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Abstract. Siegel introduced and studied the class of E-functions in 1929. They are
power series, solutions of some linear differential equations, whose Taylor coefficients sat-
isfy certain arithmetic and growth conditions. After the work of Siegel and Shidlovskii,
and its refinement by Beukers, on the algebraic relations between values of E-functions
over Q, it is important to know when the E-functions solutions of a given differential
system of order 1 are algebraically dependent or not over Q(z). In this paper, we give the
complete classification of the vector solutions of two dimensional differential systems of
order 1 whose components are algebraically dependent E-functions over Q(z).

1. Introduction

An E-function is a power series

f(z) =
∞∑
n=0

an
n!
zn ∈ Q[[z]]

with coefficients in the field of algebraic numbers Q such that

(1) f(z) satisfies a nonzero linear differential equation with coefficients in Q(z);
(2) there exists C > 0 such that

(a) the maximum of the moduli of the galoisian conjuguates of an is bounded by
Cn+1;

(b) there exists a sequence of positive integers dn such that dn ≤ Cn+1 and dnam
is an algebraic integers for all m ≤ n.

The prototypical example is the exponential function. The E-functions were first in-
troduced by Siegel (1) to generalize the diophantine properties of ez, in particular the
Lindemann-Weierstrass Theorem. The work of Siegel [13] and Shidlovskii [14] culminated
with the following theorem, which can be seen as vast generalization of the Lindemann-
Weierstrass Theorem.

Theorem 1 (Siegel-Shidlovskii). Let f1(z), . . . , fn(z) be E-functions such that

(f ′1(z), . . . , f ′n(z))t = A(z)(f1(z), . . . , fn(z))t
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for some A(z) ∈ Mn(Q(z)). Denote the common denominator of the entries of A(z) by
T (z). Then, for any ξ ∈ Q such that ξT (ξ) 6= 0, we have

deg trQ Q
(
f1(ξ), . . . , fn(ξ)

)
= deg trQ(z) Q(z)

(
f1(z), . . . , fn(z)

)
.

An alternative proof of the Siegel-Shidlovskii Theorem was given by Bertrand in [3] using
Laurent’s determinants.

In the seminal paper [1], André elucidated the structure of “E-operators” by means of
their relations with G-operators. Any E-function is in the kernel of an E-operator. Using
these results, André obtained in [2, Théorème 2.3.1] a completely new proof of the Siegel-
Shidlovskii Theorem. Beukers [6] was even able to deduce from the work of André the
following important refinement of a theorem of Nesterenko and Shidlovskii [9], which is
itself a refinement of the above-mentioned Siegel-Shidlovskii Theorem.

Theorem 2 (Beukers). With the notations and hypotheses of Theorem 1, let us consider
ξ ∈ Q such that ξT (ξ) 6= 0. For any polynomial relation P

(
f1(ξ), . . . , fn(ξ)

)
= 0 with

P ∈ Q[X1, . . . , Xn], there exists Q ∈ Q[z][X1, . . . , Xn] such that Q
(
f1(z), . . . , fn(z)

)
= 0

and P (X1, . . . , Xn) = Q(X1, . . . , Xn)|z=ξ.

In order to apply the above transcendence results, the first naive question is: when are
f1(z), . . . , fn(z) algebraically dependent over Q(z)? The main result of this paper gives a
complete answer to this question when n = 2. In what follows, for any γ ∈ Q \ Z≤0, we
denote by 1F1(1; γ; z) the hypergeometric function (which is an E-function) defined by:

1F1(1; γ; z) =
∞∑
k=0

zk

γ(γ + 1) · · · (γ + k − 1)
.

Note that 1F1(1; 1; z) = ez.

Theorem 3. Let f(z), g(z) ∈ Q[[z]] be E-functions such that

(f ′(z), g′(z))t = E(z)(f(z), g(z))t

for some E(z) ∈ M2(Q(z)). If f(z) and g(z) are algebraically dependent over Q(z), then
one of the following cases occurs:

(i) There exist a(z), b(z), c(z), d(z) ∈ Q[z, z−1] and α, β ∈ Q such that

f(z) = a(z)eαz + b(z)eβz and g(z) = c(z)eαz + d(z)eβz.

