
ON GENERALIZED HYPERGEOMETRIC EQUATIONS

AND MIRROR MAPS

JULIEN ROQUES

Abstract. This paper deals with generalized hypergeometric differen-
tial equations of order n ≥ 3 having maximal unipotent monodromy at
0. We show that, among these equations, those leading to mirror maps
with integral Taylor coefficients at 0 (up to simple rescaling) have spe-
cial parameters, namely R-partitioned parameters. This result yields
the classification of all generalized hypergeometric differential equations
of order n ≥ 3 having maximal unipotent monodromy at 0 such that
the associated mirror map has the above integrality property.

1. Introduction

Let α = (α1, ..., αn) be an element of (Q∩]0, 1[)n for some integer n ≥ 3.
We consider the generalized hypergeometric differential operator given by

Lα = δn − z
n∏
k=1

(δ + αk)

where δ = z d
dz . It has maximal unipotent monodromy at 0. Frobenius’

method yields a basis of solutions yα;1(z), ..., yα;n(z) of Lαy(z) = 0 such
that

yα;1(z) ∈ C({z})×,(1)

yα;2(z) ∈ C({z}) + C({z})× log(z),(2)

...
...

...

yα;n(z) ∈
n−2∑
k=0

C({z}) log(z)k + C({z})× log(z)n−1,(3)

where C({z}) denotes the field of germs of meromorphic functions at 0 ∈ C.
One can assume that yα;1 is the following generalized hypergeometric series

yα;1(z) := Fα(z) :=
+∞∑
k=0

(α)k
k!n

zk ∈ C({z})

where the Pochhammer symbols (α)k := (α1)k · · · (αn)k are defined by
(αi)0 = 1 and, for k ∈ N∗, (αi)k = αi(αi + 1) · · · (αi + k − 1). One can
also assume that

yα;2(z) = Gα(z) + log(z)Fα(z)
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where

Gα(z) =

+∞∑
k=1

(α)k
k!n

(
nHk(1)−

n∑
i=1

Hk(αi)

)
zk ∈ C({z}),

with Hk(x) =
∑n−1

k=0
1

x+k .
For details on the generalized hypergeometric equations, we refer to Beuk-

ers and Heckman [2] and to the subsequent work of Katz [8].
Let us consider

Qα(z) = exp

(
yα;2(z)

yα;1(z)

)
= z exp

(
Gα(z)

Fα(z)

)
.

This paper is concerned with the following problem: describe the parameters
α such that, for some κ ∈ N∗,

κ−1Qα(κz) = z exp

(
Gα(κz)

Fα(κz)

)
has integral Taylor coefficients at 0. This kind of problem appears in mirror
symmetry theory. In this context, the map Qα(z) is usually called the
canonical coordinate. In what follows, we will identify Qα(z) with its Taylor
expansion at 0 (which belongs to z + z2C[[z]]).

We shall first describe known results.

Definition 1. We say that α is R-partitioned if, up to permutation 1, it is
the concatenation of uples of the form

(
b
m

)
b∈[[1,m]],gcd(b,m)=1

for m ∈ N∗.

For instance, the 3-uple α = (1/2, 1/6, 5/6) is R-partitioned but not the
4-uple α = (1/2, 1/6, 1/6, 5/6).

We shall now make a short digression in order to recall the link between
the fact that α is R-partitioned and the fact that, up to rescaling, the Taylor
coefficients of Fα(z) are quotients of products of factorials of linear forms
with integral coefficients. For details on what follows, see for instance [5,
§7.1, Proposition 2].

The following properties are equivalent :

(i) There exist κ ∈ N∗ and e1, ..., er, f1, ..., fs ∈ N∗ such that

Fα(κz) =

+∞∑
k=0

(e1k)! · · · (erk)!

(f1k)! · · · (fsk)!
zk;

(ii) α is R-partitioned.

Moreover, assume that α is R-partitioned and let N = (N1, ..., N`) ∈
(N∗)` be such that α is, up to permutation, the concatenation of the uples(
b
m

)
b∈[[1,Ni]],gcd(b,Ni)=1

for i varying in [[1, `]]. Consider

CN := CN1 · · ·CN` ∈ N∗

where
CNi = N

ϕ(Ni)
i

∏
p prime
p|Ni

pϕ(Ni)/(p−1)

1. We say that, “up to permutation”, α = β if there exists a permutation σ of [[1, n]]
such that, for all i ∈ [[1, n]], αi = βσ(i)
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(ϕ denotes Euler’s totient function). Then, there exist e1, ..., er, f1, ..., fs ∈
N∗ such that

Fα(CNz) =
+∞∑
k=0

(e1k)! · · · (erk)!

(f1k)! · · · (fsk)!
zk.

This concludes the digression. We now state a result proved by Kratten-
thaler and Rivoal [10, §1.2, Theorem 1].

