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ABSTRACT. We develop general criteria that ensure that any non-zero
solution of a given second-order difference equation is differentially tran-
scendental, which apply uniformly in particular cases of interest, such
as shift difference equations, g-dilation difference equations, Mahler dif-
ference equations, and elliptic difference equations. These criteria are
obtained as an application of differential Galois theory for difference
equations. We apply our criteria to prove a new result to the effect that
most elliptic hypergeometric functions are differentially transcendental.
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1. INTRODUCTION

The differential Galois theory for difference equations developed in [HS08]
provides a theoretical tool to understand the differential-algebraic properties
of solutions of linear difference equations. Given a od-field K (i.e., K is
equipped with an automorphism ¢ and a derivation § such that cod = joo),
one considers an n'® order linear difference equation of the form

(1.1) ano”(y) + an,lan_l(y) + - 4 ajo(y) +apy =0,

where a; € K for i = 0,...,n, ayap # 0, and y is an indeterminate. The
theory of [HS08] associates with (1.1) a geometric object G, called the dif-
ferential Galois group, that encodes the polynomial differential equations
satisfied by the solutions of (1.1). Traditionally, the following special cases
have attracted special attention: K = C(z), and o is one of the following:
a shift operator o : z — z + 7, where 0 # r € C; the ¢-dilation operator
o : z — qz, where ¢ € C* is not a root of unity; and the Mahler opera-
tor o : z +— 2P, where p € N>o. 1 More recently, the elliptic case has also
attracted a lot of interest: here K = Mer(FE) is the field of meromorphic
functions on the elliptic curve E = C*/p%, where p € C* is such that |p| # 1
— or equivalently, K is the field of (multiplicatively) p-periodic meromor-
phic functions f(z) on C* such that f(pz) = f(z) — and o : f(2) — f(¢z),
where ¢ € C* is such that p” N ¢% = {1} (or equivalently, ¢ represents a
non-torsion point of E). In each one of these four cases of interest there is
a corresponding choice of derivation ¢ that makes K into a od-field.

The main contribution of this work (Theorem 3.4) is the development of
a new set of criteria for second-order equations

(1.2) o?(y) + ao(y) + by = 0,

which guarantee that any non-zero solution y of (1.2) must be differentially
transcendental over K, i.e., for any m € N there is no non-zero polynomial
P € Klyo,yi,---,Ym] such that P(y,d(y),...,0™(y)) = 0. These criteria
apply uniformly under mild conditions on the base od-field K (see Defini-
tion 2.1), which are satisfied in the four particular cases mentioned above:
shift, g-dilation, Mahler, and elliptic. Moreover, the verification of the cri-
teria only requires one to check whether the following auxiliary equations
associated with (1.2) admit any solutions in K: if there is no u € K such
that

(1.3) uo(u) +au+b =0,
and there are no g € K and linear differential operator £ € C[d] such that

(1.4 (") =ato) s

then every non-zero solution of (1.2) must be differentially transcendental
over K. Therefore, although we do apply the differential Galois theory for
difference equations [HSO08] in the proof that our criteria are correct, the
actual verification of the criteria does not involve any prior knowledge of

1. In the Mahler case the base field must be taken to be K = C({z/*}sen) with
o(z'/%) = zP/* in order for o to be an automorphism of K and not merely an (injective)
endomorphism.
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this theory at all. Moreover, in each of the four cases of interest mentioned
above there are effective algorithms to decide whether the Riccati equation
(1.3) and the telescoping problem (1.4) admit solutions, for which we pro-
vide case-by-case references below. Hence these user-friendly criteria are of
practical import to non-experts seeking to decide differential transcendence
of solutions of second-order difference equations in many settings that arise
in applications.

Indeed, we illustrate the practical applicability of our criteria in the el-
liptic case by proving differential transcendence of “most” elliptic hyperge-
ometric functions. The elliptic hypergeometric functions form a common
analogue of classical hypergeometric functions and ¢-hypergeometric func-
tions, which have been a focus of intense study in the last 200 years within
the theory of special functions and are ubiquitous in physics and mathe-
matics. The general theory of these elliptic hypergeometric functions was
initiated by Spiridonov in [Spil6] and has been a dynamic field of research,
see for instance [vdB*07, FR09, M09, Rail0, Ros02]. In the intervening
years a number of remarkable analogues of known properties and applica-
tions of classical and g-hypergeometric functions have been discovered for
the elliptic hypergeometric functions; see [Spil6] for more details.

The theoretical part of our strategy to prove differential transcendence for
elliptic hypergeometric functions is in the tradition of other applications of
the differential Galois theory for difference equations of [HS08] to questions
about shift difference equations [Arrl7], g¢-difference equations, [DHR16],
deterministic finite automata and Mahler functions [DHR18], lattice walks
in the quarter plane [DHRS18, DR17, DHRS17], and shift, ¢-dilation, and
Mabhler difference equations in general [AS17]. The Galois correspondence of
[HS08] implies in particular that if the differential Galois group G is “large”
then there are “few” differential-algebraic relations among the solutions of
(1.1). However, this theoretical strategy is only practical in the presence of
algorithmic decision procedures that ensure that G is indeed large enough
to force any solution of (1.1) to be differentially transcendental. The criteria
developed here in Theorem 3.4 serve to fulfill precisely this purpose. To put
the novelty and usefulness of these criteria in context, let us briefly recall
the state of the art in each of the four particular cases of interest mentioned
above.

In the shift case, a complete algorithm to compute the differential Galois
group G for (1.2) is developed in [Arrl7], based on the earlier algorithm of
[Hen98] to compute the non-differential Galois group H of (1.2) [vdPS97].
Even in this case, it is still useful to have the isolated criteria of Theo-
rem 3.4 to decide differential transcendence only, without having to com-
pute the whole Galois group G of (1.2). An algorithm for deciding whether
the Riccati equation (1.3) admits a solution in K has been developed in
[Hen98|, and to decide whether there is a telescoper (1.4) one can apply
[HS08, Cor. 3.4].