(ii) There exist a(z), b(z), c(z), d(z) ∈ Q[z, z−1], γ ∈ Q \ Z and α ∈ Q such that

f(z) = a(z)1F1(1; γ;αz) + b(z) and g(z) = c(z)1F1(1; γ;αz) + d(z).

Remark. Let f(z) be an E-function such that f ′(z) = u(z)f(z) + v(z) for some u(z) ∈
Q(z)× and v(z) ∈ Q(z). In particular, f(z) and f ′(z) are algebraically dependent over
Q(z). Using Theorem 3, it is easily seen that f(z) = a(z)1F1(1; γ;αz) + b(z) for some
a(z), b(z) ∈ Q[z, z−1], γ ∈ {1} ∪ Q \ Z and α ∈ Q. This provides a complete proof of a
result suggested by André in [1, Section 4.5], which answers a question asked by Shidlovskii.
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Actually, we will first prove, in section 3, the following result.

Theorem 4. Let f(z), g(z) ∈ Q[[z]] be E-functions such that

(f ′(z), g′(z))t = E(z)(f(z), g(z))t

for some E(z) ∈ M2(Q(z)). Assume that the differential system Y ′(z) = E(z)Y (z) is
reducible over Q(z). Then, one of the following cases occurs:

(i) There exist a(z), b(z), c(z), d(z) ∈ Q[z, z−1] and α, β ∈ Q such that

f(z) = a(z)eαz + b(z)eβz and g(z) = c(z)eαz + d(z)eβz.

(ii) There exist a(z), b(z), c(z), d(z) ∈ Q[z, z−1], γ ∈ Q \ Z, α ∈ Q and δ ∈ Q such that

f(z) = (a(z)1F1(1; γ;αz) + b(z))eδz and g(z) = (c(z)1F1(1; γ;αz) + d(z))eδz.

The proof of Theorem 3, given in section 4, relies on Theorem 4. With the notations and
hypotheses of Theorem 3, we actually prove that the differential system Y ′(z) = E(z)Y (z)
is automatically reducible over Q(z) and that the algebraic number δ given by Theorem 4
can be choosen equal to 0.

The present work was mainly motivated by the following question: is the group of units

of the ring E of values of E-functions at algebraic points equal to Q× exp(Q)? We refer
to [10] for an application of Theorem 3 to this problem. The ring E was introduced in the
paper [7], to which we refer the interested reader.

It would be very interesting to extend Theorem 3 to higher order differential systems.
Note that, in [11, 12], Salikhov studied hypergeometric E-functions solutions of a linear
differential equation of order n ≥ 1 with coefficients in Q(z) and algebraically dependent
of their first n− 1 derivatives. See [5] for further results in this direction.

2. Preliminary step for the proofs of Theorem 3 and Theorem 4

Let f(z), g(z) ∈ Q[[z]] be E-functions such that

(f ′(z), g′(z))t = E(z)(f(z), g(z))t

for some E(z) ∈ M2(Q(z)). According to the cyclic vector lemma, there exist a linear
differential operator L of order 2 with coefficients in Q(z), a series h(z) ∈ Q[[z]] such that
L h(z) = 0, and a matrix (

p1(z) p2(z)
p3(z) p4(z)

)
∈ GL2(Q(z))

such that

f(z) = p1(z)h(z) + p2(z)h′(z) and g(z) = p3(z)h(z) + p4(z)h′(z).

Hence,
h(z) = q1(z)f(z) + q2(z)g(z) and h′(z) = q3(z)f(z) + q4(z)g(z)

where (
q1(z) q2(z)
q3(z) q4(z)

)
=

(
p1(z) p2(z)
p3(z) p4(z)

)−1

∈ GL2(Q(z)).
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Let ∆(z) ∈ Q[z] be a common denominator of the qi(z). Then,

k(z) := ∆(z)h(z) = ∆(z)q1(z)f(z) + ∆(z)q2(z)g(z)

is an E-function (we recall that the set of E-functions is a sub-Q[z]-algebra of Q[[z]]), and
is a solution of a linear differential operator with coefficients in Q(z) of order 2, namely
L ∆−1. By André’s [1, Theorem 4.3], k(z) is solution of a monic linear differential operator
M with coefficients in Q(z) of order ν = 1 or 2 which is a right factor of an E-operator.

