for the R.H.S.

we have only managed to prove this under the assumption p - |G| (see [So3, Proposition 8]),
so we proceed as follows. For the minority of examples considered where p divides |G|, we
simply test (12) for all θ in the 1

2
N(N − 1)-element set W := {vs ∧ vr : 1 ≤ s < r ≤ N},

with V = {v1, . . . , vN}, which clearly generates all of
∧2

ZpG U1(Kp) over ZpG. For the rest of

this subsection we will assume p - |G| and describe a second procedure to construct a subset

W ′ ⊂ W generating
∧2

ZpG U1(Kp) modulo
∧2

ZpG U1(Kp)
+

+
(∧2

ZpG U1(Kp)
)

tor
and such that

|W ′| is much smaller than |W | (see below). By the above remarks, it will then suffice to
test (12) for all θ in W ′. A generic element of W will be denoted θ. Even for integers
M somewhat greater than n + 1, the computation of sK/k(θ) modulo pMZpG

− is relatively
quick compared with that of HK/k,n(ηK+/k,S, θ) in (Z/pn+1Z)G−. We turn this fact to our
advantage by using sK/k itself to determine W ′. Indeed, it is obvious from Proposition 1(i)
that W ′ will have the required property if and only if SK/k equals the ZpG

−-submodule
〈sK/k(θ) : θ ∈ W ′〉ZpG− of QpG

−. We construct such a W ′ by means of an explicit isomor-
phism from QpG

− to a product of fields which we now describe.
Since G is small, it is easy to compute a set R− of representatives of the orbits of the odd,

irreducible characters χ : G → Q̄× under the action of Gal(Q̄/Q). The Q-linear extension
of each such character χ defines a homomorphism from QG− to Fχ := Q(χ) such that the
product over χ ∈ R− is a ring isomorphism X− : QG− →

∏
χ∈R− Fχ. Tensoring over Q with

Qp we get the first isomorphism, X−
p , below.

QpG
− X−

p−→
∏

χ∈R−

(Fχ⊗Qp)
Z−p−→

∏
χ∈R−

∏
P∈Sp(Fχ)

Fχ,P (18)
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The second, Z−
p , is the product over χ ∈ R− of the isomorphisms from Fχ⊗Qp to the product

of the completions of Fχ at primes above p, the latter taking a⊗ x to the vector (xιP(a))P.
Let us write the composite isomorphism Z−

p ◦ X−
p as α =

∏
χ

∏
P αχ,P. We identify ZpG

−

with ((1− c)ZG)⊗ Zp considered as a subring of QG− ⊗Qp which we are identifying with
QpG

−. It is clear that X−
p sends ZpG

− into
∏

χ∈R−(Oχ ⊗ Zp) where Oχ := Z[χ] = OFχ

and that the image surjects onto each component (since p 6= 2). For a given χ ∈ R−, let
us write e(χ) for the sum of the idempotents in Q̄G belonging to the irreducible characters
in the Gal(Q̄/Q)-orbit of χ. It is easy to see that e(χ) lies in (1 − c)|G|−1ZG inside QG−

and hence that e(χ) ⊗ 1 lies in ZpG
− (since p - |G|). The orthogonality relations imply

that X−
p (e(χ) ⊗ 1) has component 1 at χ and 0 elsewhere. It follows that ZpG

− is sent
isomorphically onto

∏
χ∈R−(Oχ ⊗ Zp) by X−

p . Hence α maps it isomorphically onto the
image of the latter under Z−

p which, by standard facts, is
∏

χ∈R−
∏

P∈Sp(Fχ)Oχ,P, where
Oχ,P denotes the ring of integers of Fχ,P. The values of χ are roots of unity of order prime
to p. It follows that Fχ/Q is unramified at p so that each Oχ,P is a complete d.v.r. with
maximal ideal pOχ,P.

Both SK/k and ZpG
−sK/k(θ) (for any θ ∈ W ) are ZpG

− submodules of QpG
−. Hence,

for each pair (χ, P) and each θ ∈ W there exist m(χ, P) and m(χ, P; θ) in Z ∪ {∞} such
that (taking p∞ = 0):

α(SK/k) =
∏

χ∈R−

∏
P∈Sp(Fχ)

pm(χ,P)Oχ,P and α(ZpG
−sK/k(θ)) =

∏
χ∈R−

∏
P∈Sp(Fχ)

pm(χ,P;θ)Oχ,P

Of course, m(χ, P; θ) is just ordp(αχ,P(sK/k(θ))), while m(χ, P) < ∞ by Proposition 1(ii)
and m(χ, P) ≥ 0 since the Integrality Conjecture is known for p - |G| by [So3, Cor. 1]. The
properties of d.v.r.’s give the equivalence

