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Abstract. This paper adresses the numerical approximation of a compressible
barotropic two-phase flow model with miscible conditions. The first phase is a
liquid while the second phase corresponds to a gaseous mixture, which contains
two components that share the same volume (for example vapor and air). The
fluid dynamic is depicted by a Baer-Nunziato-type model, involving non conser-
vative coupling terms. The core of the paper is the simulation of this model by
a Suliciu relaxation scheme initially designed for immiscible mixtures. The nu-
merical results illustrate the convergence of the scheme, its robustness for low
volume fraction regimes and its computational cost efficiency.
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1 Introduction

This work concerns the simulation of the barotropic three-field two-phase Baer-Nunziato
model, studied in [6]. This model corresponds to a mixture of a liquid phase (l) plus
a gaseous phase containing two miscible gases: vapor (v) and an inert gas (g). In the
nuclear industry, such flows may appear in accidental configurations such as the Loss of
Coolant Accident (LOCA) [10]. In the one-dimensional framework, it is a seven equa-
tion system of partial differential equations involving non-conservative coupling terms,
which reads

∂tαl +ul∂xαl = 0,
∂t(αlρl)+∂x(αlρlul) = 0,
∂t(αlρlul)+∂x(αlρlu2

l +αl pl(ρl))+ pv(ρv)∂xαv + pg(ρg)∂xαg = 0,
and for k = v,g : (1)

∂t(αkρk)+∂x(αkρkuk) = 0,
∂t(αkρkuk)+∂x(αkρku2

k +αk pk(ρk))− pk(ρk)∂xαk = 0.

For k ∈ {l,v,g}, ρk > 0 and uk ∈ R are respectively the density and velocity of field k.
The pressure of field k only depends on the corresponding field density and is given by a
barotropic equation of state (see [2, 6]) pk : ρk �→ pk(ρk) and we assume that p�k(ρk)> 0.
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Finally αk ∈ (0,1) is the statistical fraction of field k. Since the vapor field and the inert
gas share the same gaseous phase we have the saturation constraint

αv = αg = 1−αl . (2)

Remark 1. A mixture of three immiscible phases can be modeled by a similar set of
PDEs. Assuming that the fields v and g do not share the same phase, the phase fraction
of vapor is computed by the additional transport equation:

∂tαv +ul∂xαv = 0

and αg is determined by the following saturation constraint:

αl +αv +αg = 1. (3)

Remark 2. Source terms can be added to the model (1) to account for mass and ther-
modynamical transfers.

Proposition 1. Denote U := (αl ,αlρl ,αlρlul ,αvρv,αvρvuv,αgρg,αgρgug). System (1)
is weakly hyperbolic and admits the following real eigenvalues

σ1(U ) = ul , σ2,3(U ) = ul ± cl , σ4,5(U ) = uv ± cv, σ6,7(U ) = ug ± cg,

where ck(ρk) =
�

p�k(ρk) is the speed of sound of field k. All the characteristic fields are
genuinely non-linear excepting σ1 which is linearly degenerate. The set of correspond-
ing right eigenvectors spans R7 if and only if

αl �= 0, αv = αg �= 0, |uk −ul | �= ck(ρk) for k = g,v. (4)

Remark 3. αk = 0 is to be understood in the sense αk → 0. These low fraction regimes
are quite important in practical applications. It is already known in immiscible situations
that the Suliciu relaxation scheme provides very good results in these regimes compared
to standard schemes [4, 8]. The aim of this work is to extend the Suliciu relaxation
scheme to the model (1).

Remark 4. The loss of hyperbolicity (4) can be due to the presence of a nearly vanishing
phase αk → 0, or to an interaction between the coupling wave ul and an acoustic wave
uk ± ck, k = g,v. This second resonant configuration is unlikely to happen in the con-
cerned industrial applications (multiphase flows in nuclear reactors), where the flows
have strongly subsonic relative velocities, i.e. a relative Mach number much smaller
than one:

Mk =
|ul −uk|
ck(ρk)

<< 1 for k = g,v.

