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Abstract We propose a numerical scheme for the incompressible N&vikes

equations. The pressure is approximated at the cell centéls the vector valued
velocity degrees of freedom are localized at the faces ot#tis. The scheme is
able to cope with unstructured non-conforming meshes,\ing hanging nodes.
The discrete convection operator, of finite volume form, udithwith the purpose
to obtain anL?-stability property, or, in other words, a discrete equivdlto the

kinetic energy identity. The diffusion term is approxinthtey extending the usual
Rannacher-Turek finite element to non-conforming meshles.stheme is first or-
der in space for energy norms, as shown by the numerical iexpets.

1 Introduction

Let Q be an open bounded connected subs&%fwith d € {2,3}, which is sup-
posed to be polygonal f = 2 and polyhedral ifl = 3. LetT € R™. We address in
this paper the system of incompressible Navier-Stokestemsa

gu+div(u®u)— pAu+Op=0, onQ x (0,T), (1a)
divu =0, onQ x (0,T), (1b)
Ulpo =Upo,  Ult=0 = Uo. (1c)

The variablesi € RY andp < R are the velocity and the pressure in the flow, arid

a positive constant viscosity. The initial conditiogis supposed to be divergence-
free, and the integral afiy - nyo over dQ vanishes, wher@,, stands for the
normal vector t@ Q outwardQ.

We develop in this paper a projection scheme to approxirhatedlution of (1),
based on a staggered space discretization and able to ctip@aevi-conforming
mesh refinement. During the last years, a research prografoe®n undertaken to
develop staggered schemes satisfying a discrete kinetiggibalance [1, 5]. This
point is crucial with respect to many issues: it readily pdeg stability estimates,

Fabrice Babik, Jean-Claude Latché, Bruno Piar and KhadéehS
Institut de radioprotection et de slreté nucléaire (RS
e-mail: [fabrice.babik, jean-claude.latche, bruno.giheled.saleh]@irsn.fr



2 Fabrice Babik, Jean-Claude Latché, Bruno Piar and Khaddeh

a property which is a prerequisite for LES applications,,dast but not least, it
is a starting point for the extension of the schemes to cossgrke flows (shallow
water, compressible Navier-Stokes and Euler equatiorrs.difficulty lies in the
definition of the velocity convection operator, which mustib some sense consis-
tent with the discrete mass balance; the definition of thisrafor is thus intricate
and, to our knowledge, novel, at least for density variablesl The objective of the
present paper is to show how to extend this definition to nmmfarming meshes.
We first define admissible meshes (Section 2), then des¢ribecheme (Section 3)
and finally present some numerical experiments to assdsstitsvior (Section 4).

2 Definition of the meshes

Let.# be a decomposition of the domdiheither in convex quadrilaterald & 2)

or hexahedrad = 3). The mesh# is supposed to be obtained from a usual finite
element regular discretizatios.(.[4]) by recursively splitting some cells irf Zub-
cells obtained by joining every two opposite face centeig. (B. We allow at most
one hanging node at the mass center of a cell face, which ntleatnthe maximum
level of refinement between two adjacent cells is one.

= i B

Fig. 1 An exemple of admissible mesh refinement.

We denote by¢’(K) the set of the faces of an elemdfie .#. We exclude the
presence of a node in the interior of a face, we split an initial face in 31 faces
if one of the cells adjacent to the face is split. The numbeiaoés,N¢, of a cell
K thus ranges betweenl2nd 2d. Let & = Uxc s & (K), bext = {0 € &,0 C 0Q}
andéiny = &\ dext- A face o € & separating the cell€ andL is denoted by |L.
Foro € £(K), nk ¢ is the unit normal vector tor outwardK. Hereafter| - | stands
for thed- or (d — 1)-dimensional measure of a subsefSfor R~ respectively.

We define a dual mesh associated with the fa€es follows. WherK € .7 is
a rectangle or a cuboid, far € £(K), we define the half-diamond cdlk ; as the
cone with basigr and with vertex the mass centerto{see Fig. 2). We thus obtain a
partition ofK in N sub-volumes, each sub-volume having a meaHdke;| equal
to |[K|/(2d), when o has not been split, diK|/(29d) otherwise. We extend this
definition to general quadrangles and hexahedra, by supptsit we have built a
partition with the same connectivities and the same rattwvéen the volumes of
the half-diamonds and of the cell. Fare &, o = K|L, we now define the dual (or
diamond) celD associated witlw by Dy = Dk ¢ UDL . Foro € &(K) N &ext, We
defineDy = Dk . We denote by?(Dg) the set of faces dD, and bye = D|Dy
the face separating two dual cellg; andD, (see Fig. 2).
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Fig. 2 Notations for control volumes and diamond cells.