SK/k = 〈sK/k(θ) : θ ∈ W 〉ZpG− ⇐⇒ m(χ, P) = min{m(χ, P; θ) : θ ∈ W} for all (χ, P)
(19)

Since the first equality holds by construction of W , so must the second and in particular
m(χ, P; θ) ≥ 0 ∀χ, P, θ. For each pair (χ, P) we define Wmin(χ, P) to be the non-empty
subset of W on which m(χ, P; θ) attains its minimum. By the above, Wmin(χ, P) = {θ ∈
W : m(χ, P; θ) = m(χ, P)}.

The construction of W ′ begins by using Proposition 3 to compute an approximation to
sK/k(θ) for each θ ∈ W , with a guaranteed p-adic precision of p−M for a moderate value of
M ≥ n+1, e.g. M = n+3. Since each θ is already expressed as u1∧u2 for ‘global’ elements
u1 and u2 in the sense of Remark 7(ii)), the latter and Proposition 3 naturally give rise
to an approximation in QG−, which we somewhat abusively write as sK/k(θ; M), such that
sK/k(θ) − s(θ; M) ∈ pMZpG

−. Now, fixing χ ∈ R− and P ∈ Sp(Fχ), we may compute the
values ordp(αχ,P(s(θ; M))) one by one for each θ ∈ W , since these are just ordP(χ(s(θ; M))),
by construction of α. Suppose W<M(χ, P, M) is the subset of those θ in W for which we find
ordp(αχ,P(s(θ; M))) < M . By the ultrametric inequality, if θ lies in W<M(χ, P, M) then we
must have m(χ, P; θ) = ordp(αχ,P(s(θ; M))). Otherwise we know only that m(χ, P; θ) ≥ M .
This means that if W<M(χ, P, M) is non-empty, we may compute Wmin(χ, P) as the subset
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of W<M(χ, P, M) on which ordp(αχ,P(s(θ; M))) attains its minimum, and then pass to the
next pair (χ, P). However, in a very small number of examples we encountered a pair (χ, P)
for which W<M(χ, P, M) = ∅ for the initial value of M . In this case we simply recalculated
the s(θ; M)’s with a larger value of M until W<M(χ, P, M) 6= ∅ for that pair and then
continued with the increased value of M . This simple hit-and-miss procedure terminated
rapidly enough: in all cases we were able to determine Wmin(χ, P) for all pairs (χ, P) without
ever taking M > n + 5.

The equivalence obtained by replacing W by W ′ in (19) shows that a subset W ′ ⊂ W will
have the required property iff W ′ ∩Wmin(χ, P) 6= ∅ for all pairs (χ, P). Picking an element
at random from each Wmin(χ, P) would give a subset W ′ whose cardinality could not exceed
the number of pairs (χ, P) which in turn is at most dimQpQpG

− = 1
2
|G|, by (18). This is

already much smaller than |W | in most cases. In practice, however, there was a tendency
for

⋂
χ,P Wmin(χ, P) to be non-empty, so we could simply take W ′ = {θ0} for any θ0 in this

intersection. This tendency is explained by the fact that, as a submodule of finite index
in ZpG

− (which is a product of d.v.r.’s), SK/k is automatically free over ZpG
− with one

generator. While there is no guarantee that W contains such a generator, it is not surprising
that it often does. In fact, if this failed for our initial choice of W , the best practical solution
was simply to randomly modify W once or twice until it did (e.g. by changing the elements
ai and xi,j used in Prop. 4 to construct V ). We thus achieved |W ′| = 1 in all cases without
too much difficulty.

Remark 9 The procedure described above for p - |G| determines the values m(χ, P) for
all (χ, P) as a by-product. However, they are also given explicitly by ‘index formula’ (31)
of [So3] (see also (32) of ibid.). One should take ‘φ’ to be the composition of χ with any
embedding Q̄ → Q̄p inducing P. Using this formula, one could in principle select the
initial value of M to be greater than the maximum of the m(χ, P)’s, thereby ensuring that
W<M(χ, P, M) 6= ∅ for all (χ, P).