Theorem 2. Assume that α is R-partitioned and let N = (N1, ..., N`) ∈
(N∗)` be such that α is, up to permutation, the concatenation of the uples(
b
m

)
b∈[[1,Ni]],gcd(b,Ni)=1

for i varying in [[1, `]]. Then

C−1
N Qα(CNz) = z exp

(
Gα(CNz)

Fα(CNz)

)
∈ Z[[z]].

Actually, special cases of this theorem were considered by Lian and Yau
[11, 12, 13], Zudilin formulated a general conjecture, which he proved in
some cases, in [16], Zudilin’s conjecture was proved by Krattenthaler and
Rivoal in [10, 9]; these results were generalized by Delaygue [4, 5, 3]. The
pioneering work is due to Dwork [7].

What about non-R-partitioned parameters α? The following theorem,
which is our main result, answers this question.

Notation 3. Consider α = (α1, ..., αn) ∈ Qn. Let d be the least denomina-
tor in N∗ of α (i.e. d is the least common denominator in N∗ of α1, ..., αn).
Let k1 < · · · < kϕ(d) be the integers in [[1, d − 1]] coprime to d. For any
j ∈ [[1, ϕ(d)]], we denote by Pj(α) the set of primes congruent to kj mod d.
Note that

⋃
j∈[[1,ϕ(d)]] Pj(α) coincides with the set of primes p coprime to d.

Theorem 4. Consider α ∈ (Q∩]0, 1[)n with n ≥ 3. Let d be the least
denominator in N∗ of α. Assume that, for all j ∈ [[1, ϕ(d)]], for infinitely
many primes p in Pj(α), we have

Qα(z) = z exp

(
Gα(z)

Fα(z)

)
∈ Zp[[z]].

(where Zp is the ring of p-adic integers). Then, α is R-partitioned.

In particular, the following converse of Theorem 2 holds:

Corollary 5. If α ∈ (Q∩]0, 1[)n with n ≥ 3 is such that there exists κ ∈ N∗
with the property that

κ−1Qα(κz) = z exp

(
Gα(κz)

Fα(κz)

)
∈ Z[[z]]

then α is R-partitioned.

This result is false for n = 2; the detailed study of this case will appear
elsewhere.

Remark 6. Let Zα(q) ∈ q+q2C[[q]] be the compositional inverse of Qα(z) ∈
z+z2C[[z]]. This is a mirror map. For all κ ∈ N∗, we have (κz)−1Qα(κz) ∈
Z[[z]] if and only if (κq)−1Zα(κq) ∈ Z[[q]]. Therefore, we can reformulate
our results in terms of mirror maps.
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The main ingredients of the proof of Theorem 4 are:

A) Dieudonné-Dwork’s Lemma (translates p-adic integrality properties of
the Taylor coefficients of Qα(z) in terms of p-adic congruences which
do not involve the exponential function);

B) Dwork’s congruences for generalized hypergeometric series (allow us
to reduce the problem to solve the following equation

(4)
Gα(z)

Fα(z)
=
Gβ(z)

Fβ(z)

with respect to the unknown parameters α and β in (Q∩]0, 1[)n);
C) Differential Galois theory, and especially the detailed study of the

generalized hypergeometric equations by Beukers and Heckman [2] and
Katz [8] (basic tool for solving (4)).

We also give a result relating the auto-duality of the generalized hypergeo-
metric equations to integrality properties of the Taylor coefficients of mirror
maps.

Theorem 7. Let us consider α ∈ (Q∩]0, 1[)n with n ≥ 3. Let d be the least
denominator of α in N∗. The following assertions are equivalent:

i) for all prime p congruent to −1 modulo d, we have Qα(z) ∈ Zp[[z]];
ii) for infinitely many primes p congruent to −1 modulo d, we have
Qα(z) ∈ Zp[[z]];

iii) Lα is self-dual.

This paper is organized as follows. In section 2, we solve equation (4).
In section 3, we give basic properties of an operator introduced by Dwork.
Section 4 is devoted to the proof of Theorem 4. In section 5, we prove The-
orem 7.

Acknowledgements. I would like to thank Frits Beukers for its funda-
mental suggestions concerning the proof of Proposition 8.

2. The equation Gα(z)
Fα(z) =

Gβ(z)
Fβ(z)

Proposition 8. Let us consider α and β in (Q∩]0, 1[)n with n ≥ 3. The
following assertions are equivalent:

i) Gα(z)
Fα(z) =

Gβ(z)
Fβ(z) ;

ii) up to permutation, α = β.
In other words, i) holds if and only if yα;1(z) = yβ;1(z).

Before proceeding to the proof, we shall recall basic facts concerning dif-
ferential Galois theory.

2.1. Differential Galois theory : a short introduction. For details on
the content of this §, we refer to van der Put and Singer’s book [15, §1.1-
§1.4]. For an introduction to the subject, we also refer to the articles of
Beukers [1, §2.1 and §2.2] and Singer [14, §1.1-§1.3].