Let the specific total energy of field k be defined by Ek = ek + u2
k/2, where the

specific internal energy of the field k is such that e�k(ρk) = pk(ρk)/ρ2
k . One can prove

that the function U �→ (αkρkEk)(U ) is (non strictly) convex (see [9]). The entropy
weak solutions of system (1) are the weak solutions that satisfy the following inequality
in the weak sense :

∂t

�
∑

k=l,g,v
αkρkEk

�
+∂x

�
∑

k=l,g,v
(αkρkEkuk +αk pk(ρk)uk)

�
≤ 0. (5)

For smooth solutions of (1), (5) is an equality.
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2 Suliciu relaxation scheme

The solutions of (1) are formally recovered as the limit of the solutions of the following
enlarged system, involving the additional unknowns Tk, in the regime ε → 0:

∂tαl +ul∂xαl = 0,
∂t(αlρl)+∂x(αlρlul) = 0,
∂t(αlρlul)+∂x(αlρlu2

l +αlπv(τl ,Tl))
+πv(τv,Tv)∂xαv +πg(τg,Tg)∂xαg = 0,

∂t(αlρlTl)+∂x(αlρlTlul) =
1
ε αρl(τl −Tl),

and for k = v,g : (6)
∂t(αkρk)+∂x(αkρkuk) = 0,
∂t(αkρkuk)+∂x(αkρku2

k +αkπk(τk,Tk))
−πk(τk,Tk)∂xαk = 0,

∂t(αkρkTk)+∂x(αkρkTkuk) =
1
ε αρk(τk −Tk).

where, denoting τk = 1/ρk the specific volume of field k, we have introduced the lin-
earized pressure laws

πk(τk,Tk) = Pk(Tk)+a2
k(Tk − τk), k = l,g,v,

where τ �→ Pk(τ) = pk(τ−1) and ak ∈ R+ suitably chosen.
The Suliciu relaxation scheme consists in building an exact Riemann solver for the

convective part of the enlarged system (6), which is (relatively) easy to compute because
the system has only linearly degenerate fields. Such an exact Riemann solution was first
computed in [4, 3] for two-phase flows and has been extended in [8] for immiscible
multiphase barotropic flows. In [8], the transport equations for αl and αv are solved and
by the relation (3) αg is computed by enforcing the following initialization:

αg(t = 0) := 1−αl(t = 0)−αv(t = 0).

The extension to the barotropic three-field two-phase Baer-Nunziato model (1) is rather
straightforward. It consists in solving the transport equation for αl while αg = αv are
computed by enforcing the initialization:

αg(t = 0) = αv(t = 0) := 1−αl(t = 0).

Since in both the miscible and immiscible cases, the phase fractions αk satisfy the same
transport equation:

∂tαk +ul∂xαk = 0,

the expression of the overall Riemann solution is unchanged.
At the numerical level, a fractional step method is used. The first step is a time-

advancing step using the exact solution of the Riemann problem for the convective part
of (6). The second step consists in an instantaneous relaxation towards the equilibrium
system (1) by imposing Tk = τk in the solution obtained by the first step. The whole
scheme can be written in the form of a non conservation finite volume scheme (see [8]
for details).
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Proposition 2 (Properties of the Suliciu relaxation scheme).

– Under a CFL condition [8, (51)], the scheme preserves positive values of the phase
fractions and densities.

– The discretizations of the partial masses and total mixture momentum are conser-
vative.

– Under Whitham’s condition on the parameters ak (see [8, (16)],[1]), the numerical
solution satisfies a discrete counterpart to the energy inequality (5).

3 Numerical results

The relaxation scheme is compared to the non conservative Rusanov scheme [5], which
is (to our knowledge) the only available scheme to this multiphase flow model. In the
following we denote U = (αl ,ρl ,ul ,ρv,uv,ρg,ug) the vector of non conservative un-
knowns. We present two test-cases and plot the approximated solutions for a 100 cell
mesh, which corresponds to a realistic 106 cell mesh in a three-dimensional industrial
context. The CFL number is set to 0.45.

3.1 Test-case 1: pure contact discontinuity

The initial data is the following

UL =(0.1,3.0,0.2,0.3,1.0,0.4,1.0),
UR =(0.4,2.0724212862957074,0.2,0.28339834471128433,

1.4702967632600488,0.34584269153214842,1.5879142504747157).
(7)

We present the approximated solution in Figure 1. The L1-errors with respect to the
space step Δx and with respect to the computational cost are plotted on Figure 2. The
classical sonic wave oscillations are smaller for the relaxation scheme. The contact dis-
continuity is much less smeared with the relaxation scheme than with Rusanov’s scheme
which suggests better accuracy. Indeed, Figure 2 shows that it requires a hundred times
more CPU time to obtain the same error with Rusanov’s scheme (using more refined
meshes) than with the relaxation scheme.