3.5 Computation of ηK+/k,S1

We need to determine the Rubin-Stark element ηK+/k,S1 , that is, the unique (conjectural)

element of
∧2

QḠQUS1(K+) that satifies the eigenspace condition w.r.t. (S1, d, Ḡ) and Equa-
tion (5). The first statement in the Congruence Conjecture tells us to expect ηK+/k,S to lie
in Z(p)Λ0,S(K+/k). (As noted in Remark 5, this is also predicted by Conjecture B′ of [Ru].)
Assuming this and also p - |Ḡ|, we shall now sketch a proof that ηK+/k,S1 must in fact be of
the rather more precise form

ηK+/k,S1 = (1⊗ αS1)

(
1

a
⊗ (ε1 ∧ ε2)

)
for some ε1, ε2 ∈ US(p)(K

+) and a ∈ Z, p - a (20)

where S(p) := S∞ ∪Sp. First, by Remark 1, these hypotheses imply ηK+/k,S1 = (1⊗αS1)(η̃)

for a (unique) η̃ ∈ Z(p) ⊗
∧d

ZḠ US1(K+). Identifying the latter module with
∧d

Z(p)Ḡ
Z(p) ⊗

US1(K+), we may write η̃ =
∑N

i=1 x1,i ∧ x2,i where x1,i, x2,i ∈ Z(p) ⊗ US1(K+). Writing eS1
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for the idempotent eS1,2,Ḡ ∈ |Ḡ|−1ZḠ ⊂ Z(p)Ḡ, the eigenspace condition gives

ηK+/k,S1 = eS1(1⊗ αS1)(η̃) = (1⊗ αS1)(eS1 η̃) = (1⊗ αS1)(
N∑

i=1

eS1x1,i ∧ eS1x2,i)

Now consider AS1 := eS1(Z(p) ⊗ US1(K+)) as a module over the ring eS1Z(p)Ḡ which is a
product of p.i.d.’s (again because p - |Ḡ|). Since p 6= 2, AS1 is Z-torsionfree. Moreover QAS1

is free of rank 2 over eS1QḠ. (This follows from the definition of eS1,2,Ḡ and the fact that

dimC(eχ−1,ḠCUS1(K+)) = ords=0LK+/k,S1(s, χ) for all χ ∈ ˆ̄G.) It follows easily that AS1 is
free of rank 2 over eS1Z(p)Ḡ and it is not hard to see that any pair of basis elements can be
written 1

a1
⊗α1,

1
a2
⊗α2 where p - a1, a2 ∈ Z and and α1, α2 lie in (|Ḡ|eS1)US1(K+). Writing

each eS1x1,i and eS1x2,i in such a basis, we conclude that η̃ is a Z(p)Ḡ-multiple of 1⊗(α1∧α2).
Equation (20) will clearly follow if we can show (|Ḡ|eS1)US1(K+) ⊂ US(p)(K

+). If S1 = S(p),
this is immediate. Otherwise |S1| > d + 1 and [So3, eq. (13)] shows that NDqeS1 = 0 where
NDq ∈ ZḠ is the norm element of the decomposition subgroup Dq ⊂ Ḡ for any prime
q ∈ S1 \ S∞. Thus every element of (|Ḡ|eS1)US1(K+) is killed by every such NDq which
implies that, in fact, (|Ḡ|eS1)US1(K+) ⊂ US∞(K+) i.e. in this case, we can actually take
ε1, ε2 ∈ O×

K+ in (20).

Let us write U(p) for Q⊗
∧2

ZḠUS(p)(K
+) considered as a QḠ-submodule of

∧2
QḠQUS1(K+).

If p - |Ḡ|, we have just shown that the Congruence Conjecture implies (20) or, equivalently,

ηK+/k,S1 =
1

a
⊗ (ε1 ∧ ε2) ∈ eS1U(p) for some ε1, ε2 ∈ US(p)(K

+) and a ∈ Z, p - a (21)

If p||Ḡ| and we assume only that the Rubin-Stark element ηK+/k,S1 exists, then similar but
simpler arguments (replacing Z(p) by Q) still show that

ηK+/k,S1 =
1

a
⊗ (ε1 ∧ ε2) ∈ eS1U(p) for some ε1, ε2 ∈ US(p)(K

+) (22)

and also that eS1U(p) is free of rank 1 over eS1QḠ. These observations motivate the follow-
ing procedure for determining ηK+/k,S1 which is much simpler than the one used in [R-S1]
but still sufficient for present purposes. First we compute an eS1QḠ-generator of eS1U(p)
in the form 1 ⊗ (γ1 ∧ γ2). For this, we compute a Z-basis modulo {±1} of the f.g. mul-
tiplicative abelian group US(p)(K