The proof of Proposition 8 will use the formalism of differential modules.
Nevertheless, for the convenience of the reader, we first introduce differential
Galois groups in the framework of differential equations.
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The following table summarizes some analogies between classical Galois
theory and differential Galois theory (the concepts in the right hand column
will be introduced in the next sections) :

Galois theory Differential Galois theory
Polynomial equations Differential equations or differential modules
Fields Differential fields
Splitting fields Picard-Vessiot fields
Galois groups Differential Galois groups
Finite groups Linear algebraic groups

2.1.1. Differential fields. A differential field (k, d) is a field k endowed with
a map d : k → k such that, for all f, g ∈ k, d(f + g) = df + dg and
d(fg) = (df)g + f(dg).

The field of constants of the differential field (k, d) is the field defined by
{f ∈ k | df = 0}.

Two differential fields (k, d) and (k̃, d̃) are isomorphic if there exists a field

isomorphism ϕ : k → k̃ such that ϕ ◦ d = d̃ ◦ ϕ.

A differential field (k̃, d̃) is a differential field extension of a differential

field (k, d) if k̃ is a field extension of k and d̃|k = d; in this case, we denote

d̃ by d.

Let (k̃, d) be a differential field extension of a differential field (k, d) and

consider E ⊂ k̃. We say that (k̃, d̃) is the differential field generated by E

over (k, d) if k̃ is the field generated by {dif | f ∈ E, i ∈ N} over k.

Until the end of §2.1, we let (k, d) be a differential field. We assume that
its field of constants C is algebraically closed and that the characteristic of
k is 0.

2.1.2. Picard-Vessiot fields and differential Galois groups for differential op-
erators. Consider a differential operator L =

∑n
i=0 aid

i of order n with
coefficients a0,...,an in k. There exists a differential field extension (K, d) of
(k, d) such that

1) the field of constants of (K, d) is C;
2) the C-vector space of solutions of L in K given by

Sol(L) = {y ∈ K | Ly = 0}
has dimension n;

3) (K, d) is the differential field generated by Sol(L) over (k, d).
Such a differential field (K, d) is called a Picard-Vessiot field for L over (k, d)
and is unique up to isomorphism.

Remark 9. We can replace 2) by “Sol(L) has at least dimension n”; this a
consequence of [15, Lemma 1.10].

We can replace 3) by “K is the field generated over k by {diyj | j ∈
[[1, n]], i ∈ [[0, n− 1]]} for some (or, equivalently, for any) C-basis y1, ..., yn
of Sol(L,K)”.

The corresponding differential Galois group G of L over (k, d) is the group
made of the k-linear field automorphisms of K commuting with d :

G = {σ ∈ Aut(K/k) | dσ = σd}.
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It follows from the definition 2 that any σ ∈ G induces a C-linear auto-
morphism of Sol(L), namely σ| Sol(L); one can identify G with an algebraic
subgroup of GL(Sol(L)) via the faithful representation

(5) σ ∈ G 7→ σ| Sol(L) ∈ GL(Sol(L)).

If we choose a C-basis y1, ..., yn of Sol(L) then (5) becomes

(6) σ ∈ G 7→ (mi,j(σ))1≤i,j≤n ∈ GLn(C)

where (mi,j(σ))1≤i,j≤n ∈ GLn(C) is such that, for all j ∈ [[1, n]], σ(yj) =∑n
i=1mi,j(σ)yi.

2.1.3. Picard-Vessiot fields and differential Galois groups for differential
modules. A differential module (M,∂) over (k, d) is a finite dimensional k-
vector space M endowed with a map ∂ : M → M such that, for all f ∈ k,
for all m,n ∈M , ∂(m+ n) = ∂m+ ∂n and ∂(fm) = (df)m+ f(∂m).

Let (M,∂) be a differential module over (k, d) of dimension dimkM = n.
We let (ei)1≤i≤n be a k-basis of M . There exists a differential field extension

(K, d) of (k, d) such that
1) the field of constants of (K, d) is C;
2) the C-vector space of solutions of (M,∂) in K given by 3

ω(M,∂) = Ker(d⊗ ∂ : K ⊗kM → K ⊗kM)

has dimension n;
3) K is the field generated over k by the entries of some (or any) matrix

(yi,j)1≤i,j≤n ∈ Mn(K) such that (
∑n

i=1 yi,j ⊗ ei)1≤j≤n is a C-basis of

ω(M,∂).