The situation in the ¢-dilation and Mahler cases is similar. One knows
how to compute the differential Galois group G for first-order equations
(1.1) with n = 1 by solving an associated telescoping problem (see for ex-
ample [HS08, Corollary 3.4] in the g-dilation case and [DHR18, Prop. 3.1]
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in the Mahler case), but there is no general algorithm to compute G for
higher-order equations (1.1) with n > 2. The general criteria developed
in [DHR16, DHR18] for differential transcendence of solutions of (1.1) are
valid for arbitrary n, but these criteria require prior knowledge of the (non-
differential) Galois group H of (1.1) [vdPS97]. At present this group H can
only be computed in general when n < 2 by [Hen97] in the ¢-dilation case
and [Roql8] in the Mahler case. Even when n = 2, the criteria given here
in Theorem 3.4 strictly generalize those of [DHR16, DHR18]|, and require
no knowledge of (differential) Galois theory of difference equations for their
application. Algorithms for deciding whether the Riccati equation (1.3)
admits solutions in K have been developed in the the g-dilation [Hen97]
and Mahler [Roq18] cases. Algorithms for deciding whether the telescoping
problem (1.4) can be solved have also been developed in [HS08, Cor. 3.4] in
the ¢-dilation case and in [DHR18, Prop. 3.1] in the Mahler case.

In the elliptic case, the recent algorithm developed in [DR15] computes
the (non-differential) Galois group H of (1.2) associated by the theory of
[vdPS97], but there are no general algorithms to compute the differential
Galois group G for (1.1) for any order n. In spite of the relative dearth
of algorithms in this case, the authors of [DHRS18] were still successful
in proving differential transcendence of some first-order (inhomogeneous)
elliptic difference equations arising in connection with generating series for
walks in the quarter plane. The criteria of Theorem 3.4 are the first to
provide a test for differential transcendence that applies to second-order
difference equations in the elliptic case. An algorithm for deciding whether
the Riccati equation (1.3) admits solutions in K has been developed in
[DR15], and an algorithm to decide whether the telescoping problem (1.4)
can be solved has also been developed in [DHRS18, Prop. B.8].

The paper is organized as follows. In Section 2, we recall some facts
about the difference Galois theory developed in [vdPS97]. To a difference
equation (1.1) is associated an algebraic group. The larger the group, the
fewer the algebraic relations that exist among the solutions of the difference
equation. In Section 3, we recall some facts about the differential Galois
theory for difference equations of [HS08]. Here the Galois group is a linear
differential algebraic group, that is, a group of matrices defined by a system
of algebraic differential equations in the matrix entries. This group encodes
the polynomial differential relations among the solutions of the difference
equation. In this section we prove our differential transcendence criteria
for second-order difference equations (1.2) in Theorem 3.4. In Section 4
we restrict ourselves to the situation where the coefficients of the difference
equation are elliptic functions. We recall some results from [DR15], where
the authors explain how to compute the difference Galois group of [vdPS97]
for order two equations with elliptic coefficients. This computation was
inspired by Hendricks’ algorithm, see [Hen97]. In Section 5, we follow [Spil6]
in defining the elliptic analogue of the hypergeometric equation (5.4) and,
under a certain genericity assumption, we prove that its nonzero solutions
are differentially transcendental, see Theorem 5.7.
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2. DIFFERENCE GALOIS THEORY

For details on what follows, we refer to [vdPS97, Chapter 1]. Unless
otherwise stated, all rings are commutative with identity and contain the
field of rational numbers. In particular, all fields are of characteristic zero.

A o-ring (or difference ring) (R, o) is a ring R together with a ring auto-
morphism o : R — R. If R is a field then (R, o) is called a o-field. When
there is no possibility of confusion the o-ring (R, o) will be simply denoted
by R. There are natural notions of o-ideals, o-ring extensions, o-algebras,
o-morphisms, etc. We refer to [vdPS97, Chapter 1] for the definitions.

The ring of o-constants R of the o-ring (R, o) is defined by

R7:={f € R|o(f) = f}.

We now let (K,o) be a o-field. We assume that the field of constants
C := K° is algebraically closed and that the characteristic of K is 0.

We consider a difference equation of order two with coefficients in K:

(2.1) o2(y) + ao(y) + by = 0 with a € K and b € K*
and the associated difference system:
(2.2) oY = AY with A = <Ob 1a> € GLy(K).

By [vdPS97, §1.1], there exists a o-ring extension (R,o) of (K, o) such
that
1) there exists U € GLza(R) such that o(U) = AU (such a U is called a
fundamental matrix of solutions of (2.2));
2) R is generated, as a K-algebra, by the entries of U and det(U)™!;
3) the only o-ideals of (R, o) are {0} and R.

Note that the last assumption implies R® = C. Such an R is called a o-
Picard-Vessiot ring, or o-PV ring for short, for (2.2) over (K, o). It is unique
up to isomorphism of (K, o)-algebras. Note that a o-PV ring is not always
an integral domain, but it is a direct sum of integral domains transitively
permuted by o.

The corresponding o-Galois group Gal(R/K) of (2.2) over (K, o), or o-
Galois group for short, is the group of (K, o)-automorphisms of R:

Gal(R/K) := {¢ € Aw(R/K) | 0o ¢ = doo).

A straightforward computation shows that, for any ¢ € Gal(R/K), there
exists a unique C(¢) € GL2(C) such that ¢p(U) = UC(¢). According to
[vdPS97, Theorem 1.13], one can identify Gal(R/K) with an algebraic sub-
group G of GLy(C) via the faithful representation

p: Gal(R/K) — GL2(C)
¢ = C(9).
If we choose another fundamental matrix of solutions U, we find a con-

jugate representation. In what follows, by “o-Galois group of the difference
equation (2.1)”, we mean “o-Galois group of the difference system (2.2)”.
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We shall now introduce a property relative to the base o-field (K, o),
which appears in [vdPS97, Lemma 1.19].