3 The pressure correction scheme

3.1 General form of the scheme

The space discretization is staggered in the sense thatélsyve and the velocity
are piecewise constant functions respectively on the prand dual mesh. The
initial discrete velocity is defined on a dual cél,, o € &y, by the mean value
ug. of the functionug over the faces. The Dirichlet boundary condition is taken
into account by setting}} to the mean value afyo overo, for all o € & and all
n> 0. We consider a constant time si@p As usual [9, 3, 6], the projection scheme
is a two-step algorithm:

Prediction step- Find (ug ) ge s, Such that:

1 1
E(UQ—UQ)‘FH FoeUs —H(Au)g+ (Op)g =0, 0 € &, (2a)
ecé(Dg)

Correction step- Find (u§™)ges, and(pg™™)ke.~ such that:
1 *
5 (U™ —ug) + (Op)5™ — (Op); =0, 0 €&,  (2b)

ROGH =0, with RYGh = (o] ugt-neo, Kes. (2
oETK) '

The pressure gradient is built as the dual operator of theretis divergence:

9]

(Op)o = m

(PL— Pk) K, o =K]|L.

The discretization of the diffusion term relies on the stieci’rotated bi-linear
element” introduced by Rannacher and Turek [8]. The refexeriemenkK is the
unitd-cube(0,1)9, and the discrete functional space is:

Qu(K) = span{1, (Xi)i=1,..ds (X2 — X2 1)i=1,..d-1}-
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When there is no hanging node on a facewe impose the jump through the face
to have a zero mean value. When there is a hanging node, weénopbse to zero

the integral of the jump through the initial face. Hence, $e&{{s, 0 € &n} of
nodal functions associated with the Rannacher-Turek elemmelefined as follows.
When no vertices off = K|L is a hanging node, we defidg such that sup@) C
KUL, forallK € .#, (5| belongs to the Rannacher-Turek local discrete space of
K (i.e. the image of the spad@;(K) by theQ; mapping) and:

% / {s=1and, forallo’ € &, o' +# o, //ZU:O. (3)
JO [0}

When one of the vertices af = K|L is a hanging node, it means thaseparates a
cell obtained by splitting the mesh, shyfrom an unsplit one, sal. The support
of {y is still KUL and onL, {; is still given by (3). Let> be the initial face of
K including o, and let{s be the Rannacher-Turek usual shape functian the
function satisfying an analogue of (3) on the initial medtjen, we definé€,; onK

by Zo(0) = 12z (x).

1zl

Fig. 3 Piecewise definition of ;.

Finally, dropping the time index, the discretization of th#fusion term reads:
1
~(@uo === ¥ / U (020 - 0Z6). 4)

Do Kew 'K grég(K)

In the convection term, the velocity interpolates at therinal dual facesi} is
chosen centeredi; = (Ug +Uy)/2, for € = Dg|DY;. To make the description of
the scheme complete, we now only need to define the mass fluxegyh the dual
faces B4 ). z: this is the purpose of the next section.

3.2 Discrete kinetic energy and mass fluxes

The discrete mass fluxes through the faces of the dual megluitreo that a finite
volume discretization of the divergence constraint (1B3iover the dual cells:

>y Foe=0, 0 € Ent. (5)
ecé(Dg)
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This is crucial in order to reproduce, at the discrete lethed derivation of a kinetic
energy balance equation, thus ensuring discrete analofties usual °(L?)- and
L2(HY)- stability estimates for the velocity. It may be shown thatd®ion (5) holds
if the dual fluxes are computed from the primal orQE,,SVG)GGg(K) at the previous
time-step so as to satisfy the following three constraisge (1, 5] for details):

e (H1)-Forall primal celK in .#, the sefFy ¢ )k Of dual fluxes through faces
included inK satisfies the following linear system, wiflf = |Dk ¢|/|K|:

Fr.o + Z Foe= EKU Z Fx o Vo e &(K). (6)
£€é(Dg), £CK '€ (K)

e (H2) —The dual fluxes are conservatie; . = —F/ ¢ for all € = Dg|Dy,.
e (H3)-The dual fluxes are a bounded function of the primal (RS ) ge s (k)

|Foel < Cmax{|Fko|, o€ &(K)}, Ke.#,0e&(K), ecé(Dg), eCK.

3.2.1 Dual fluxes for non-refined meshes

The system of equations (6) has an infinity of solutions, Whitakes necessary
to impose in addition the constraint (H3). Since (6) is lineéth respect to the
Foe, 0 € &(K),e € &(Dg), € C K, asolution of (6) may thus be expressed as:

Foe= 5 ()5 For  0€&(K),e€é(Dg)ands CK,
a’c&(K)

and (H3) is equivalent to requiring bounded coeﬁicie(mw)g’)a,aleg(,(). In ad-
dition, since§? = 1/(2d) for all K € .# ando € &(K), system (6) is completely
independent from the cell under consideration. We may thus consider a particular
geometry fork, let us sayK = (0,1)9, and find an expression for the coefficients
((aK)g’)a,Ule(g(K) which we will apply to all the cells, thus automatically sy
ing the constraint (H3). A technique for this computatioéscribed in [1, Sec-
tion 3.2]. The idea is to build a momentum fieldwith a constant divergence and
such thatf, w - ng ¢do(x) = Fx ¢, for all 0 € &(K). Then, an easy computation
shows that the definitioR; ¢ = [, W-ng ¢do(X) satisfies (6). The set of coefficients
((aK)g’)G,U/G&K) obtained for a quadrangle is given in [1, Section 3.2]; esitm

to the three-dimensional case is straightforward.

