TD Nº 9 - Algèbre linéaire

Exo 1. Soit $M \in M_n(\mathbb{C})$.

- 1) On suppose que M est annulée par X(X-1)(X-2). Calculer M^m en fonction de I_n, M et M^2 pour tout $m \geq 3$.
- 2) Même question si M est annulée par $(X-1)^2(X-2)$.
- **Exo 2.** Soit E un \mathbb{R} -espace vectoriel de dimension $n \geq 1$, et soit u un endomorphisme de E vérifiant $u^2 + \mathrm{Id}_E = 0$. On se propose de montrer de plusieurs manières que n est pair, et de déterminer tous les endomorphismes u vérifiant cette relation.
- 1) Utiliser le déterminant pour montrer que n est pair.
- 2) Soit M une matrice représentative de u dans une base de E fixée.
- 2.a) Montrer que les valeurs propres complexes éventuelles de M sont i et -i.
- 2.b) Montrer que, si $P \in \mathbb{R}[X]$, et si $z \in \mathbb{C}$ est une racine de P de multiplicité m, alors \overline{z} est une racine de P de multiplicité m,
- 2.c) En déduire que $\chi_u = (X^2 + 1)^m, m \ge 1$. Retrouver le fait que n est pair.

3)

3.a) Montrer que la loi externe

$$\mathbb{C} \times E \longrightarrow E$$
$$(a+bi,v) \longmapsto (a+bi) \cdot v = av + bu(v)$$

définit une structure de \mathbb{C} -espace vectoriel sur E qui prolonge sa structure de \mathbb{R} -espace vectoriel.

- 3.b) Montrer que si (e_1, \ldots, e_m) est une \mathbb{C} -base de E, alors $(e_1, i \cdot e_1, \ldots, e_m, i \cdot e_m)$ est une \mathbb{R} -base de E. Retrouver encore une fois que n est pair.
- 3.c) Calculer la matrice représentative de u dans la \mathbb{R} -base $(e_1, i \cdot e_1, \dots, e_m, i \cdot e_m)$ (remarquer que $i \cdot e_j = u(e_j)$ par définition).
- 3.d) En déduire que $u^2 + \mathrm{Id}_E = 0$ si et seulement s'il existe une \mathbb{R} -base de E dans laquelle la matrice représentative de u est de la forme

$$\begin{pmatrix} 0 & -1 & & & \\ 1 & 0 & & & \\ & & \ddots & & \\ & & & 0 & -1 \\ & & & 1 & 0 \end{pmatrix}.$$

- **Exo 3.** Soit u un endomorphisme d'un K-espace vectoriel E. On suppose que u est annulé par deux polynômes de K[X] premiers entre eux. Que dire de E et u?
- **Exo 4.** Soit $M = \binom{M_1}{\dots M_r} \in M_n(K)$ une matrice diagonale par blocs. Calculer le polynôme minimal de M en fonction des polynômes minimaux de M_1, \dots, M_r .
- **Exo 5.** Soit u un endomorphisme d'un K-espace vectoriel E de dimension finie, dont le polynôme minimal est noté μ_u .
- 1) On suppose que u est inversible. Montrer qu'il existe $Q \in K[X]$ tel que $u^{-1} = Q(u)$.
- 2) Soit $P \in K[X]$. Montrer que P(u) est inversible si et seulement si P et μ_u sont premiers entre eux.
- **Exo 6.** 1) Soient u un endomorphisme nilpotent de E. Montrer que $u^n = 0$.
- 2) Soient $u_1, ..., u_n$ des endomorphismes nilpotents de E qui commutent deux à deux. L'objectif de cette question est de montrer que $u_1 \circ \cdots \circ u_n = 0$.
- 2.a) Montrer que, pour tout $j \in \{1, ..., n-1\}, K_j := \ker(u_1 \circ \cdots \circ u_j) \subset K_{j+1} := \ker(u_1 \circ \cdots \circ u_{j+1}).$
- 2.b) Montrer que l'inclusion précédente est stricte (on supposera au contraire que $K_j = K_{j+1}$ et on montrera qu'alors u_{j+1} induirait un automorphisme de $Im(u_1 \circ \cdots \circ u_j)$).
- 2.c) Conclure.
- **Exo 7.** Soit E un K-espace vectoriel de dimension finie n et u un endomorphisme nilpotent de rang n-1. Montrer que E admet exactement n+1 sous-espaces vectoriels stables par u et que ce sont les $\ker u^k$ pour $k \in \{0, \ldots, n\}$.
- Exo 8. Donner la décomposition de Dunford des matrices suivantes.

1)
$$\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$$
 2) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ 3) $\begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

Exo 9. Quelle est la décomposition de Dunford de

$$M = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}?$$

Exo 10. 1) Soit
$$E = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$
.

Montrer que E est diagonalisable et admet 1 et 2 comme valeurs propres.

2) Soient
$$A = \begin{pmatrix} 0 & -2 & 1 & 2 \\ -1 & 0 & 0 & 2 \\ -1 & -1 & 2 & 1 \\ -1 & -2 & 0 & 4 \end{pmatrix}$$
 et $F = A - E$.

Calculer F^2 et EF - FE.

3) Quelle est la décomposition de Dunford de A?

Exo 11. Soient
$$K = \mathbb{R}$$
 ou \mathbb{C} , $m \in K$, $A_m = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & m \end{pmatrix}$ et f_m

l'endomorphisme de $E=K^3$ dont la matrice dans la base canonique de E est A_m .

1) On considère les deux matrices
$$B_m = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & m \end{pmatrix}$$
 et $C = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$;

- 1.a) Vérifier que la matrice C est nilpotente.
- 1.b) Déterminer l'ensemble F des scalaires m pour lesquels $B_m + C$ est la décomposition de Dunford de A_m .
- 2) Soit m n'appartenant pas à F.
- 2.a) Vérifier que la matrice n'est pas diagonalisable.
- 2.b) Déterminer la décomposition de Dunford de A_m .

Exo 12. Soit
$$K$$
 un corps, soit $A \in M_n(K)$ et soit $B = \begin{pmatrix} 4A & A \\ -2A & A \end{pmatrix}$.

- 1) Diagonaliser $\begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix}$.
- 2) Montrer que B est semblable à $\begin{pmatrix} 2A & 0 \\ 0 & 3A \end{pmatrix}$.
- 3) Trouver une condition nécessaire et suffisante sur A pour que B soit diagonalisable.
- 4) Donner la décomposition de Dunford de B en fonction de celle de A.