Remark 10. One can reformulate what precedes in terms of differential
systems. Let A = (ai,j)1≤i≤j≤n ∈ Mn(k) be the opposite of the matrix repre-
senting the action of ∂ on M with respect to the basis (ei)1≤i≤n i.e., for all

j ∈ [[1, n]], ∂ej = −
∑n

i=1 ai,jei. Then, an element
∑m

k=1 fk⊗ ek of K⊗kM
belongs to ω(M,∂) if and only if

(d⊗ ∂)

(
m∑
k=1

fk ⊗ ek

)
=

m∑
k=1

((dfk)⊗ ek + fk ⊗ ∂ek)

=
m∑
k=1

(
(dfk)⊗ ek + fk ⊗

(
−

n∑
i=1

ai,kei

))

=

m∑
k=1

(dfk)⊗ ek −
n∑
i=1

(
m∑
k=1

ai,kfk

)
⊗ ei = 0

2. Indeed, for any σ ∈ G, for any y ∈ Sol(L), we have 0 = σ(Ly) = σ(
∑n
i=0 aid

iy) =∑n
i=0 σ(ai)σ(diy) =

∑n
i=0 aid

iσ(y) = L(σ(y)) so σ leaves globally invariant Sol(L). It
follows that the restriction σ| Sol(L) of any element σ of G to Sol(L) is a C-linear automor-

phism of Sol(L).
3. The action of d ⊗ ∂ on K ⊗k M is given by (d ⊗ ∂)(

∑m
k=1 fk ⊗ mk) :=∑m

k=1 ((dfk)⊗mk + fk ⊗ ∂mk)
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and this equality holds if only if, for all k ∈ [[1, n]], dfk =
∑m

j=1 ak,jfj i.e.

d

 f1
...
fn

 = A

 f1
...
fn

 .

It follows that 2) and 3) can be restated as “there exists Y ∈ GLn(K) such
that dY = AY and K is the field generated over k by the entries of Y ”.

Such a differential field (K, d) is called a Picard-Vessiot field for (M,∂) over
(k, d) and is unique up to isomorphism. The differential Galois group G of
(M,∂) over (k, d) is then defined by

G = {σ ∈ Aut(K/k) | dσ = σd}.
It follows from the definition 4 that any σ ∈ G induces a C-linear automor-
phism of ω(M,∂), namely (σ ⊗ IdM )|ω(M,∂); one can identify G with an
algebraic subgroup of GL(ω(M,∂)) via the faithful representation

(7) σ ∈ G 7→ (σ ⊗ IdM )|ω(M,∂).

One can reformulate §2.1.2 in terms of differential modules. We consider
L as in §2.1.2. We denote by (ML, ∂L) the differential module over (k, d)
associated to L characterized by :

i) ML = kn;
ii) The opposite of the matrix representing the action of ∂L on M with

respect to the canonical k-basis (ei)1≤i≤n of ML = kn is given by
0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
− a0
an
− a1
an
· · · · · · −an−1

an

 .

Then a differential field (K, d) is a Picard-Vessiot field for L if and only if it
is a Picard-Vessiot field for (ML, ∂L). Once such a Picard-Vessiot field (K, d)
is fixed, the corresponding Galois groups of L and (ML, ∂L) are the same.
Moreover, if (yj)1≤j≤n is a C-basis of Sol(L) then a C-basis of ω(ML, ∂L) is

given by
(∑n−1

i=0 d
iyj ⊗ ei

)
1≤j≤n

; with respect to this basis, the representa-

tion (7) becomes the representation (6).

2.1.4. Tannakian duality. For what follows, we refer to [15, §2.4] (we refer
the reader interested in tannakian categories to Deligne and Milne’s [6]). We
let 〈(M,d)〉 be the smallest full subcategory of the category of differential
modules over (k, d) containing (M,∂) and closed under all constructions of
linear algebra (direct sums, tensor products, duals, subquotients; see [15,

4. Indeed, for any σ ∈ G, for any
∑m
k=1 fk ⊗ mk ∈ ω(M,∂), we have 0 =

(σ ⊗ IdM )
(
(d⊗ ∂)

∑m
k=1 fk ⊗mk

)
= (σ ⊗ IdM )

(∑m
k=1(dfk)⊗mk + fk ⊗ ∂mk

)
=∑m

k=1 σ(dfk) ⊗ mk + σ(fk) ⊗ ∂mk =
∑m
k=1 d(σ(fk)) ⊗ mk + σ(fk) ⊗ ∂mk = (d ⊗

∂)
(
(σ ⊗ IdM )

∑m
k=1 fk ⊗mk

)
so σ ⊗ IdM leaves globally invariant ω(M,∂). It follows

that the restriction (σ ⊗ IdM )|ω(M,∂) of any element σ of G to ω(M,∂) is a C-linear

automorphism of ω(M,∂).
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§2.2 and §2.4]). We let (K, d) be a Picard-Vessiot field for (M,∂) over (k, d)
and we let G be the corresponding differential Galois group over (k, d).
There is a C-linear equivalence of categories between 〈(M,d)〉 and the cat-
egory of rational C-linear representations of the linear algebraic group G
which is compatible with all constructions of linear algebra. Such an equiv-
alence is given by a functor sending an object (N, ∂N ) of 〈(M,∂)〉 to the
representation

ρ(N,∂N ) : G → GL(ω(N, ∂N ))

σ 7→ (σ ⊗ IdN )|ω(N,∂N )

where

ω(N, ∂N ) = Ker(d⊗ ∂N : K ⊗k N → K ⊗k N).