Definition 2.1. We say that the o-field (K, o) satisfies the property (P) if:
— the field K is a C'-field %
— and the only finite field extension L of K such that o extends to a
field endomorphism of L is L = K.

Example 2.2. The following are natural examples of difference fields that
satisfy property (P):

S: Shift case with K = C(2), o f( )= f(z+h), h € C*. See [Hen97].

Q: ¢-difference case. K = C(z/*) = UC 1/2 ), 0: f(2) — f(qz), q € C*,
lg] # 1. See [Hen98|. LN~

M: Mahler case. K = C(z'/*), o : f(2) = f(27), p € N>o. See [Roq18].

E: Elliptic case. See Section 4, and [DR15].

The following result is due to van der Put and Singer. We recall that
two difference systems oY = AY and oY = BY with A, B € GLy(K)
are isomorphic over K if and only if there exists 7' € GLy(K) such that
o(T)A = BT. Note that o(Y) = AY if and only if o(TY) = BTY.

Theorem 2.3. Assume that (K, o) satisfies property (P). Then the follow-
ing properties relative to G = p(Gal(R/K)) hold:
— G/G° is cyclic, where G° is the identity component of G;
— there exists B € G(K) such that (2.2) is isomorphic to Y = BY
_over K. _
Let G be an algebraic subgroup of GLa(C) such that A € G(K). The following
properties hold: N
— G is conjugate to a subgroup of G;
— any minimal element (with respect to inclusion) in the set of alge-
braic subgmups H of G for which there exists T € GLa(K) such that
o(T)AT ! € fNI(K) is conjugate to G;
— G is conjugate to G if and only if, for any T € G(K) and for any
proper algebraic subgroup H of G, one has that o(T)AT ¢ H(K).

Proof. The proof of [vdPS97, Propositions 1.20 and 1.21] in the special case
where K := C(z) and o is the shift o(f(2)) := f(z+h) with h € C*, extends
mutatis mutandis to the present case. O

This theorem is at the heart of many algorithms to compute o-Galois
groups, see for example [Hen97, Hen98, DR15, Roq18].

3. PARAMETRIZED DIFFERENCE (GALOIS THEORY

3.1. General facts. A (o,d)-ring (R,0,0) is a ring R endowed with a ring
automorphism o and a derivation ¢ : R — R (this means that § is additive
and satisfies the Leibniz rule d(ab) = ad(b)+d(a)b) such that cod = Joo. If
R is a field, then (R, 0,9) is called a (o, 0)-field. When there is no possibility
of confusion, we write R instead of (R,o0,d). There are natural notions

2. Recall that K is a C!-field if every non-constant homogeneous polynomial P over K
has a non-trivial zero provided that the number of its variables is more than its degree.
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of (o,9d)-ideals, (o, 0)-ring extensions, (o, d)-algebras, (o, d)-morphisms, etc.
We refer to [HS08, Section 6.2] for the definitions.

If K is a d-field, and if yq, ..., y, belong to some d-field extension of K,
then K{yi,...,yn}s denotes the J-algebra generated over K by y1,...,yn
and K(y1,...,yn)s denotes the d-field generated over K by y1,. .., yn.

We now let (K,0,0) be a (0,0)-field. We assume that the field of
o-constants C := K is algebraically closed and that K is of characteristic 0.

In order to apply the (o, §)-Galois theory developed in [HS08], we need to
work with a base (o, d)-field L such that C = L is d-closed.® To this end,
the following lemma will be useful.

Lemma 3.1 ([DHR18, Lemma 2.3]). Suppose that C is algebraically closed
and let C be a d-closure of C (the existence of such a C is proved in [Kol74]).

Then the ring C @c K is an integral domain whose fraction field L is a
(0,6)-field extension of K such that L7 = C.

We still consider the difference equation (2.1) and the associated difference
system (2.2). By [HS08, § 6.2.1], there exists a (o, d)-ring extension (5, c, 9)
of (L, 0,0) such that

1) there exists U € GLg(S) such that o(U) = AU;

) S is generated, as an L-d-algebra, by the entries of U and det(U)*
3) the only (o, d)-ideals of S are {0} and S.

Such an S is called a (o, 0)-Picard-Vessiot ring, or (o, §)-PV ring for short,
for (2.2) over (L,0,0). It is unique up to isomorphism of (L, o, d)-algebras.
Note that a (0,9)-PV ring is not always an integral domain, but it is the
direct sum of integral domains that are transitively permuted by o.

The corresponding (o, §)-Galois group Gal’(S/L) of (2.2) over (L, 0,d),
or (0, 6)-Galois group for short, is the group of (L, 0, §)-automorphisms of S:
Gal’(S/L) = {¢ € Aut(S/L) | 0o =poo and o0 ¢ = ¢ o d}.

In what follows, by “(o, 0)-Galois group of the difference equation (2.1)”, we
mean “(o,0)-Galois group of the difference system (2.2)”.
A straightforward computation shows that, for any ¢ € Gal’(S/L), there

exists a unique C(¢) € GLy(C) such that ¢(U) = UC(¢). By [HS08, Propo-
sition 6.18], the faithful representation

P’ Gal’(S/L) — GLy(C)
¢ = C(9)

identifies Gal®(S/ L) with a linear differential algebraic group G, that is, a
subgroup of GLQ(C) defined by a system of §-polynomial equations over C
in the matrix entries. If we choose another fundamental matrix of solutions
U, we find a conjugate representation.

3. The field C is called d-closed if, for every (finite) set of §-polynomials F with coeffi-
cients in 5, if the system of J-equations F = 0 has a solution with entries in some J-field
extension L|5, then it has a solution with entries in C. Note that when the derivation 8 is
trivial, i.e. 6 = 0, then a field is d-closed if and only if it is algebraically closed.
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Let S be a (0,0)-PV ring for (2.2) over L and let U € GL2a(S) be a
fundamental matrix of solutions. Then the L-o-algebra R generated by the
entries of U and det(U)~! is a 0-PV ring for (2.2) over L. We can (and will)
identify Gal®(S/L) with a subgroup of Gal(R/L) by restricting the elements
of Gal’(S/L) to R.