+). (Note that functions to perform this computation
are implemented in PARI/GP.) Once a basis is known, we use it to construct two ran-
dom elements γ1, γ2 in US(p)(K

+). If 1 ⊗ (γ1 ∧ γ2) does not lie in eS1U(p) we replace,
say, γ1 by (|G|eS1)γ1 so that it does. Then 1 ⊗ (γ1 ∧ γ2) will generate eS1U(p) if (and, in

fact, only if) χ(RK+/k,S(p)((1 ⊗ γ1) ∧ (1 ⊗ γ1))) is non-zero for all characters χ ∈ ˆ̄G such
that ords=0LK+/k,S(s, χ) = 2. These conditions can be unconditionally tested using a good
enough approximation to RK+/k,S(p)((1⊗ γ1)∧ (1⊗ γ1)), calculated as a group-ring determi-
nant involving real logarithms of (absolute values of) conjugates of γ1 and γ2. If they are not
satisfied, we recommence with two new random elements γ1 and γ2. (For our initial ‘random’
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choices of γ1 and γ2 we actually took pairs of distinct elements of the computed Z-basis of
US(p)(K

+). In the few cases where this did not provide a generator, we then looked at pairs
consisting of ‘simple’ random linear combinations of these basis elements.)

We now know that the unique element ηK+/k,S1 – if it exists – will be equal to A(1 ⊗
(γ1 ∧ γ2)) for any A ∈ QḠ satisfying

A RK+/k,S1((1⊗ γ1) ∧ (1⊗ γ1)) = Θ
(d)

K+/k,S1(0) (23)

(by (5)). We compute an approximation of Θ
(d)

K+/k,S1(0) in RḠ using its expression in terms

of Artin L-functions (see the beginning of Section 2.2), once again using the methods of
[D-T], or [Co, Section 10.3]. Then we can find a solution Ã ∈ RḠ of Equation (23) to a
high precision. Standard methods allow us to compute an element A0 ∈ QḠ very close to
Ã and with coefficients of small height. We then write A0 as 1

a
B0 where a ∈ Z>0 and B0

is an element of ZḠ, the g.c.d. of whose coefficients is prime to a. Assuming that A0 is in
fact an exact solution of Equation (23) (see below) we now have the desired expression (22)
with ε1 = γ1, ε2 = B0 γ2. However, we shall see in the next section that the computations of
HK/k,n(ηK+/k,S1 , θ) are much easier if (21) holds. Thus if p divides a we find a new generator
1 ⊗ (γ1 ∧ γ2) and repeat the process. We have justified above the expectation that (21) is
possible whenever p - |Ḡ| and indeed the above process terminated with such an expression in
all our examples of this type. More surprisingly, perhaps, it also terminated with a solution
of (21) in all our examples with p||Ḡ|. Very similar behaviour was observed in [R-S1] (see
also [So1, Rem. 3.4]). Thus it seems, experimentally at least, that Rubin-Stark elements
are ‘usually’ better-behaved in this sense than the various conjectures predict, although no
convincing sharpening has yet been proposed along these lines.

Remark 10 We need to convince ourselves that this is indeed the Rubin-Stark element
and not some ad hoc element of eS1Up constructed simply to satisfy Equation (5) to the
working precision. A first significant fact is that while we are working with a large precision
– usually of 100 digits – the coefficients of A0 are of very small height. In almost all examples
numerators and denominators of the coefficients of A0 are less than 10 in absolute value,
the largest ones being in example E5 where they have up to 6 digits. However this is still
considerably smaller than one would expect if Ã were a random element of RḠ. A second
and even more convincing way to reassure ourselves that we really have the Rubin-Stark
element is as follows. Once we have calculated an element η̂ = 1

a
⊗ (ε1 ∧ ε2), say, of eS1U(p)

as a candidate for ηK+/k,S1 , we significantly increase the working precision, say from 100 to

150 digits. We then recompute RK+/k(η̂) and Θ
(d)

K+/k,S1(0) to the new precision and check

whether they still agree. If η̂ were an ad hoc element, constructed to satisfy Equation (5) to
a precision of 100 digits, then there would be no reason for it to satisfy it to 150 digits. The
fact that it always did so, without readjustment, was, we felt, convincing enough evidence
to take ηK+/k,S1 = η̂.
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3.6 Computation of HK/k,n and Verification of the Conjecture

To complete the verification of the Congruence Conjecture, it suffices to check that sK/k(θ)
lies in ZpG