Let us first assume that ν = 1. Then, it is well-known that k(z) = q(z)eαz for some
q(z) ∈ Q[z] and α ∈ Q. Therefore, there exist a(z), c(z) ∈ Q(z) such that f(z) = a(z)eαz,
and g(z) = c(z)eαz. Since f(z) and g(z) are entire functions, we have a(z), c(z) ∈ Q[z],
whence the desired result.

We shall now assume that ν = 2. By André’s [1, Theorem 4.3], the differential operator
M has the following properties, that will be freely used in the rest of this paper:

Proposition 1. We have:

(1) M has only apparent singularities on C×;
(2) M is regular singular at 0, and its exponents at 0 are rational;
(3) M admits a basis of formal solutions at ∞ of the form(

â1(z)eα1z, â2(z)eα2z
)

=
(
f1(z), f2(z)

)
zΓ∞e∆z

where the fi(z) ∈ Q[[1
z
]] are Gevrey-1 series of arithmetic type, Γ∞ ∈ M2(Q) is

upper-triangular and ∆ = diag(α1, α2) ∈M2(Q).

3. Proof of Theorem 4

So, we assume that the differential system Y ′(z) = E(z)Y (z) is reducible over Q(z).
This implies that the differential operator M is reducible over Q(z), i.e., that there exist
η(z), ω(z) ∈ Q(z) such that

M =

(
d

dz
− η(z)

)(
d

dz
− ω(z)

)
.

Since M (k(z)) = 0, the function u(z) := k′(z)− ω(z)k(z) satisfies u′(z) = η(z)u(z).
We claim that u(z) = r(z)eδz for some r(z) ∈ Q(z)× and δ ∈ Q. Indeed, let $(z) ∈ Q[z]

be a denominator of ω(z). Then, $(z)u(z) ∈ Q[[z]] satisfies an homogeneous differential
equation of order 1 with coefficients in Q(z) and is a E-function (because the set of E-
functions is a sub-Q[z]-differential algebra of Q[[z]]). So, $(z)u(z) = r1(z)eδz for some
r1(z) ∈ Q[z] and δ ∈ Q. So u(z) = r(z)eδz with r(z) = r1(z)/$(z). Note that r(z) 6= 0
because k(z) is not a solution of a linear differential equation of order 1 with coefficients
in Q(z) by hypothesis.

Then, it is easily seen that l(z) := e−δzk(z) is an E-function solution of an inhomogeneous
linear differential equation of order 1 with coefficients in Q(z), say y′ + a1(z)y = v(z), and
that e−δzζ(z) is a solution of the corresponding homogeneous equation y′ + a1(z)y = 0.

Note that e−δzζ(z) = zγp(z)eαz for some γ ∈ Q, p(z) ∈ C[z] and α ∈ {α1−δ, α2−δ} ⊂ Q.
Indeed, this follows from the fact that ζ ′(z) = ω(z)ζ(z) together with Proposition 1.
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Using the variation of constants method, we get that there exists C ∈ C× such that

l(z) = zγp(z)eαz
(∫ z

z0

x−γp(x)−1v(x)e−αxdx+ C

)
, (3.1)

where z0 ∈ C× is not a pole of p(z)−1v(z). We shall now express (3.1) by means of
hypergeometric series. For this, we will use the following lemmas.

Lemma 1. For all γ 6∈ Z, for all Q(z) ∈ C(z), for all z0 ∈ C× which is not a pole of Q(z),
there exists R(z) ∈ C(z) with at most simple poles on C× and whose set of poles in C× is
included in the set of poles in C× of Q(z), and there exist λ(z), µ(z) ∈ C(z) and ν ∈ C
such that ∫ z

z0

x−γQ(x)e−αxdx = λ(z)z−γe−αz + µ(z)

∫ z

z0

x−γR(x)e−αxdx+ ν.

Proof. Using the decomposition in partial fractions of Q(z), we see that it is sufficient to
prove the lemma for Q(z) = Qn(z) := 1

(z−ξ)n with ξ ∈ C× and n ∈ N∗. We proceed by

induction on n. The result is obvious for n = 1. Assume that the result is true for some
n ∈ N∗. An integration by parts shows that∫ z

z0

x−γQn+1(x)e−αxdx = z−γe−αz
−1

n
Qn(z)− z−γ0 e−αz0

−1

n
Qn(z0)

− α

n

∫ z

z0

Qn(x)x−γe−αxdx− γ

n

∫ z

z0

Qn(x)x−γ−1e−αxdx.