The differential Galois group of (N, ∂N ) over (k, d) can be identified with
the image of ρ(N,∂N ).

In what follows, the base differential field (k, d) will be (C(z), d/dz). In
order to simplify the notations, we will drop the derivatives ((k, d) = k,
(M,∂) = M , etc)..

2.2. Proof of Proposition 8. Of course, the only nontrivial implication is
i) ⇒ ii). We consider the differential modules Mα := MLα and Mβ := MLβ
associated to Lα and Lβ respectively (see the end of §2.1.3). A Picard-
Vessiot field over C(z) of the differential module M = Mα ⊕Mβ is given
by

K = C(z)
(
y

(i)
α;j(z), y

(i)
β;j(z) | (i, j) ∈ [[0, n− 1]]× [[1, n]]

)
.

We let G be the corresponding differential Galois group and we use the
notations (ω(N), ρN , etc) of §2.1.4. If we choose the basis of ω (M) which is
the concatenation of the bases of ω (Mα) and ω (Mβ) described at the end
of §2.1.3 then the representation ρM = ρMα ⊕ ρMβ

of G is identified with

σ ∈ G 7→
(

(mα;i,j(σ))1≤i,j≤n 0

0 (mβ;i,j(σ))1≤i,j≤n

)
∈ GL2n(C)

where, for all σ ∈ G,{
σ(yα;j(z)) =

∑n
i=1mα;i,j(σ)yα;i(z);

σ(yβ;j(z)) =
∑n

i=1mβ;i,j(σ)yβ;i(z).

Strategy of the proof: we are going to prove that there exists a character
χ of G such that either the representation ρMα or its dual ρ∗Mα

is conjugate
to χ⊗ ρMβ

(Lemma 13 below). Then a detailed study of both cases will lead
to the fact that, up to permutation, α = β, which is the desired result.

In order to achieve these goals, we first establish a bound for ρM (G)
(Lemma 11) and we describe ρMα(G) and ρMβ

(G) (Lemma 12).

Lemma 11. We have

(8) ρM (G) ⊂
{(

A 0
0 B

)
| A,B ∈ GLn(C), Bn,1An,2 = An,1Bn,2

}
.



ON GENERALIZED HYPERGEOMETRIC EQUATIONS AND MIRROR MAPS 9

Proof. Hypothesis i) implies that,

yα;1(z)

yα;2(z)
=
yβ;1(z)

yβ;2(z)

so, for any σ ∈ G,

σ(yβ;1(z))σ(yα;2(z)) = σ(yα;1(z))σ(yβ;2(z))

i.e.(
n∑
i=1

mβ;i,1(σ)yβ;i(z)

)(
n∑
i=1

mα;i,2(σ)yα;i(z)

)

=

(
n∑
i=1

mα;i,1(σ)yα;i(z)

)(
n∑
i=1

mβ;i,2(σ)yβ;i(z)

)
.

Therefore, using equations (1-3) from §1, we get

(mβ;n,1(σ)mα;n,2(σ)−mα;n,1(σ)mβ;n,2(σ)) log(z)2n−2 ∈
2n−3∑
k=0

C({z}) log(z)k

and hence the expected equality holds :

mβ;n,1(σ)mα;n,2(σ) = mα;n,1(σ)mβ;n,2(σ).

�

Lemma 12. The Galois groups ρMα(G) and ρMβ
(G) of Mα and Mβ re-

spectively satisfy the following property 5 : ρMα(G)0,der and ρMβ
(G)0,der are

conjugate to either SLn(C), SOn(C) or Spn(C).

Proof. This is proved in [2] and also in [8, Chapter 3, Theorem 3.5.8]. �

Lemma 13. There exists a character χ of G such that either ρMα
∼= χ⊗ρMβ

or ρ∗Mα
∼= χ⊗ ρMβ

.

Proof. This lemma would follow form Goursat-Kolchin-Ribet’s [8, Proposi-
tion 1.8.2] (applied to ρ1 := ρMα and ρ2 := ρMβ

) if we knew that :

(a) ρM (G)0,der 6=
(
ρMα(G)0,der 0

0 ρMβ
(G)0,der

)
;

(b) if n = 8 then ρMα(G)0,der is not conjugate to SO8(C).
Indeed, (a) means that the conclusion of [8, Proposition 1.8.2] does not
hold. But, Lemma 12 implies that the irreducibility and the simplicity
hypothesis [8, Proposition 1.8.2, Hypothesis (1)] is satisfied and, Lemma 12
together with [8, Example 1.8.1] imply that Goursat adaptedness hypothesis
[8, Proposition 1.8.2, Hypothesis (2)] is also satisfied, except if n = 8 and if
ρMα(G)0,der and ρMβ

(G)0,der are conjugate to SO8(C), but this is excluded
by (b). Therefore, at least one of the remaining hypotheses [8, Proposition
1.8.2, Hypothesis (3) or (4)] is not satisfied i.e. there exists a character χ of
G such that ρMα

∼= χ⊗ ρMβ
or ρ∗Mα

∼= χ⊗ ρMβ
.