− and that the two sides of (12) agree, for all θ in an appropriate subset of∧2
ZpG U1(Kp). The determination of this subset, as well as the treatment of the L.H.S., is

divided into three cases. In Case 1 (i.e. examples B6, C8, D7, D9 and D11) ηK+/k,S1 = 0
because eS1 = 0. It then suffices to calculate an approximation to sK/k(θ) up to an element

of pn+1ZpG
− for each θ in W , the initial ZpG-generating set for

∧2
ZpG U1(Kp) constructed in

Section 3.4. These approximations are calculated using Proposition 3 with M = n + 1 and
the conjecture is verified if and only if each actually lies in pn+1ZpG

−. In the remainder of our
examples, ηK+/k,S1 is non-zero and the computation of the R.H.S. of (12) is usually lengthy.
In Case 2, p - |G| and we explained at the beginning of Subsection 3.4 why it is sufficient

to check (12) for each θ in the much smaller set W ′ generating modulo
∧2

ZpG U1(Kp)
+

+(∧2
ZpG U1(Kp)

)
tor

constructed there. This very construction included the computation of

an element of QG− approximating sK/k,S(θ) up to an element of pn+1ZpG
− (at least) for all

θ ∈ W ′. In Case 3, p||G| and we are unable to reduce W . So, once again we use Proposition 3
to calculate an approximation to sK/k(θ) up to an element of pn+1ZpG

− for each θ in the full
set W .

It remains to explain the computation of the R.H.S. of (12) in the second and third
cases above, where ηK+/k := ηK+/k,S1 6= 0. The τi are realised as elements of Gal(F/Q)
and since F contains K and hence µpn+1 , the quantity κn(τ1τ2) may be determined directly
by calculating ξτ1τ2

pn+1 . The computation of HK/k,n(ηK+/k, θ) is greatly facilitated by the fact
that Equation (21) – hence also (20) – holds in every case, as already noted. Indeed, from
diagram (11) it follows that

HK/k,n(ηK+/k, θ) = ā−1HK/k,n(ε1 ∧ ε2, θ) for all θ ∈
∧2

ZpG U1(Kp) (24)

where ā is the reduction of a modulo pn+1. Recall that every θ ∈ W is ‘global’ by con-
struction, i.e. of the form ι(v1) ∧ ι(v2) for some v1, v2 ∈ K×. Therefore, using (24), the
conditions satisfied by the εi and the definitions of HK/k,n and [·, ·]K,n,G, it suffices to be able
to calculate [ε, ι(v)]K,n for any v ∈ K× and ε ∈ US(p)(K

+). The next Proposition shows how
we did this. (The basic idea is well-known, see e.g. [Gr, § II.7.5].) Let Q be any prime ideal
of OK . If Q 6∈ Sp(K) then reduction modulo Q gives an injection µpn+1(K) → (OK/Q)× so
that pn+1|(NQ−1) and the image is the subgroup of (NQ−1)/pn+1-th powers in (OK/Q)×.
Thus, for each such Q there is a homomorphism aprQ,n : (OK/Q)× → Z/pn+1Z (the addi-

tive, pn+1-th power residue symbol modulo Q) uniquely defined by ξ̄
aprQ,n(b̄)

pn+1 = b̄(NQ−1)/pn+1

for all b̄ ∈ (OK/Q)×. For the small values of pn+1 occurring here, aprQ,n is quick to calculate
directly and we have:

Proposition 6 If ε ∈ US(p)(K
+) and v ∈ K×, then

[ε, ι(v)]K,n =
∑

Q6∈Sp(K)

ordQ(v)aprQ,n(ε̄)
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where Q runs over the (finite) set of prime ideals Q of OK not dividing p (and such that
ordQ(v) 6= 0).

Proof Let Lε be the Kummer extension K(ε1/pn+1
) and write hε for the isomorphism

Gal(Lε/K) → Z/pn+1Z given by hε(g) = Indn(g(ε1/pn+1
)/ε1/pn+1

). (Everything is indepen-
dent of the choice of root ε1/pn+1

.) For each prime ideal Q of OK we choose a prime ideal Q̃

dividing Q in OLε and write recQ for the composite homomorphism

K× ιQ−→ K×
Q −→ DQ̃(Lε/K) ↪→ Gal(Lε/K)

where the second homomorphism is the local reciprocity map. (This is independent of the
choice of Q̃.) It follows easily from the definition and alternating property of the local Hilbert
symbol (·, ·)KP,pn+1 (see [Ne, Prop. 3.2]) for P ∈ Sp(K) that

hε(recP(v)) = Indn(ι−1
P (ιP(v), ιP(ε))) = −Indn(ι−1

P (ιP(ε), ιP(v))KP,pn+1) for all P ∈ Sp(K)
(25)