3.2 Test-case 2: vanishing-phase test-case with uv ± cv shocks

In this test-case, the left initial data has no liquid phase, which corresponds to αl = 0
(in practice αl = 10−10). We consider a shock-contact-shock wave configuration for the
vapor field, while the other fields are only subject to the ul contact. The wave structure
is given in Figure 3. The initial data is given by:

UL = (1.0.10−10,1.0,0.3,0.8,0.5,0.6,0.5,),
−0.66086132955857257,0.54048985831522922,1.4101040855979630),

UR = (0.8,2.1958716914805883,0.3,0.9,
−0.49798559025814237,0.54048985831522922,1.4101040855979630).

(8)
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Fig. 1. Test-case 1: solution for 100 cells at final time t = 0.08. Contact wave of velocity ul = 0.2.
Initial data given in (7).
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Fig. 2. Test-case 1: L1-error with respect to Δx and L1-error with respect to computational cost
(in seconds). The ug plot is not represented since it is very similar to the uv plot.
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The approximated solutions on Figure 3 give an interesting comparison. On the one
hand, the relaxation scheme follows the contact discontinuity much better than the Ru-
sanov scheme and does not oscillate on the left constant state, which is a low fraction
regime. On the other hand, close intermediate states of the vapor field are rather well
captured by the relaxation scheme, even for a 100 cell mesh. On the contrary, observe
that the Rusanov scheme misses the U2 state.

4 Conclusion

This work confirms the convincing behavior of this relaxation scheme already known
for immiscible mixtures. For a given error on the solution, it performs much better
than the Rusanov scheme (a factor of order 102), which is a discriminating feature
in an industrial approach. Moreover, the low fraction regimes are approximated with
robustness. In future works, it would be interesting to consider the thermodynamical
relaxation by adding source terms to the convective system, in order to use the relaxation
scheme in a global context. The three-phase four-field case [7] can be investigated.
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5. Gallouët T., Hérard, J.-M, Seguin N.: Numerical modeling of two-phase flows using the two-
fluid two-pressure approach. Mathematical Models and Methods in Applied Sciences 14, 05,
663-700 (2004) World Scientific. https://hal.archives-ouvertes.fr/hal-00003327/document

6. Hérard J.-M., Mathis H.: A three-phase flow model with two miscible phases. ESAIM:
Mathematical Modelling and Numerical Analysis 53, 4, 1373-1389 (2019) EDP Sciences.
https://hal.archives-ouvertes.fr/hal-01976938

7. Hérard J.-M., Hurisse O. Quibel L.: A four-field three-phase flow model with both miscible
and immiscible components. ESAIM: Mathematical Modelling and Numerical Analysis 55,
S251-S278 (2021). https://hal.archives-ouvertes.fr/hal-02432793

8. Saleh K.: A relaxation scheme for a hyperbolic multiphase flow model. Part I: barotropic
eos. ESAIM: Mathematical Modelling and Numerical Analysis, Apr (2019) EDP Sciences.
https://hal.archives-ouvertes.fr/hal-01737681v2/file/Triph Saleh V3.pdf

9. Saleh K., Seguin N.: Some mathematical properties of a barotropic multiphase flow
model. ESAIM Proc. Surveys 69, 70-78 (2020) EDP Sciences. https://doi.org/10.1051/proc/
202069070

10. U.S. NRC: Glossary: Loss of Coolant Accident (LOCA). http://www.nrc.gov/reading-rm/
basic-ref/glossary/loss-of-coolant-accident-loca.html



8 Jean Bussac and Khaled Saleh

x

t
ul

uv − cv
uv + cv

UL

U1 U2

UR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

Rusanov

Relaxation

Exact

Phase fraction α

 0.5

 1

 1.5

 2

 2.5

-0.4 -0.2  0  0.2  0.4

Rusanov
Relaxation

Exact

Phase l density ρl

-6

-4

-2

 0

 2

 4

 6

-0.4 -0.2  0  0.2  0.4

Rusanov
Relaxation

Exact

Phase l velocity ul

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

-0.4 -0.2  0  0.2  0.4

Rusanov
Relaxation

Exact

Phase v density ρv

-0.6

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2  0  0.2  0.4

Rusanov
Relaxation

Exact

Phase v velocity uv

 0.54

 0.55

 0.56

 0.57

 0.58

 0.59

 0.6

-0.4 -0.2  0  0.2  0.4

Rusanov
Relaxation

Exact

Phase g density ρg

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

-0.4 -0.2  0  0.2  0.4

Rusanov
Relaxation

Exact

Phase g velocity ug

Fig. 3. Test-case 2: solutions for 100 cells at final time t = 0.02. Contact wave of veloc-
ity ul = 0.3, uv − cv-shock of velocity -3.3155813734376762 and uv + cv-shock of velocity
3.0689467170729379. Initial data given in (8).