5. Let G be a linear algebraic group. We will denote by G0 the neutral component of
G (=connected component of G which contains the neutral element of G) and Gder its
derived subgroup (=commutator subgroup); G0,der stands for the derived subgroup of the
neutral component G0 of G.
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It remains to prove our claims (a) and (b).
Lemma 11 implies that if G1 and G2 are some conjugate of either SLn(C),

SOn(C) or Spn(C) then

(9)

(
G1 0
0 G2

)
6⊂ ρM (G).

In particular (a) is true.
In order to prove (b), we argue by contradiction : we assume that n = 8

and that ρMα(G)0,der is conjugate to SO8(C). Then [8, Proposition 3.5.8.1
and Theorem 3.4] implies that there exists a permutation ν ∈ S8 of [[1, 8]]

such that, for all i ∈ [[1, 8]], αi + αν(i) ∈ Z and that
∑8

i=1 αi ∈ 1/2 + Z.
Let O be the set of orbits of [[1, 8]] under the action of the subgroup of S8

generated by ν. Consider i0 ∈ Ω ∈ O and set ω := ]Ω. If ω is even then,∑
i∈Ω

αi =

ω/2−1∑
k=0

(
αν2k(i0) + αν2k+1(i0)

)
∈ Z.

Assume that ω = 2ω′ + 1 is odd. We have

αi + αν(i) ∈ Z
αν(i) + αν2(i) ∈ Z

...
...

...

αν2ω′−1(i) + αν2ω′ (i) ∈ Z
αν2ω′ (i) + αν2ω′+1(i) = αν2ω′ (i) + αi ∈ Z.

This implies that, for all k ∈ Z, ανk(i0) = 1/2 so

∑
i∈Ω

αi =
2ω′∑
k=0

ανk(i0) ∈ 1/2 + Z.

But the number of orbits with odd cardinality is even (because
∑

Ω∈O ]Ω = 8
is even). It follows clearly that

8∑
i=1

αi =
∑
Ω∈O

∑
i∈Ω

αi ∈ Z.

This yields a contradiction. �

In order to conclude the proof of Proposition 8, it remains to study both
cases ρMα

∼= χ⊗ ρMβ
and ρ∗Mα

∼= χ⊗ ρMβ
and to prove that in both cases,

up to permutation, α = β.

(1) Assume that ρMα
∼= χ ⊗ ρMβ

. By tannakian duality, there exists
a rank one object L of 〈M〉 such that Mα

∼= L ⊗Mβ. Since Lα
is regular singular with singularities in {0, 1,∞}, we get that L is
regular singular and that its non trivial monodromies are at most at
0, 1,∞. Since the monodromies at 1 of both Mα and Mβ are pseudo-
reflections ([2, Proposition 2.10]), we get that the monodromy of L
at 1 is trivial. Moreover, the monodromies at 0 of both Mα and Mβ

are unipotent, so the monodromy of L at 1 is also trivial. Therefore,
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the monodromy representation of L is trivial and hence L is trivial.
So Mα

∼= Mβ and hence, up to permutation, α = β.

(2) Assume that ρ∗Mα
∼= χ ⊗ ρMβ

. By tannakian duality, there exists
a rank one object L of 〈M〉 such that M∗α

∼= L ⊗ Mβ. We now
distinguish several cases depending on the Galois groups of Mα and
Mβ (we recall that ρMα(G)0,der and ρMβ

(G)0,der are conjugate to
either SLn(C), SOn(C) or Spn(C) in virtue of Lemma 12).

(a) Assume first that ρMα(G)0,der is, up to conjugation, either SOn(C)
or Spn(C). Then ρMα(G) is conjugated to some subgroup of ei-
ther C∗On(C) or C∗ Spn(C) (because the normalizers of SOn(C)
and Spn(C) in GLn(C) are C∗On(C) and C∗ Spn(C) respec-
tively). It follows that ρ∗Mα

∼= η⊗ρMα for some character η of G

(for instance, if ρMα(G) ⊂ P On(C)P−1 for some P ∈ GLn(C)
then η = η′ ◦ ρMα where η′ is the character of C∗P On(C)P−1

defined, for c ∈ C∗ and A ∈ P On(C)P−1, by η′(cA) = c−2). So
ρMα

∼= η−1⊗χ⊗ ρMβ
and we are reduced to the previous case;

so, up to permutation, α = β.

(b) The case that ρMβ
(G)0,der is, up to conjugation, either SOn(C)

or Spn(C) is similar.

(c) In order to conclude the proof it is sufficient to prove that
the case ρMα(G)0,der = ρMβ

(G)0,der = SLn(C) does not hold.