Proposition 3.2 ([HS08], Proposition 2.8). The group Gal’(S/L) is a
Zariski-dense subgroup of Gal(R/L).

3.2. Differential transcendence criteria. The aim of this section is to
develop a galoisian criterion for the differential transcendence of the nonzero
solutions of (2.1).

Definition 3.3. Let F/K be a (0,0)-field extension. We say that f € F is
differentially algebraic over K if there exists n € N such that f,...,d"(f) are
algebraically dependent over K. Otherwise, we say that f is differentially
transcendental over K.

Recall that K be a (0,0)-field satisfying property (P) such that C = K°
is algebraically closed and such that K has characteristic 0.

Let C be a d-closure of C. According to Lemma 3.1, C®c K is an integral
domain and L := Frac(C ®¢ K) is a (0, )-field extension of K such that
L% =C. Let S be a (0,d)-PV ring for (2.2) over L and let R C S be a 0-PV

ring for (2.2) over L. We also consider a 0-PV ring R for (2.2) over K.
Our differential transcendence criteria are given in our main result below.

Theorem 3.4. Consider the second-order difference equation (2.1):
o*(y) + aly) +by =0,
where a € K and b € K* and K satisfies property (P). Assume the following:
(1) there is no u € K such that uo(u) + au+b = 0; and
(2) there are no g € K and non-zero linear differential operator L € C|d]

such that
(") =ato) o

Then any non-zero solution of (2.1) in any (o, d)-field extension F of K is
differentially transcendental over K.

Note that the first criterion of Theorem 3.4 is equivalent to the irreducibil-
ity of Gal(R/K), and may be tested algorithmically in many contexts, see
[Hen97, Hen98, DR15, Roql8]. The following lemma similarly relates the

second criterion to a different largeness condition on Gal(ﬁ/ K).

Lemma 3.5 (Proposition 2.6, [DHR18|). The (o, )-Galois group of oy = by

over L is a proper subgroup of GL1(C) if and only if there exist a nonzero
linear differential operator L with coefficients in C and g € K such that

(") =ato) -

The following lemma will be used in the proof of Theorem 3.4.
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Lemma 3.6. Assume that (2.1) has a nonzero differentially algebraic solu-
tion in a (0,0)-field extension F of K. Then (2.1) has a nonzero differen-
tially algebraic solution in S.

Proof of Lemma 3.6. Since any two (0,d)-PV rings for (2.1) over L
are isomorphic, it is sufficient to prove the lemma for some (o,0)-
PV ring, not necessarily for S itself. Let f be a nonzero differen-
tially algebraic solution of (2.1) in F. We consider the localization T
of L<f,0‘(f)>5{X172,X272}5 at fXQ}Q — U(f)Xl’z, where X1’2,X2’2 are o-
indeterminates over L(f,o(f))s. This ring has a natural structure of L-
X12) _ X1,2 [ Xig) .
(0,0)-algebra such that o Xos) = A <X2’2) and (a(f) X272> is a fun-
damental matrix of solutions of ¢Y = AY with coefficients in T'. If we let
M be a maximal (o, d)-ideal of T, then the quotient 7/9M is a (o,d)-PV
ring for oY = AY over L and the image of f in this quotient is differen-
tially algebraic. Let us prove that it is nonzero. Otherwise the image of
the fundamental solution in the (o, d)-PV ring T//9% would have a zero first
column and therefore would not be inversible, leading to a contradiction.
This concludes the proof. O

Proof of Theorem 3.4. Assume to the contrary that (2.1) has a nonzero dif-
ferentially algebraic solution in a (o, d)-field extension F of K. According
to Lemma 3.6, there exists a nonzero differentially algebraic solution f of
(2.1)in S.

By [Hen97, Lemma 4.1] combined with Theorem 2.3, one of the following
three cases holds

— Gal(R/K) is reducible.

— Gal(R/K) is irreducible and imprimitive.

— Gal(R/K) contains SLy(C).

By [DR15, Lemma 13], the assumption that there is no solution in K for
the Riccati equation uo(u) + au + b = 0 is equivalent to the irreducibility
of Gal(R/K). Hence only the last two cases may occur. Then we split our
study in two cases depending on whether Gal(é/ K) is imprimitive or not.

Let us first assume that Gal(R/K) is imprimitive. It follows from Theo-
rem 2.3 and [Hen97, Section 4.3] that (2.1) is equivalent over K to

(3.1) o*(y)+ry=0
for some r € K*. More precisely, let

oY = BY with B = (_Or (1)) € GLy(K),

be the system associated to (3.1). Then there exists T € GLy(K) such that
o(T)A = BT. Let T' = (t; j). Since 0Y = AY if and only if o(TY) = BTY,
we obtain that t1 1 f + ¢ 20(f) satisfies (3.1) with (¢1,1,%1,2) # (0,0). Let us
prove that t; 1 f + t120(f) is non zero. If t11f + t120(f) =0, then f # 0
implies ¢;1t12 # 0 and then o(f)/f is solution of the Riccati equation
uo(u) + au + b = 0, which contradicts the first assumption of Theorem 3.4.

Since f is differentially algebraic over K, we have that o(f), and hence
also t11f 4+ ti20(f), are differentially algebraic over L. By [HS08, Propo-
sition 6.26], this implies that the (02,§)-Galois group of (3.1) over L is a
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proper subgroup of GL;(C). By Lemma 3.5 there exist a nonzero D € C|[{]
and h € K such that

(3.2) DY)y = 62(h) — h = o(o(h) + h) — (o(h) + h).

T
Taking the determinant in o(7T)A = BT allows us to deduce the existence
of p € K* such that b = %r, and therefore the (o,d)-Galois groups for

o(y) =ry and o(y) = by are the same. Consequently, by Lemma 3.5 and
the assumption on the (o, §)-Galois group of oy = by over L, for any nonzero

D € C[d] and any g € K, we have D(@) # 0(g)—g. This is in contradiction
with (3.2).