On the other hand, if Q 6∈ Sp(K) then the extension Lε/K is unramified at Q (since ε ∈
US(p)(K

+)) and so recQ(v) = σ
ordQ(v)
Q,Lε/K where σQ,Lε/K denotes the Frobenius element. Since

ε1/pn+1
is a local unit at Q̃, the definition of σQ,Lε/K tells us that the image of the pn+1th root

of unity σQ,Lε/K(ε1/pn+1
)/ε1/pn+1

in (OK/Q)× ⊂ (OLε/Q̃)× is equal to that of ε(NQ−1)/pn+1
.

It follows that

hε(recQ(v)) = ordQ(v)hε(σQ,Lε/K) = ordQ(v)aprQ,n(ε̄) for all Q 6∈ Sp(K) (26)

In particular hε(recQ(v)), and therefore recQ(v), is trivial for almost all Q. Finally, global
class-field theory tells us that the product of recQ(v) over all prime ideals is equal to 1 ∈
Gal(Lε/K). (Since K is totally complex the local reciprocity map is trivial at archimedean
places.) Using this and equations (7), (25) and (26), we get

[ε, ι(v)]K,n = −
∑

P∈Sp(K)

hε(recP(v)) =
∑

Q6∈Sp(K)

hε(recQ(v)) =
∑

Q6∈Sp(K)

ordQ(v)aprQ,n(ε̄)

as required. 2

Remark 11 In order to compute HK/k,n(ηK+/k, θ) for θ in W (or W ′) using the Proposition,
one needs to compute the prime-ideal factorisation of (v1) and (v2) in K where θ = ι(v1) ∧
ι(v2). Since, moreover, the vi’s lie in OK , the first step is to factor the absolute norm of vi,
i = 1, 2. Unfortunately, the vi’s constructed by the method of Propositions 4 and 5 tend
to have very large norms which can be divisible by more than one large prime number and
hence virtually impossible to factor. We get around this problem by perturbing one or more
of the vi’s, i.e. replacing vi by v′i := vi + pn+2xi for a random element xi ∈ OK for i = 1, 2.
Remark 8 (with l = n + 1) implies that ι(v′1) ∧ ι(v′2) ≡ θ modulo pn+1

∧2
ZpG U1(Kp) and so

HK/k,n(ηK+/k, θ) = HK/k,n(ηK+/k, ι(v
′
1) ∧ ι(v′2)). Thus we may proceed as follows. We set

some time limit, say two minutes during which we try to factor the norm of of each vi. If
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we fail, we just perturb one or more of the vi’s as above and try again. Indeed, although
v′i’s usually have norms of about the same size as those of the vi’s, it usually happens that
after several tries, we find norms that are (relatively) easy to factor, allowing us to calculate
HK/k,n(ηK+/k, ι(v

′
1) ∧ ι(v′2)) i.e. HK/k,n(ηK+/k, θ).

4 Results of the Computations

4.1 An Example

We illustrate the numerical computations with example B1 (see next subsection). We have
p = 3 and n = 0, k is the real quadratic field Q(

√
6) (thus p ramifies in k/Q), K+ is the

ray-class field of k of conductor 4p where p is the unique prime ideal of k dividing 3, and
K = K+(ξ3). The extension K+/k is of degree 4 with Galois group Ḡ isomorphic to C2

2 , and
the extension K/k has degree 8 and its Galois group G is isomorphic to C3

2 . In particular,
p does not divide |G|.

The extension K/Q is a Galois extension, but is not abelian, and we have K = Q(ν)
where ν is a root of the irreducible polynomial

X16 − 8X15 + 48X14 − 196X13 + 642X12 − 1668X11 + 3580X10 − 6328X9 + 9297X8

− 11276X7 + 11224X6 − 9024X5 + 5736X4 − 2780X3 + 972X2 − 220X + 25

We find pOK+ = P2
+ (so that eP+(K+/k) = fP+(K+/k) = 2) and P+OK = PP′.

Finally, we have S = S1 = {∞1,∞2, p, q2} where 2Ok = q2
2.