We argue by contradiction : we assume that ρMα(G)0,der =
ρMβ

(G)0,der = SLn(C). Since M∗α
∼= M1−α ([8, Theorem 3.4]),

we have M1−α ∼= L ⊗Mβ. Arguing as above, we see that L
is trivial (and β = 1 − α). So the character χ is trivial and
ρ∗Mα

∼= ρMβ
. This together with inclusion (8), implies that

there exists P ∈ GLn(C) such that, for all A ∈ SLn(C),

(PA−tP−1)n,1An,2 = An,1(PA−tP−1)n,2.

It follows that, for all A ∈ GLn(C),

An,1 = 0 and An,2 6= 0⇒ (PA−tP−1)n,1 = 0.

Using a simple density argument, we get that, for all A ∈
GLn(C),

An,1 = 0⇒ (PA−tP−1)n,1 = 0.

This yields a contradiction in virtue of the following lemma.

Lemma 14. For any P ∈ GLn(C), there exists A ∈ E := {A ∈ GLn(C) | An,1 =
0} such that (PA−tP−1)n,1 6= 0.

Proof. We argue by contradiction : we assume that, for all A ∈ E , we have
(PA−tP−1)n,1 = 0.

Setting X = (x1, ..., xn) := P−1(1, 0, ..., 0)t 6= 0, we see that the hyper-
plane H := P−1(Cn−1 × {0})t of Mn,1(C) is such that E−tX ⊂ H.

Using the fact that

(10)

(
GLn−1(C) 0

0 C∗
)
⊂ E ,
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we get that either (x1, ..., xn−1) = (0, ..., 0) or xn = 0 (because otherwise we
would have ((C∗)n)t ⊂ E−tX ⊂ H; this would contradict the fact that H is
an hyperplane of Mn,1(C)). We are thus led to distinguish two cases :

(1) Assume that (x1, ..., xn−1) = (0, ..., 0) and hence xn 6= 0. We denote
by (E(i, j), (i, j) ∈ [[1, n]]2) the canonical basis of Mn(C). For all
i ∈ [[2, n − 1]], In + E(n, i) ∈ E and (In + E(n, i))−t = In − E(i, n)
so (In +E(n, i))−tX = (0, ..., 0,−xn, 0, ..., 0, xn)t ∈ H where xn is at
the ith and nth positions. Moreover (In)−tX = (0, ..., 0, xn)t belongs
to H. So H = ({0}×Cn−1)t. But In+E(n−1, 1) +E(n, 2) ∈ E and
(In +E(n− 1, 1) +E(n, 2))−t = In−E(1, n− 1)−E(2, n) +E(1, n)
so (In + E(n− 1, 1) + E(n, 2))−tX = (xn, ...)

t ∈ H; this contradicts
the equality H = ({0} × Cn−1)t.

(2) Assume that xn = 0 and hence (x1, ..., xn−1) 6= (0, ..., 0). Using
the inclusion (10), we see that ((C∗)n−1 × {0})t ⊂ H and hence
H = (Cn−1 × {0})t. Let i0 ∈ [[1, n − 1]] be such that xi0 6= 0.
We have In + E(i0, n) ∈ E and (In + E(i0, n))−t = In − E(n, i0) so
(In + E(i0, n))−tX = (x1, ..., xn−1,−xi0) ∈ H; this contradicts the
equality H = (Cn−1 × {0})t.

�

3. Dwork’s map α 7→ α′ =: Dp(a)

For any prime number p, for any p-adic integer α in Q, we denote by
Dp(α) the unique p-adic integer in Q such that

pDp(α)− α ∈ [[0, p− 1]].

In other words,

Dp(α) =
α+ j

p

where j is the unique integer in [[0, p− 1]] such that α ≡ −j mod pZp. The
operator α 7→ Dp(α) was used by Dwork in [7] (and denoted by α 7→ α′).

Proposition 15. Assume that α ∈ Q∩]0, 1[. Let m, a ∈ N∗ be such that
α = a/m and gcd(a,m) = 1 (so gcd(m, p) = 1). Then

Dp(α) =
x

m
∈ Q∩]0, 1[

where x is the unique integer in [[1,m− 1]] such that px ≡ a mod m.
In particular, Dp(α) does not depend on the prime p coprime to m in a

fixed arithmetic progression k + Nm.

Proof. Since Dp(α) = α+j
p = a+jm

pm , we have to prove that x := a+jm
p belongs

to [[1,m − 1]] and that px ≡ a mod m. We first note that x ∈ Z because
α ≡ −j mod pZp so a ≡ −jm mod pZ. The inequality a + jm > 0 is

obvious. Moreover, α+j ≤ α+p−1 < 1+p−1 = p so a+jm
p = m

p (α+j) < m.