The induction hypothesis leads to the desired result. �

Lemma 2. For all Q(z) ∈ C(z), for all z0 ∈ C× which is not a pole of Q(z), there exists
R(z) ∈ C(z) with at most simple poles on C and whose set of poles in C× is included in
the set of poles in C× of Q(z), and there exist λ(z), µ(z) ∈ C(z) and ν ∈ C such that∫ z

z0

Q(x)e−αxdx = λ(z)e−αz + µ(z)

∫ z

z0

R(x)e−αxdx+ ν.

Proof. Similar to the proof of Lemma 1. �

In what follows, for any γ ∈ C \ Z and α ∈ C, we set:

Eγ,α(z) = zγ
∫ z

0

x−γe−αxdx =
∞∑
n=0

(−α)nzn+1

(n− γ + 1)n!

and, for γ ∈ Z, we set Eγ,α(z) = e−αz. If γ ∈ Q and α ∈ Q, then Eγ,α(z) is an E-function.

Lemma 3. Consider γ ∈ C, R(z) ∈ C(z), z0 ∈ C× which is not a pole of R(z), C ∈ C,
and ϕ(z) := zγ(

∫ z
z0
x−γR(x)e−αxdx+C). Assume that ϕ(z) is meromorphic over C. Then,

there exist λ(z), µ(z) ∈ C(z) such that

ϕ(z) = λ(z)e−αz + µ(z)Eγ,α(z) if γ 6∈ Z
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and

ϕ(z) = λ(z)e−αz + µ(z) if γ ∈ Z.

Proof. Let us first assume that γ 6∈ Z. By Lemma 1, there exists R(z) ∈ C(z) with at most
simple poles on C× and whose set of poles in C× is included in the set of poles in C× of
Q(z), and there exist λ(z), µ(z) ∈ C(z) and C ′ ∈ C such that

ϕ(z) = λ(z)e−αz + µ(z)zγ
∫ z

z0

x−γR(x)e−αxdx+ C ′zγ.

If µ(z) = 0, then we must have C ′ = 0 because ϕ(z) − λ(z)e−αz is meromorphic over C,
and, hence, the result is proved. We now assume that µ(z) 6= 0. If ξ ∈ C× is a (simple)
pole of R(z), then ξ is a logarithmic singularity of

∫ z
z0
x−γR(x)e−αxdx and this contradicts

the fact that ϕ(z) is meromorphic over C. Therefore, R(z) = z−nS(z) for some integer
n ≥ 0 and some S(z) ∈ C[z]. Hence,

ϕ(z) = λ(z)e−αz + µ(z)zγ
∫ z

z0

x−γ−nS(x)e−αxdx+ C ′zγ.

But,
∫ z
z0
x−γ−nS(x)e−αxdx is a linear combination with coefficients in C of functions of

the form
∫ z
z0
x−γ−n+ke−αxdx for k ∈ N. Using integrations by parts, we conclude that∫ z

z0
x−γ−nS(x)e−αxdx is, up to an additive constant in C, a linear combination with coef-

ficients in C(z) of z−γe−αz and
∫ z
z0
x−γe−αxdx. Hence, there exist λ̃(z), µ̃(z), ν̃(z) ∈ C(z)

such that

ϕ(z) = λ̃(z)e−αz + µ̃(z)Eγ,α(z) + ν̃(z)zγ.

We must have ν̃(z) = 0 because ϕ(z)− λ̃(z)e−αz− µ̃(z)Eγ,α(z) is meromorphic over C. This
yields the desired result.

Let us assume that γ ∈ Z. By Lemma 2, there exists R(z) ∈ C(z) with at most simple
poles on C and whose set of poles in C× is included in the set of poles in C× of Q(z), and
there exist λ(z), µ(z) ∈ C(z) and C ′ ∈ C such that

ϕ(z) = λ(z)e−αz + µ(z)

∫ z

z0

R(x)e−αxdx+ C ′zγ.