Let σ1, σ2, σ3 be three distinct k-automorphisms of K of order 2 such that G = 〈σ1, σ2, σ3〉,
with the convention that σ3 : ν 7→ 1−ν is the complex conjugation of the CM field K. Using
the method of Subsection 3.2, we find that

a−K/k =
1

26 32

(
σ3 − 1

) (
3 + 2

√
3 + σ1 + σ1σ2 +

(
3− 2

√
3
)
σ2

)
With the notations of Subsection 3.3, we have t = 1, h1 = 2 (with p(1) = p, P(1, 1) = P,

P(1, 2) = P′) and eP(1,j)(K/Q) = 4 for j = 1, 2. Thus l1 = 7, and Propositions 4 and 5 enable
us to construct 6 elements such that the set W of wedge product of two of these generate∧2

ZpG U1(Kp) over ZpG. We now use the method (and the notations) of Subsection 3.4 to find

a smaller generating subset. Let χi, i = 1, 2, 3, be the character of G defined by χi(σi) = −1
and χi(σj) = 1 for j 6= i. It is easy to see that the set R− := {χ3, χ1χ3, χ2χ3, χ1χ2χ3} is
a system of representatives of the orbits of the odd, irreducible characters of G under the
action of Gal(Q̄/Q). Thus, we have Fχ = Q for all χ in Equation (18), and the equation
gives

QpG
− ' Q4

p

We compute that

m(χ3, (p)) = m(χ2χ3, (p)) = m(χ1χ2χ3, (p)) = 0 and m(χ1χ3, (p)) = 1
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and after several tries, we find a set W such that
⋂

χ∈R− Wmin(χ, p) is non-empty and we
take in this set the element θ0 = ι(v1) ∧ ι(v2) where

v1 =
1

17095

(
1058221ν15 − 7915486ν14 + 46551510ν13 − 182313497ν12 + 579396826ν11

− 1444318673ν10 + 2976716004ν9 − 5002660697ν8 + 6945207975ν7

− 7851102425ν6 + 7170233086ν5 − 5155280183ν4 + 2822456537ν3

− 1105885714ν2 + 278328786ν − 33994775
)

and

v2 =
1

17095

(
− 383541ν15 + 2749923ν14 − 16006808ν13 + 61029582ν12 − 190600453ν11

+ 462662235ν10 − 930346920ν9 + 1513004524ν8 − 2026236417ν7

+ 2184191092ν6 − 1881836887ν5 + 1247007651ν4 − 609767073ν3

+ 198580288ν2 − 36118966ν + 1344335
)

By the result of Subsection 3.4, we know that θ0 generates
∧2

ZpG U1(Kp) over ZpG modulo∧2
ZpG U1(Kp)

+
+

(∧2
ZpG U1(Kp)

)
tor

so to prove CC(K/k, S1, p, n) it suffices to establish (12)

with θ = θ0. Note that the L.H.S. of (12) has already been computed. For the R.H.S., the
field K+ is generated over Q by a root λ of the irreducible polynomial

Pλ(X) = X8 − 4X7 − 4X6 + 20X5 + 4X4 − 20X3 − 4X2 + 4X + 1

Using the methods described in Subsection 3.5, we find that the Rubin-Stark element is
given by

ηK+/k =
1

16
(ε1 ∧ ε2)

where

ε1 =
1

5

(
6λ7 − 22λ6 − 33λ5 + 119λ4 + 52λ3 − 121λ2 − 31λ + 7

)
and

ε2 =
1

25

(
− 102282λ7 + 463929λ6 + 152556λ5 − 2073598λ4

+ 604836λ3 + 1722767λ2 − 413178λ− 221449
)
.

Note that ε1 and ε2 lie in O×
K+ , and not just in US(p)(K

+).
We now compute by Subsection 3.61

HK/k,0(ηK+/k, θ0) = (σ3 − 1̄)(σ1 − σ2 − 1̄) ∈ (Z/3Z)G.

1As mentioned in Remark 11, one needs to factor the norm of v1 and v2 to do this computation, but since
these are of about 17 digits, it is easy in this case.
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Finally, we can check that

sK/k(θ0) ≡ HK/k,0(ηK+/k, θ0) (mod 3)

and therefore CC(K/k, S1, p, n) is satisfied (since we compute that our choice of τ1 and τ2

implies that κ0(τ1τ2) ≡ 1 (mod 3)).

4.2 Tables

We have numerically verified that the conjecture CC is satisfied in 48 examples. These
examples are divided into 4 types2 of differing significance.

• 12 examples of type B: p = 3, 5 or 7, n = 0, p does not divide |G|, K/Q is Galois but
not abelian;

• 16 examples of type C: p = 3, 5 or 7, n = 0, p does not divide |G|, K/Q is non-Galois;

• 14 examples of type D: p = 3 or 5, n = 0, p divides |G|, K/Q non-Galois (resp. Galois
but not abelian) if p = 3 (resp. p = 5);

• 6 examples of type E: p = 3, n = 1, p necessarily divides |G|, K/Q not abelian but
possibly Galois.