Assume now that Gal(R/K) is not imprimitive, so it contains SLy(C). By
[DHR18, Proposition 2.10], we deduce that

oo {(:)

Let n € N be as small as possible such that there exists
0# P € L[Xy,...,X,] with P(f,6(f),...,0"(f)) = 0, and suppose that
this P has smallest possible total degree d € N. For ¢ € C~*, let ¢ € Gy
with corresponding matrix (§2). For all ¢ € C*, we find

¢0P(f7 5(f)7 BRI 6n(f)) = P(¢c(f)7 ¢c(5(f))7 s 7¢c(5n(f)))
= P(cf,d(cf),...,0"(cf)) =0.

Since C is differentially closed, there exists ¢ € C* such that d(c) = 0 and
c? # 1. Since §'(cf) = cd'(f) for such a ¢, we have that

CdP(f7(5(f),...,(5n(f))—P(cf,C(S(f),...,cén(f)):0,

and we find that P must be homogeneous of degree d, for otherwise the total
degree d would not be minimal. We may further assume that the degree dj,

ce 5*} C Gal’(S/L).

of X;, in P is as small as possible. Again since C is differentially closed,
there exists ¢ € C such that §2(c) = 0 but &(c) # 0. But then

0= P(cf,6(cf),...,0"(cf)) = P(cf.cd(f)+(c)f,...,cd" (f)+3(c)d" " (f))
= cP(f,6(f), - 8" () + QU 8(f), ... 6"(f) = Qf.8(f), ..., 8" (f))

for some nonzero homogeneous polynomial @ € L[Xj, ..., X,] of total de-
gree d in which the degree of X, is strictly smaller than d,,. This contradic-
tion concludes the proof. O

4. DIFFERENCE EQUATIONS OVER ELLIPTIC CURVES
In this section we will be mainly interested in difference equations
(4.1) o*(y) +ao(y) +by =0,

with a,b € M,,, where
— M,, denotes the field of meromorphic functions over the elliptic curve
C* /p” for some p € C* such that |p| < 1, i.e. the field of meromorphic
functions on C* satisfying f(z) = f(pz);



DIFF. TRANSC. CRITERIA & ELLIPTIC HYPERGEOMETRIC FUNCTIONS 11

— o is the automorphism of M, defined by

a(f)(z) = f(qz)

for some ¢ € C* such that |q| # 1 and p” N¢% = {1}.
Note that this choice ensures that ¢ is non cyclic.

4.1. The base field. The difference Galois groups of linear difference equa-
tions over elliptic curves have been studied in [DR15]. In loc. cit. the elliptic
curves are given by quotients of the form C/A for some lattice A. However,
in the present work, we are mainly interested in difference equations on el-
liptic curves given by quotients of the form C*/p? for some p € C* such
that |p| < 1. The translation between elliptic curves of the form C/A and
elliptic curves of the form C*/p” is standard, namely by using the fact that if
A = Z + 7Z with $(7) > 0 and p = €*™'7 then the map C — C* : w > ?™¥
induces an isomorphism C/A ~ C*/p”.

We shall now recall some constructions and results from [DR15], restated
in the “C*/p” context” wvia the above identification between C/A and C*/p”.
For k € N* we denote by C;, the Riemann surface of 2k and we let z; be
a coordinate function on each Cj, such that zfilk = zj, for every d € N*. We
will write C] = C* and 21 = 2.

We let M, denote the field of meromorphic functions on Cj satisfying
f(pzr) = f(z), or equivalently the field of meromorphic functions on the
elliptic curve Cj, /p*. The d-power map Cyp — C: & ¢4 induces an
inclusion of function fields My, , < M, 4. for each k,d € N*. We denote by
K the field defined by

K= | M.
k>1

We endow K with the non-cyclic field automorphism ¢ defined by

(4.2) o(f)(zr) == flarzr)

where ¢; = ¢ € C* is such that |¢| # 1 and p” N¢* = {1}, and ¢ € C;,
defines a compatible system of k-th roots of ¢ = ¢ such that qgk = ¢ for
every d € N* (cf. [Hen98, Section 2]). Then (K, o) is a difference field and
we have the following properties.

Proposition 4.1 ([DR15], Proposition 5). The field of constants of (K, o)
is K7 =C.

Proposition 4.2 ([DR15], Proposition 6). The difference field (K, o) sat-
isfies property (P) (see Definition 2.1).

Remark 4.3. The field M, = M,, 1 equipped with the automorphism o does
not satisfy property (P). This is why we work over (K, o) instead of (M,, o).

Corollary 4.4. The conclusions of Theorem 2.3 are valid for (K, o).

4.2. Theta functions. We shall now recall some basic facts and notations
about theta functions extracted from [DR15, Section 3] (but stated in the
“C* /p” context”, see the beginning of the previous section). For the proofs,
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we refer to [MumO07, Chapter I]. We still consider p € C* such that |p| < 1.
We consider the infinite product

(z:p)e = (1 — 20

Jj=20
The theta function defined by
(4.3) 0(2:p) = (2:9)o0 (P21 D)oo
satisfies
(4.4) 0(pz;p) = 0(z""5p) = —2710(z;p).

Let ©y be the set of holomorphic functions on C, of the form

¢ [T otez)

¢eCs

with ¢ € C* and (ng)eec: € N with finite support. We denote by @Z“Ot
the set of meromorphic functions on Cj, that can be written as a quotient
of two elements of ©;. We have

Mp’k C @Zum.
We define the divisor divg(f) of f € ©1"" as the following formal sum of
points of (C,’:,/pZ:
div(f) = ) ordy(N)A,
AEC; /p?
where ordy (f) is the (z; — &)-adic valuation of f, for an arbitrary £ € A (it

follows from (4.4) that this valuation does not depend on the chosen & € \).
For any A € C;/p? and any £ € \, we set

[€]k == [A].

dToml < ) maN

AEC; /p? XeC; /p?