If µ(z) = 0, the result is proved. We now assume that µ(z) 6= 0. If ξ ∈ C is a (simple)
pole of R(z), then ξ is a logarithmic singularity of

∫ z
z0
R(x)e−αxdx and this contradicts the

fact that ϕ(z) is meromorphic over C. Hence, R(z) ∈ C[z]. Using integration by parts, we
see that

∫ z
z0
R(x)e−αxdx is, up to an additive constant in C, of the form η(z)e−αz for some

η(z) ∈ C[z], and this gives the desired result. �

We are now able to express (3.1) in terms of hypergeometric functions.
Let us first assume that γ 6∈ Z. Using (3.1) and Lemma 3, we see that there exist

λ(z), µ(z) ∈ C(z) such that

k(z) = l(z)eδz = λ(z)eδz + µ(z)Eγ,α(z)e(α+δ)z. (3.2)
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A simple linear algebra argument shows that we can choose λ(z) and µ(z) in Q(z). Fur-
thermore, we have the following relation

Eγ,α(z)eαz =
γα2

z

(
1F1(1; γ;−αz)− 1 +

αz

γ

)
;

this is an easy consequence of the fact that both members of this equality satisfy the same
nonhomogeneous differential equation of order one, namely

zy′(z)− (γ + αz)y(z) = z. (3.3)

Therefore, there exist a(z), b(z), c(z), d(z) ∈ Q(z) such that

f(z) = a(z)1F1(1; γ;−αz)eδz + b(z)eδz and g(z) = c(z)1F1(1; γ;−αz)eδz + d(z)eδz. (3.4)

It remains to prove that a(z), b(z), c(z), d(z) belong to Q[z, z−1]. Assume that ξ(∈ Q)
is a non-zero pole of a(z) or b(z). Let us denote by n the order of ξ as a pole of a(z).
Let us denote by m the order of ξ as a pole of b(z). Let us first assume that m > n.
Then, multiplying (the first) equation (3.4) by (z − ξ)m and letting z = ξ, we get 0 =(
(z − ξ)mb(z)eδz

)
|z=ξ and this is a contradiction. So, we have n ≤ m. Then, multiplying

(the first) equation (3.4) by (z − ξ)n and letting z = ξ, we obtain that 1F1(1; γ;−αξ)
belongs to Q, and this is a contradiction by [14, p. 192, Theorem 3]. Hence, a(z) and b(z)
do not have poles on C× and, hence, belong to Q[z, z−1]. A similar argument shows that
c(z) and d(z) belong to Q[z, z−1].

We shall now assume that γ ∈ Z. Using (3.1) and Lemma 3, we see that there exist
λ(z), µ(z) ∈ C(z) such that

k(z) = λ(z)eδz + µ(z)e(α+δ)z. (3.5)

It is easily seen that one can choose λ(z), µ(z) ∈ Q(z). It follows that there exist
a(z), b(z), c(z), d(z) ∈ Q(z) such that

f(z) = a(z)e(α+δ)z + b(z)eδz and g(z) = c(z)e(α+δ)z + d(z)eδz.

The proof of the fact that one can choose a(z), b(z), c(z) and d(z) in Q[z, z−1] is analogous
to the proof of the similar result in the case γ 6∈ Z, using Lindemann’s Theorem.

4. Proof of Theorem 3

So, we assume that f(z) and g(z) are algebraically dependent over Q(z). It follows
that the functions k(z) and k′(z) are algebraically dependent over Q(z). Therefore, the
differential Galois group of M over Q(z) does not contain SL2(Q) (for an introduction to
differential Galois theory, we refer to [4, 15] and the references therein). It follows from
Kovacic’s [8, §1.2, Theorem] that one of the following cases hold:

Case 1: M has a nonzero solution ζ(z) such that ζ ′(z) = ω(z)ζ(z) for some ω(z) ∈ Q(z).

Case 2: M has a basis of solutions (ζ(z), ζ(z)) such that ζ ′(z) = ω(z)ζ(z) and ζ
′
(z) =

ω(z)ζ(z) where ω(z) is an algebraic function of degree 2 on Q(z), and ω(z) is its
Galois conjugate.
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Case 3: M has a basis of solutions of the form (ζ(z)ζ1(z), ζ(z)ζ2(z)) where ζ(z) satisfies
ζ ′(z) = ω(z)ζ(z) for some ω(z) ∈ Q(z) and where ζ1(z) and ζ2(z) are algebraic
functions over Q(z).

We shall now consider each of these cases (we will prove that the last two cases are im-
possible: the first case is automatically satisfied and, hence, M is automatically reducible
over Q(z)).