3.2.2 Dual fluxes for 2D-refined meshes

Here again, we may restrict the computation to square ¢elBD, if a primal cell is
surrounded with four refined cells, the half-diamond celés @btained by splitting
the cell in four sub-squares, each one being split in twalies. Hence, eight dual
fluxes must be computed; if some of the neighboring cells areafined, one uses a
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coarseningprocedure. We begin with computing the dual fluxes acrostotivesub-
squares faces (solid gray color in Fig. 4) so that (6) holdls, (#« o) 55 (k) denoted
here byF (4 <i<11) andFgs¢, 0 € &(K),& C K denoted here bl}':. 4<i<7).
The linear system to solve has a one dimensional kernel aradt&yar solution
satisfying(H3) is given in Fig. 4. Then, the dual fluxes across the diagoraidia
(0 <i < 3) (dashed gray color in Fig. 4) are computed by isolating thesjuares
and applying the procedure described above for the nonecttiase.

=
» ~
X =t A R (mtR RuR) g (FiR —R R
NG
7 ~ 3 1
12 Ry ! = o (F+F —F —F )+ 5 (F+Fo—Fu—F )
~ | ~ 3 1
ll% Fo Fo=g(FotFo-F —F)+ g(FRa+Fu-F —F)
. A
. AN B 3 1
_ ¢ F=c(R+Fu-F —Fo)+ 2 (F+Fk -F —-F)
‘FS» 8 8
I I
0
) )

Fig. 4 Dual fluxes for the neighboring cell of refined cells (2D case)

3.2.3 Dual fluxes for 3D-refined meshes

The procedure is the same as in the 2D-case. The first stefsisoinssplitting the
cube in eight sub-cubes and computing the dual fluxes achestates of these
sub-cubes. The formula of one of these intermediate flexsgyiven in Fig. 5. The
computation of the other fluxes across the faces separatmgitb-cubes is deduced
by permutations of the indices.

In the second step, each sub-cube is split in 3 half-diamohdgual volumes.
One obtains 24 half-diamonds and 48 internal half-diamaweéd of two possible
types (see Fig.6). The dual fluxes across these faces aneabtay isolating the
sub-cubes and applying the procedure described abovedootfi-refined case.

4 Numerical test

We assess the behavior of the proposed numerical scheme @xaananalytical
solution to the stationary Navier-Stokes equations knoswiha Kovasznay flow [7].
Computations are performed with the free software CASEleveloped at IRSN
[2]. The velocity and pressure fields are given by:
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four of the eight internal faces

i 24F =7(Fua+ For+ For) — 7(Fas + Fuo + Fos)
” +2(F +Fo+Fe)—2(F +Fig+Foa)
i 9 +2(Fu+Fie+Fo) —2(Fiz+ Fi7+ Fa3)

+ (Fo +Fo+Fs)— (F +Fi2+F2)

Fig. 5 Intermediate dual fluxes for the neighboring cell of refinetlso(3D case).

Fig. 6 Two possible types of internal half-diamond faces (3D case)

1-eMXcog2
005( le) 1_ (17e2)\x), A= i, (i+47'[2)1/2,

P73 2u  \4u?

A .
E_[e)‘x sin(2ry)

wherep stands for the viscosity of the flow, taken hereuas 1/40. The computa-
tional domainisQ = (—0.5,1) x (—0.5,1.5). The mesh is built from a regularx n
grid, where we refine the sub-domaily = (—0.5,0.5) x (—0.5,0.5) U (0.5,1) x
(0.5,1.5) by splitting each (square) cell included {; in four sub-squares. The
solution is computed by the projection scheme, by lettingtiifius transient tend

to the desired steady state. Boundary conditions are giyéimgbanalytical solution.
The obtained numerical errors for various values afe gathered in the following
table, wheralexactand pexactStand for the exact velocity and pressure, respectively.

N |llu— Uexactl 2() | [P — Pexact|L2(q)
10 0.183 0.0812

20 0.0384 0.0334

40 0.00825 0.0158

80 0.00211 0.00782
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Fig. 7 Contour lines of the fieldi;. The dashed lines materialize the boundary of the refineal are
(bottom-left and top-right sub-domains).

The observed order of convergence fiorm is approximately 2 for the veloc-
ity and 1 for the pressure. The contour lines of the first congmbof the velocity are
drawn on Fig. 7. We may check that no spurious perturbatipeays along the lines
separating the refined and non-refined parts of the compuotdtilomain (in other
words, the lines composed by the union of the faces includingnging node). The
theoretical study of this scheme is underway, and the emnalyais confirms these
experiments.
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