Moreover, we will write

if ny < my for all A € (CZ/pZ. We also introduce the weight wg(f) of f
defined by

we(f) = [ rodW ec;/p”
XeC; /p?

and its degree deg;(f) given by
doge(f) = Y. orda(f) € Z.

AEC; /p?

Ezample 4.5. Consider 6 = 6(z; p) defined above. Then it follows from (4.3)
that divy(0) = [1], since 0(z;p) has a zero of multiplicity one at each point
of the subgroup p% C C*. However, since z = z,’:, we have that

del0) = 3 7R

i.j=0
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where (j, € C; denotes a primitive k-th root of unity and {“/p7 is the j-th
power of an arbitrary choice {/p of k-th root of p.

Similarly, for any f(z) € M, = M1 we have that divy(f) = ¢} (divi(f)),
where ¢, : Cj/ p” — C*/p” denotes the k-power map and ;. denotes the
induced pull-back map on divisors.

4.3. Irreducibility of the o-Galois groups. One of the criteria of Theo-
rem 3.4 concerns the non-existence of a solution in K of a difference Riccati
equation. The main tool used in this paper to address this is the following
result.

Theorem 4.6 (Proposition 17 in [DR15]). Let G be the o-Galois group of
(4.1) over K. The following statements are equivalent:

— the group G is reducible;

— the following Riccati equation has a solution in My o:

(4.5) uo(u) +au+b=0.
Moreover, if p1 € ©2 U {0} and p2,ps € Oo are such that
a= b1 and b= ]2,
p3 p3

then any solution u € My, 2 of (4.5) is of the form

B 0(7’0)7;1

o T2

for some rg, 71,19 € O3 such that
(Z) dng(T‘l) < diVQ(pQ),
(ii) diva(rz) < diva(o" (p3)),
(iti) degy(r1) = degy(r2),
(iv) wo (r1/r2) = qgegQ(m) mod pZ.

5. APPLICATION TO THE ELLIPTIC HYPERGEOMETRIC FUNCTIONS

5.1. The elliptic hypergeometric functions. We shall now introduce
the elliptic hypergeometric functions following [Spil6]. Consider p,q € C*
such that [p| < 1, |¢| < 1, and ¢ N p? = {1}. Define

Z‘ - _Z ‘ k n Z' :w
i jgo(l P end TR = e

We have
L(pzip,q) = 0(z;9)T(z:p,q) and T(gzip,q) = 0(z;p)I'(2:p,q).
For t1,...,ts € C* such that [t;| < 1 for each 1 < j < 8 and satisfying
8

the balancing condition H t; = p?q?, we set

j=1
L(tjzp, )T (t/2p,9) dz
2p, (2% p,q) 2

8
(5.1) V(t1,...,ts;p,q) = K/T HJ1}<

)
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where T denotes the positively oriented unit circle and xk = %. For
z € C*, we follow [Spil6] by setting tg = cz, t7 = ¢/z, and introducing new
parameters

C . €8 \/EGES

g7 = , C= 5 -

q .
5.2 gj=—T*Forj=1,...,5, eg=—,

We denote € = (e1,...,e3). Note that we still have the balancing condition
8
(5.3) [1s=r¢
j=1

Definition 5.1. The elliptic hypergeometric function fc(z) is defined by
the following formula

V(g/cer,...,q/ces,cz,¢/z, ce85p,q)

?z/es;p, )1 (2/es;p, )T (¢?/ 2285 p, )T (1/ 2285 p, q)
Remark 5.2. As explained in [Spil6], the function V(¢;p,q) de-
fined in (5.1) can be extended by analytic continuation, so that
H1§j<k§8(tjtk;p’ q)ooV (5, q) is holomorphic for ¢4, ..., tg € C*. We should
also mention for completeness that, as explained in [Spil6], in Defini-
tion 5.1 it is initially necessary to impose the constraints (expressed in
terms of the old parametrization) /|pg| < |t;| < 1 for j = 1,...,5 and
VIpal < |¢t't;| < 1 for j = 6,7,8, which can then be relaxed by analytic
continuation. These important but subtle considerations will not play a role
in what follows.

fe(z) = T

5.2. The elliptic hypergeometric equation. The elliptic hypergeomet-
ric function f(z) satisfies the following equation

(5.4) A(2)(y(g2) = y(2)) + A" (y(a™"2) — y(2)) +vy(z) = 0,
where

1
0(2%p)0(q2*; p)
It is easily seen that A(pz) = A(z), so that the previous equation has coef-

ficients in M, 1.
Replacing z by ¢z in (5.4), we obtain the following equation:

8 6
[[0Gzp) and v=T]]6(es/a;p).

j=1 j=1

(5.5) A(z) =

(5.6) o*(y) + ao(y) + by = 0,
with a — u—A(qz)A_(jz()qflfl)’b _ A(qu;z;l) eM,,.
Remark 5.3. Note that the new parameters €1, ...,cg used in the definition
of fe(z) are not defined to be free independent parameters, since they are
defined in terms of the old parameters t1,...,ts (which are free parameters

save for the balancing condition H§:1 t; = p*¢?), and in fact one of the
equations in the reparametrization (5.2) is equivalent to g = e7q.

On the other hand, the elliptic hypergeometric equation (5.4) is defined for
arbitrary parameters 1, ...,eg € C*, subject only to the balancing condition
(5.3), which is equivalent to imposing that the coefficients A(2) and A(z~1)
actually belong to the field of elliptic functions M, ;.
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For this reason, we prove two related but distinct results on differential
transcendence: (A) differential transcendence of solutions of the elliptic hy-
pergeometric equation (5.4), where we think of the €; as free parameters
subject only to the balancing condition (5.3) and without imposing the ad-
ditional constraint eg = €7¢; and (B) differential transcendence of the elliptic
hypergeometric functions fe(z) where the ¢; are defined in terms of the t;
as in (5.2), and where in particular we do impose the additional constraint
E]8 = €7¢4.