4.1. Case 1. In this case, the operator M is reducible over Q(z) (indeed, by euclidean
division, there exists η(z) ∈ Q(z) such that M =

(
d
dz
− η(z)

) (
d
dz
− ω(z)

)
). We have seen

in section 3 that one of the following properties holds true:

(i) There exist a(z), b(z), c(z), d(z) ∈ Q[z, z−1] and α, β ∈ Q such that

f(z) = a(z)eαz + b(z)eβz and g(z) = c(z)eαz + d(z)eβz.

(ii) There exist a(z), b(z), c(z), d(z) ∈ Q[z, z−1], γ ∈ Q \ Z, α ∈ Q and δ ∈ Q such that

f(z) = (a(z)1F1(1; γ;αz) + b(z))eδz and g(z) = (c(z)1F1(1; γ;αz) + d(z))eδz.

If (i) is satisfied, then Theorem 3 is proved. We shall now assume that (ii) is satisfied. The
difference between (ii) and the desired conclusion is the multiplicative factor eδz. Actually,
if α = 0 or µ(z) = 0, then we can easily conclude: in this case, we can take a(z) = c(z) = 0
and, hence, f(z) and g(z) have the expected form. We now assume that α 6= 0 and
µ(z) 6= 0. In order to conclude the proof, it is sufficient to show that δ = 0. We will prove
that this is indeed the case with the help of the following lemma.

Lemma 4. For all γ ∈ C \ Z, α ∈ C× and δ ∈ C×, the functions Eγ,α(z)e(α+δ)z and eδz

are algebraically independent over C(z).

Proof. We consider the differential system associated with the differential equation (3.3):

Y ′ = A(z)Y with A(z) =

(
γ/z + α 1

0 0

)
.

A fundamental matrix of solutions of this system is given by

Y =

(
zγeαz Eγ,α(z)eαz

0 1

)
.

We let G be the differential Galois group over C(z) of the above differential system, which
is seen as an algebraic subgroup of GL2(C) via Y. It is easily seen that

G =

{(
a b
0 1

)
| a ∈ C×, b ∈ C

}
.

We now consider the differential Galois group H over C(z) of the differential system

Z ′ = (A(z) + δI2)Z,

which is seen as an algebraic subgroup of GL2(C) via the fundamental matrix of solutions

Z = eδzY =

(
zγe(α+δ)z Eγ,α(z)e(α+δ)z

0 eδz

)
.
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Since the derived subgroup (G,G) of G is equal to the group of unipotent upper trian-
gular matrices U2 ⊂ GL2(C), we get that (H,H) = U2 and, hence, U2 ⊂ H. There-
fore, the (differential) field extension C(z, zγe(α+δ)z, Eγ,α(z)e(α+δ)z, eδz)/C(z, zγe(α+δ)z, eδz)
is transcendental. Whence the desired result. �

Recall that we want to prove that δ = 0 under the assumptions that α 6= 0 and µ(z) 6= 0.
We know that k(z) and k′(z) = u(z) + ω(z)k(z) are algebraically dependent over Q(z).
Therefore, k(z) and u(z) are algebraically dependent over Q(z). Using the equality k(z) =
λ(z)eδz + µ(z)Eγ,α(z)e(α+δ)z and the facts that u(z) = r(z)eδz with r(z) 6= 0 and that

µ(z) 6= 0, we deduce that Eγ,α(z)e(α+δ)z and eδz are algebraically dependent over Q(z).
Lemma 4 implies that δ = 0, as expected.

4.2. Case 2. We are going to prove that this case does not occur.
Since ω(z) has degree 2 over Q(z), there exist r(z), s(z) ∈ Q(z) such that ω(z) =

r(z) +
√
s(z) and

√
s(z) 6∈ Q(z). Hence, ω(z) = r(z)−

√
s(z).

In what follows, we will denote by
∫
r(z) and

∫ √
s(z) some primitive integrals of r(z)

and
√
s(z) respectively such that ζ(z) = e

∫
r(z)+

∫ √
s(z). We can and will assume that

ζ(z) = e
∫
r(z)−

∫ √
s(z).

We claim that s(z) = znq(z)2 for some n ∈ Z \ 2Z and q(z) ∈ Q(z)×. Indeed, write

s(z) = c
∏m

i=1(z − si)ni with c ∈ Q×, s1, . . . , sm ∈ Q pairwise distinct and n1, . . . , nm ∈ Z.