Last px = a+ jm ≡ a mod m. �

We will need the following result :
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Proposition 16. For all j ∈ [[1, ϕ(m)]], consider pj ∈ Pj(α). Then, up to
permutation, we have

(Dp1(α), ...,Dpϕ(m)
(α)) =

(
b

m

)
b∈[[1,m−1]],gcd(b,m)=1

.

Proof. Proposition 15 ensures that Dpi(α) = xi
m where xi is the unique

integer in [[1,m−1]] such that pixi ≡ a mod m. The result follows from the
fact that, up to permutation, (x1, ..., xϕ(m)) = (b)b∈[[1,m−1]],gcd(b,m)=1. �

Proposition 17. Let us consider α ∈ (Q∩]0, 1[)n. Let d be the least de-
nominator of α in N∗. The following properties are equivalent:

i) for all j ∈ [[1, ϕ(d)]], there exists pj ∈ Pj(α) such that, up to permu-
tation, Dpj (α) = α;

ii) α is R-partitioned.

Proof. For any k ∈ [[1, n]], we let mk, ak ∈ N∗ be such that αk = ak/mk

and gcd(ak,mk) = 1. Note that, for any k ∈ [[1, n]], the set {αj | mj =
mk} is stable by Dp(·) for any prime p coprime to mk: this follows form
Proposition 15. Therefore, we can assume without loss of generality that
m1 = · · · = mn. In this case, using Proposition 16, it is easily seen that, up
to permutation, α coincides with ( b

m1
)b∈[[1,m1]],gcd(b,m1)=1 concatenated with

itself a certain number of times. �

4. Proof of Theorem 4

Let us recall the hypotheses. We consider α ∈ (Q∩]0, 1[)n with n ≥ 3.
We let d be the least denominator in N∗ of α. We assume that, for all
j ∈ [[1, ϕ(d)]], for infinitely many primes p in Pj(α), we have

Qα(z) = z exp

(
Gα(z)

Fα(z)

)
∈ Zp[[z]].

We will need the following Dieudonné-Dwork’s Lemma (for a proof, see
[16, Lemma 5] for instance).

Lemma 18 (Dieudonné-Dwork’s Lemma). Let us consider f(z) ∈ zQ[[z]]
and let p be a prime number. The following assertions are equivalent:

1) ef(z) ∈ Zp[[z]];
2) f(zp) = pf(z) mod pZp[[z]].

Implication 1) ⇒ 2) of Dieudonné-Dwork’s Lemma ensures that, for all
j ∈ [[1, ϕ(d)]], for infinitely many primes p in Pj(α),

Gα(zp)

Fα(zp)
= p

Gα(z)

Fα(z)
mod pZp[[z]].

On the other hand, Dwork’s [7, Theorem 4.1] ensures that, for all prime p
coprime to d,

GDp(α)(z
p)

FDp(α)(zp)
= p

Gα(z)

Fα(z)
mod pZp[[z]].

Consequently, for all j ∈ [[1, ϕ(d)]], for infinitely many primes p in Pj(α),

(11)
GDp(α)(z)

FDp(α)(z)
=
Gα(z)

Fα(z)
mod pZp[[z]].
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But Dp(α) does not depend on p ∈ Pj(α). So, for all j ∈ [[1, ϕ(d)]], for all
prime p ∈ Pj(α),

GDp(α)(z)

FDp(α)(z)
=
Gα(z)

Fα(z)

(apply to the Taylor coefficients of both sides of (11) the elementary fact that
if a and b are elements of Q such that a ≡ b mod pZp for infinitely many
primes p then a = b). Using Proposition 8, we get that, up to permutation,
Dp(α) = α for all prime p coprime to d. Proposition 17 yields the desired
result: α is R-partitioned.

5. Auto-duality and integrality

Proposition 19. Let us consider α ∈ (Q∩]0, 1[)n. Let d be the least de-
nominator of α in N∗. Then, for all prime p congruent to −1 modulo d, we
have Dp(α) = 1−α.

Proof. For any k ∈ [[1, n]], we let mk, ak ∈ N∗ be such that αk = ak/mk and
gcd(ak,mk) = 1. Using Proposition 15, we get, for any k ∈ [[1, n]],

Dp(αk) =
mk − ak
mk

= 1− αk.

�

The following result follows from [8, Theorem 3.4].

Proposition 20. Let us consider α ∈ (Q∩]0, 1[)n. The operator Lα is
auto-dual (i.e. isomorphic to its dual) if and only if, up to permutation,
α = 1−α.

Arguing as in §4, one can prove the following (curious?) result:

Theorem 21. Let us consider α ∈ (Q∩]0, 1[)n with n ≥ 3. Let d be the
least denominator of α in N∗. The following assertions are equivalent:

i) for all prime p congruent to −1 modulo d, we have Qα(z) ∈ Zp[[z]];
ii) for infinitely many primes p congruent to −1 modulo d, we have
Qα(z) ∈ Zp[[z]];

iii) Lα is self-dual.
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