Note that in case (B) above the balancing condition (5.3) for the remaining

independent parameters €1, ...,e7 becomes
6
(5.7) [l ) =7
j=1

In the next lemma we show that in case (B) there are no universal rela-
tions among the parameters €1, ...,e7 induced from the reparametrization
(5.2), save for formal algebraic consequences of the balancing condition (5.7).
This result ensures that the hypothesis in case (B) of Theorem 5.6 and The-
orem 5.7 below are not vacuous.

Lemma 5.4. Assume that case (B) holds. Every multiplicative relation
among the €1, ...,e7,p,q is induced by (5.7), in the sense that if there are
integers ayq, ..., a7, m,n such that

7
Oé,'_ m n
[ =»ma",
j=1
then ay = -+ =ag =a =n and m = a7 = 2a for some o € Z.

Proof. Let us begin to write ¢ and the ¢; in terms of the t;. We have
c = +/tgt7, and

2.4

c'p €8 c tetr

g6 = —— = cp'ty = p'Vlotts, er=—=—= :
€8 q qts qts

Assume now that there are integers aq, ..., ag, m,n such that

7

o9 m, n
17 =»"a"
j=1

7
Let us write this equality in term of ¢;. The relation H s?j = p™q" gives
j=1
ﬁ q~ 1 (as+ar)/2
(5.8) : - | piS (tety) \AOTATIEIOT AT gTAT = pMg",
et (tﬁt?)aJ/Qt?J
8
Using the balancing condition H t; = p?¢?, we obtain the existence of an
j=1

integer « such that
o] = - = Q5 = Q.
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Furthermore, regarding the terms in ¢, p, tj, j = 6,7, and tg respectively,

we find

(5.9) n—-ba+ar;=-2a, m—4das=—2a,
—ba/2+ag/2+a7/2=—a, as—ar=—a.

If we put the equality of the fourth relation ag = a7 — « into the third, we
obtain 2a = a7. With ag = a7 — a, we find a = ag. Finally from the first
and the second equality, we deduce n = o and m = 2a. O

Remark 5.5. Assume that case (B) holds. With Lemma 5.4 and the relation

e€g = qe7 it follows that if there are integers aq, ..., as, m,n such that
8
[ =
j=1
then o = - =ag = a=n — ag and a7 + ag = 2a = m for some a € Z.

5.3. Irreducibility of the o-Galois group of the elliptic hypergeo-
metric function. From now on, we denote by G the o-Galois group of
(5.6) over K (with respect to some o-PV ring).

Theorem 5.6. Assume one of the two hypotheses (A) or (B) below.

(A) Every multiplicative relation among the e1,...,€8,p,q is induced by

(5.3), in the sense that if there are integers aq,...,as, m,n such that
8
I =
j=1

then a; = --- = ag =: a and m = n = 2« for some a € Z.

(B) es = e7q and every multiplicative relation among the €1,...,e7,p,q is
induced by (5.7), in the sense that if there are integers aq,...,as,m,n such
that

8
I =
j=1
thenay =---=ag=a=n—ag and a7 + ag = 2a = m for some o € 7.

Then G is irreducible.

Proof. To the contrary, assume that G is reducible. According to Theo-
rem 4.6, the following Riccati equation has a solution u € M, 5 :

(5.10) uo(u) + au+b=0.

First, note that w € Mp2 is a solution of (5.10) if and only if
v(o(v) + o (a)) +o7 () =0 with v = o7 '(u) € K. Then to sim-
plify the expression of the divisors of a and b, we may replace them by

o l(a) = %‘Z’)“(ﬂ, o~ 1(b) = AZ;; ) and consider the Riccati equation

satisfied by v. Consider p; € ©3 U {0} and p3, p3 € O2 such that
-1 h -1 p2
o " (a)==— and 0" (b)) = —.
(a) . (0) P
In view of the explicit expressions for 0~ !(a) and o~ 1(b), we see that we
may take po and ps3 such that
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+j§i:0 [4 pJ/Q} + [— \ pj/q] + [14 pﬂ/q] + [—14 pj/@}
and
et =3 [\ + [-yfm] ¢ [ore] + [y

j=0
We note for convenience that
8

divte ™ 09) = |Ja/es| + [y fose| + || + |- avrs
\VaVap| + |[~vava | + [ivav/ar | + | Sivad/ap] .

NE

_l’_

J

I
o

We now consider rg, 71,72 € ©9 as in Theorem 4.6. For i = 1,2, let
Si = {\ e C3/p” | ordy(r;) # 0}

denote the support of diva(r;). For each j € {1,...,8} we let a;; € N denote
the number of points in &; of the form =+, /25 or &, /pg;. Similarly, for each
je{l,...,8} we let oz;- € N denote the number of points in Sy of the form
++/q/e; or £4/qp/c;. We find that there exist ¢1,f3 € {0,1,2,3} and vy € N
such that

8
wa(ry [ra) = i \4/#2 H \/?J'aﬁa; Vi degalr2) Vg = \/adegQ(TO) mod p”,
j=1

where the second equality is obtained from property (iv) of Theorem 4.6.
After taking fourth powers we see that

8
204205 4y 2 degy (r2)+y+2degy(ro)
€ =P yq

Jj=1

(5.11)

for some m € Z. We now claim that v is constant.

Suppose first that we are in case (A). Since every multiplicative relation
among the e1,...,es,p,q is induced by (5.3), it follows from (5.11) that
there exists o € N such that 2a; +20z} =« forevery j € {1,...,8} and m =
2degy(re)+v+2degy(ro) = 2a. In particular, we have that 2 degy(r2) < 2a.
On the other hand, it follows from properties (i) and (ii) of Theorem 4.6,
respectively, that oy + - -+ ag < degy(r1) and o) + - - - + ag < degy(r2). We
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note that by property (iii) of Theorem 4.6 2 degy(r2) = degy(r1) + degy(r2).
Putting together these inequalities we obtain

8
4o = Zoaj + o < degy(r1) + degy(r2) = 2degy(r2) < 2a.

j=1
It follows from this that a = degy(r;) = degy(re) = 0. Hence, /72 is
constant and

wary/re) =1 = /g% mod p”

by property (iv) of Theorem 4.6. Since p” N ¢* = {1}, we see that
deg,(r09) = 0 also.