If si 6= 0, then ni ∈ 2Z because, otherwise, e2
∫ √

s(z) = ζ(z)/ζ(z) would have a non trivial
monodromy around si, and this would be contradiction since both ζ(z) and ζ(z) have
trivial monodromy around si in virtue of Proposition 1. Therefore, s(z) = znq(z)2 for

some n ∈ Z and q(z) ∈ Q(z)×. We have n ∈ Z \ 2Z because
√
s(z) 6∈ Q(z).

If follows that
∫ √

s(z) = z1/2h∞(z) (up to an additive constant, that we take equal
to 0) for some germ of meromorphic function h∞(z) at ∞. Moreover, near ∞, we have
e
∫
ω = zγt∞(z)ep(z) for some γ ∈ Q, some germ of analytic function t∞(z) at ∞ and some

p(z) ∈ Q[z]. So, ζ(z) = zγt∞(z)ep(z)+z
1/2h∞(z).

Let λ, µ ∈ C be such that k(z) = λζ(z) + µζ(z). We distinguish two cases:

• If h∞(z) is analytic and vanishes at ∞, then e−p(z)k(z) has moderate growth at
∞. Since e−p(z)k(z) is an entire function, it is a polynomial. So, k(z) satisfies a
first order linear differential equation with coefficients in Q(z), which is excluded
by assumption.
• Otherwise, we see that ζ(z) = zγg∞(z1/2)eq(z

1/2) where g∞ is a germ of meromorphic
function at∞ and q(z1/2) ∈ Q[z1/2]\Q[z]. But, Proposition 1 implies that q(z1/2) =
αiz + β for some i ∈ {1, 2} and β ∈ C, whence a contradiction.

4.3. Case 3. We are going to prove that this case does not occur.
Since k(z) is a C-linear combination of ζ(z)ζ1(2) and ζ(z)ζ2(z), we see that k(z) =

ζ(z)ζ̃(z) where ζ̃(z) is an algebraic function over C(z). Since ζ ′(z) = ζ(z)ω(z) with ω(z) ∈
Q(z), we get that ζ(z) = m(z)er(z) for some m(z) algebraic over C(z) and some r(z) ∈ Q(z).
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So, k(z) = m̃(z)er(z) where m̃(z) is algebraic over C(z). Since k(z) is an entire function, we
must have r(z) ∈ Q[z]. Therefore, the function e−r(z)k(z) is entire and algebraic over C(z)
and, hence, e−r(z)k(z) ∈ Q[z]. If follows that k(z) satisfies a linear differential equation of
order 1 with coefficients in Q(z), and this is excluded by hypothesis.
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memory of Serge Lang. D. Goldfeld et. al. (ed.), Springer-verlag (2012), 51–67.

[4] F. Beukers, Differential Galois theory, in From number theory to physics (Les Houches, 1989), Springer,
Berlin, 1992, 413–439.

[5] F. Beukers, W. D. Brownawell, G. Heckman, Siegel normality, Ann. of Math. 127 (1988), no. 2,
279–308.

[6] F. Beukers, A refined version of the Siegel-Shidlovskii theorem, Ann. of Math. 163 (2006), no. 1,
369–379.

[7] S. Fischler, T. Rivoal, Arithmetic theory of E-operators, preprint (2014), 31 pages.
[8] J. J. Kovacic, An algorithm for solving second order linear homogeneous differential equations, J.

Symbolic Comput. 2 (1986), no. 1, 3–43.
[9] Yu. V. Nesterenko, A. B. Shidlovskii, On the linear independence of values of E-functions, Mat.Sb 187

(1996), 93–108, translated in english in Sb. Math 187 (1996), 1197–1211.
[10] T. Rivoal, J. Roques, E-functions of order 2 and units of E-values, preprint available at https://www-

fourier.ujf-grenoble.fr/˜rivoal/articles/unitse.pdf
[11] V. Kh. Salikhov, Irreducibility of hypergeometric equations, and algebraic independence of values of

E-functions, Acta Arith. 53 (1990), no. 5, 453–471, in russian.
[12] V. Kh. Salikhov, A criterion for algebraic independence of the values of a class of hypergeometric E-

functions, Mat. Sb. 181 (1990), no. 2, 189–211, in russian, translation in Math. USSR-Sb. 69 (1991),
no. 1, 203–226.
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