The examples are summarized in four tables, with one table for each type. The columns
of the tables have the following meaning:

• the number of the example,

• the value of p (it is either 3, 5 or 7),

• the discriminant dk of the real quadratic base field k (thus k = Q(
√

dk)),

• ‘R’, ‘S’ or ‘I’ according to whether p is ramified, split or inert in k,

• the conductor f(K) of K/k with the following notations: p = p(1), and p′ = p(2) if p is
split in k, qq is a prime ideal of k above a primer number q, and q′q is the other prime
ideal of k above q if q is split in k,3

• the structure of the Galois group G as a product of cyclic groups,

• the structure of the Galois group Ḡ as a product of cyclic groups,

• the minimal polynomial Pλ of a generating element λ of K+ over Q, so K+ = Q(λ)
and K = Q(λ, ξp),

2A fifth, type A, for which the extension K/Q is abelian, was used for testing purposes only. It is not
included because the CC then follows from [So3, Thm. 5]. (Hypothesis 4, ibid. holds since p - 2 = [k : Q]).

3Note that the examples B8 and B9 differ only by the prime ideal in k above 7 dividing the conductor.
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• the decomposition in K/k of the primes ideals above p given as (eP(i,1)(K/k), fP(i,1)(K/k), hi)
for i = 1, . . . , t (see Subsection 3.3 for the notations),

• the cardinality of S1,

• the value of a (see Equation (21)),

• the nature of the Rubin-Stark element: a ‘0’ means that it is trivial, a ‘U ’ means
that we found a representation as in (21) with εi ∈ O×

K+ for i = 1, 2. Recall from
Subsection 3.5 that this is to be expected in examples where p - |G| and |S1| ≥ 4.
Interestingly, it turned out to be possible in most of our other examples as well. In
the remainder, indicated by a ‘p’ in this column, we were only able to satisfy (21) with
ε1 ∈ O×

K+ and ε2 ∈ US(p)(K
+).
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ln-ten Potenzreste im Körper der ln-ten Einheitswurzeln’, Abh. Math. Sem. Univ.
Hamburg, 6, (1928), p. 146-162.

[Co] H. Cohen, ‘Advanced topics in computational number theory’, Graduate Texts in
Math. 193, Springer-Verlag, New York, 2000.

[D-T] D. Dummit and B. Tangedal, ‘Computing the lead term of an abelian L-function’,
Algorithmic number theory symposium (Portland, OR, 1998), Lecture Notes in Com-
put. Sci. 1423, p .400–411, Springer, Berlin, 1998.

[Gr] G. Gras, ‘Class Field Theory: From Theory to Practice’, Monographs in Mathemat-
ics, Springer, 2005.

[Ne] J. Neukirch, ‘Algebraic Number Theory’, Grundlehren der mathematischen Wis-
senschaften 322, Springer-Verlag, 1999

[PARI] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, PARI/GP System,
available at http://pari.math.u-bordeaux.fr

[R-S1] X.-F. Roblot and D. Solomon, ‘Verifying a p-adic Abelian Stark Conjecture at s = 1’,
Journal of Number Theory 107, (2004), pp. 168-206.

[Ru] K. Rubin, ‘A Stark Conjecture “Over Z” for Abelian L-Functions with Multiple
Zeros’, Annales de l’Institut Fourier 46, No. 1, (1996), p. 33-62.

[Se] J.-P. Serre, ‘Local Fields’, Springer-Verlag, New York, 1979.

[So1] D. Solomon, ‘On p-Adic Abelian Stark Conjectures at s = 1’, Annales de l’Institut
Fourier 52, No. 2, (2002), p. 379-417.

25



[So2] D. Solomon, ‘On Twisted Zeta-Functions at s = 0 and Partial Zeta-Functions at
s = 1’, Journal of Number Theory 128, (2008), p. 105-143.

[So3] D. Solomon, ‘Abelian L-Functions at s = 1 and Explicit Reciprocity for Rubin-Stark
Elements’, preprint, http://arxiv.org/abs/math.NT/0702387

[So4] D. Solomon, ‘Some New Ideals in Classical Iwasawa Theory’, in preparation.

[Ta] J. T. Tate, ‘Les Conjectures de Stark sur les Fonctions L d’Artin en s = 0’,
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