Now suppose we are in case (B). Since every multiplicative relation among
the €1,...,¢€s8,p, q is induced by (5.7), it follows from (5.11) that there exists
a € N such that 2a; + 20} = a = 2degy(r2) + v + 2degy(ro) — (2as + 2ag)
for every j € {1,...,6}, and 2a7 + 20/ + 2ag + 2a5 = 2o = m. It follows
from the second set of equations that 2ag + 2a < 2. From this and the
first set of equations it then follows that 2degy(r2) < 3a. On the other
hand, it follows from properties (i) and (ii) of Theorem 4.6, respectively,
that oy + -+ + ag < degy(r1) and o + - -+ + ag < degy(rz). We note that
by property (iii) of Theorem 4.6, 2 degy(r2) = degy(r1) + degy(r2). Putting
together these inequalities we obtain

8
4o = Zaj + oy < degy(r1) + degy(r2) = 2degy(r2) < 3o

j=1
It follows from this that @ = degy(r;) = degy(r2) = 0. Hence, /72 is
constant and

wo(ri/re) =1= ﬁdeg?(ro) mod p?

by property (iv) of Theorem 4.6. Since p” N ¢* = {1}, we see that
degs(ro) = 0 also.

It follows from the above in either of the cases (A) or (B) that v € C* is
constant. Therefore (5.10) can be rewritten as

(5.12) v A(2) + (v — A(z) — A(z7H) + A(z71) =0,
(5.13) (02 —0)A(2) +vv = (v — 1) A(z7h).

But since \/g ! is a pole of A(z) but not of A(z~!) and, on the other hand,
V/@is apole of A(z~1) but not of A(z), we obtain that v*—v = v—1 = vv = 0.
So we must have v = 0. On the other hand, we see from the definition
of v in (5.5) that v = 0 if and only if ejes = gp° for some ¢ € Z and
j =1,...,6, which is ruled out by our hypotheses in both cases (A) and
(B). This contradiction concludes the proof that G is irreducible. U

5.4. Differential transcendence of the elliptic hypergeometric func-
tions. We may equip (K, o) with the classical derivation § := zdilz as in
[DHRS18, Section 3.1]. Note that § commutes with o. Let C be the 4-
closure of C. Following Lemma 3.1, we may consider L := Frac(K @¢ C)
and we have L¢ = C. Recall that fe(z) is meromorphic on C*, and note
that the field of meromorphic functions on C* is a (o, §)-extension of K.
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Theorem 5.7. Assume one of the two hypotheses (A) or (B) below.

(A) Every multiplicative relation among the €1,...,e8,p,q is induced by

(5.3), in the sense that if there are integers aq,...,as,m,n such that
8
1= =
j=1

then oy = --- = ag =: a and m = n = 2« for some a € Z.

(B) es = e7q and every multiplicative relation among the €1,...,e7,p,q is
induced by (5.7), in the sense that if there are integers aq,...,as,m,n such
that

8
[ =
j=1
thenay = - =ag=a=n—ag and a7 + ag = 2a = m for some a € Z.

Then any non-zero solution to (5.4) is differentially transcendental
over K.

Proof. We apply the criteria of Theorem 3.4. We proved in Theorem 5.6
that G is irreducible, which by [DR15, Lemma 13] is equivalent to the non-
existence of a solution u € K to the Riccati equation

uo(u) + au+ b= 0.

It remains to show that there is no nonzero linear differential operator £ in
0 with coefficients in C and g € K such that

£()=ato s

Let k € N* such that g € M), and consider b as an element of M, ;.. Let
w € (C}';/pZ be a zero or a pole of b. Then it is a pole of %. Since £ has
constant coefficients, we get that w is also a pole of L (%). Therefore, w
is a pole of o(g) — g and hence also a pole of o(g) or of g. Furthermore,
o(g)— g has at least two distinct poles w’,w” € C; /p” such that w = ' = w”
mod g%, where g, € Cj is as in (4.2). These w’ and w” are poles of %b, and
hence zeros or poles of b has well. We have proved that, for every w € Cj/ p”
that is a pole or zero of b, there exists £ € Z.q such that wq,‘; is a pole or
zero of b.

Let us now consider b as an element of M, ;. From the preceding, we
deduce that for every w € C*/p”, pole or zero of b, there exists ¢ € Zi4q such
that wq’ is a pole or zero of b. We will use this to find a contradiction. Note
0(q°2%p)0(¢*2%p) ﬁ O(ejq 2" p)

q 22" Zp)0(g Tz %p) = 0(g;q2;p)

that the set of zeros or poles of b = il

seen as an element of M, 1, is included in
S = {q—lgitlj . 7q_1€§:1’:l:q_1/27:l:q_1/2\/5, iq_3/2,iq_3/2\/ﬁ} mod pZ'

Let us prove that the elements of S are all distinct. To see this, note
that if any two elements of S were the same modulo pZ then we would
find a non-trivial multiplicative relation satisfied by at most four elements
among p,q,€1,...,6g. This contradicts the hypothesis in both cases (A)
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and (B). Therefore, no simplifications occur and S is exactly the set of
zeros or poles of b. It suffices to show that for all £ € Zy, we have
SN {¢‘q ey mod p?} = @. Let £ € Z such that SN {¢’q"'e; mod p?} #
@. If £ # 0, then we again find a non-trivial multiplicative relation satisfied

by at most four elements among p, q,€1,...,cs. In either case (A) or case
(B) this contradiction to the hypothesis concludes the proof. O
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