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Abstract We propose a numerical scheme for the incompressible Navier-Stokes
equations. The pressure is approximated at the cell centerswhile the vector valued
velocity degrees of freedom are localized at the faces of thecells. The scheme is
able to cope with unstructured non-conforming meshes, involving hanging nodes.
The discrete convection operator, of finite volume form, is built with the purpose
to obtain anL2-stability property, or, in other words, a discrete equivalent to the
kinetic energy identity. The diffusion term is approximated by extending the usual
Rannacher-Turek finite element to non-conforming meshes. The scheme is first or-
der in space for energy norms, as shown by the numerical experiments.

1 Introduction

Let Ω be an open bounded connected subset ofR
d, with d ∈ {2,3}, which is sup-

posed to be polygonal ifd = 2 and polyhedral ifd = 3. LetT ∈ R
+. We address in

this paper the system of incompressible Navier-Stokes equations:

∂tu+div(u⊗u)− µ∆∆∆u+∇∇∇p= 0, on Ω × (0,T), (1a)

divu = 0, on Ω × (0,T), (1b)

u|∂Ω = u∂Ω , u|t=0 = u0. (1c)

The variablesu∈R
d andp∈R are the velocity and the pressure in the flow, andµ is

a positive constant viscosity. The initial conditionu0 is supposed to be divergence-
free, and the integral ofu∂Ω · n∂Ω over ∂Ω vanishes, wheren∂Ω stands for the
normal vector to∂Ω outwardΩ .

We develop in this paper a projection scheme to approximate the solution of (1),
based on a staggered space discretization and able to cope with non-conforming
mesh refinement. During the last years, a research program has been undertaken to
develop staggered schemes satisfying a discrete kinetic energy balance [1, 5]. This
point is crucial with respect to many issues: it readily provides stability estimates,
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Institut de radioprotection et de sûreté nucléaire (IRSN),
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a property which is a prerequisite for LES applications, and, last but not least, it
is a starting point for the extension of the schemes to compressible flows (shallow
water, compressible Navier-Stokes and Euler equations). The difficulty lies in the
definition of the velocity convection operator, which must be in some sense consis-
tent with the discrete mass balance; the definition of this operator is thus intricate
and, to our knowledge, novel, at least for density variable flows. The objective of the
present paper is to show how to extend this definition to non-conforming meshes.
We first define admissible meshes (Section 2), then describe the scheme (Section 3)
and finally present some numerical experiments to assess itsbehavior (Section 4).

2 Definition of the meshes

Let M be a decomposition of the domainΩ either in convex quadrilaterals (d = 2)
or hexahedra (d = 3). The meshM is supposed to be obtained from a usual finite
element regular discretization (e.g.[4]) by recursively splitting some cells in 2d sub-
cells obtained by joining every two opposite face centers (Fig. 1). We allow at most
one hanging node at the mass center of a cell face, which meansthat the maximum
level of refinement between two adjacent cells is one.

Fig. 1 An exemple of admissible mesh refinement.

We denote byE (K) the set of the faces of an elementK ∈ M . We exclude the
presence of a node in the interior of a face,i.e. we split an initial face in 2d−1 faces
if one of the cells adjacent to the face is split. The number offaces,NE

K , of a cell
K thus ranges between 2d and 2dd. Let E = ∪K∈M E (K), Eext = {σ ∈ E ,σ ⊂ ∂Ω}
andEint = E \Eext. A faceσ ∈ Eint separating the cellsK andL is denoted byK|L.
For σ ∈ E (K), nK,σ is the unit normal vector toσ outwardK. Hereafter,| · | stands
for thed- or (d−1)-dimensional measure of a subset ofR

d orRd−1 respectively.

We define a dual mesh associated with the facesE as follows. WhenK ∈ M is
a rectangle or a cuboid, forσ ∈ E (K), we define the half-diamond cellDK,σ as the
cone with basisσ and with vertex the mass center ofK (see Fig. 2). We thus obtain a
partition ofK in NE

K sub-volumes, each sub-volume having a measure|DK,σ | equal
to |K|/(2d), whenσ has not been split, or|K|/(2dd) otherwise. We extend this
definition to general quadrangles and hexahedra, by supposing that we have built a
partition with the same connectivities and the same ratio between the volumes of
the half-diamonds and of the cell. Forσ ∈ Eint, σ = K|L, we now define the dual (or
diamond) cellDσ associated withσ by Dσ = DK,σ ∪DL,σ . Forσ ∈ E (K)∩Eext, we
defineDσ = DK,σ . We denote byẼ (Dσ ) the set of faces ofDσ , and byε = Dσ |Dσ ′

the face separating two dual cellsDσ andDσ ′ (see Fig. 2).



A staggered scheme with non-conforming refinement for the Navier-Stokes equations 3

Dσ

Dσ ′

σ′=K|MK

σ
=

K
|L

L

M

ε=Dσ |Dσ ′

Fig. 2 Notations for control volumes and diamond cells.

3 The pressure correction scheme

3.1 General form of the scheme

The space discretization is staggered in the sense that the pressure and the velocity
are piecewise constant functions respectively on the primal and dual mesh. The
initial discrete velocity is defined on a dual cellDσ , σ ∈ Eint, by the mean value
u0

σ of the functionu0 over the faceσ . The Dirichlet boundary condition is taken
into account by settingun

σ to the mean value ofu∂Ω overσ , for all σ ∈ Eext and all
n≥ 0. We consider a constant time stepδ t. As usual [9, 3, 6], the projection scheme
is a two-step algorithm:

Prediction step– Find(u⋆
σ )σ∈Eint such that:

1
δ t

(u⋆
σ −un

σ )+
1

|Dσ |
∑

ε∈Ẽ (Dσ )

Fn
σ ,εu⋆

ε − µ (∆∆∆u)⋆σ +(∇∇∇p)n
σ = 0, σ ∈ Eint, (2a)

Correction step– Find(un+1
σ )σ∈Eint and(pn+1

K )K∈M such that:

1
δ t

(un+1
σ −u⋆

σ )+ (∇∇∇p)n+1
σ − (∇∇∇p)n

σ = 0, σ ∈ Eint, (2b)

∑
σ∈E (K)

Fn+1
K,σ = 0, with Fn+1

K,σ = |σ | un+1
σ ·nK,σ , K ∈ M . (2c)

The pressure gradient is built as the dual operator of the discrete divergence:

(∇∇∇p)σ =
|σ |

|Dσ |
(pL − pK)nK,σ , σ = K|L.

The discretization of the diffusion term relies on the so-called ”rotated bi-linear
element” introduced by Rannacher and Turek [8]. The reference element̂K is the
unit d-cube(0,1)d, and the discrete functional space is:

Q̃1(K̂) = span
{

1, (xi)i=1,...,d, (x
2
i − x2

i+1)i=1,...,d−1
}
.
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When there is no hanging node on a faceσ , we impose the jump through the face
to have a zero mean value. When there is a hanging node, we onlyimpose to zero
the integral of the jump through the initial face. Hence, theset{ζσ , σ ∈ Eint} of
nodal functions associated with the Rannacher-Turek element is defined as follows.
When no vertices ofσ = K|L is a hanging node, we defineζσ such that supp(ζσ )⊂
K ∪L, for all K ∈ M , ζσ |K belongs to the Rannacher-Turek local discrete space of
K (i.e. the image of the spacẽQ1(K̂) by theQ1 mapping) and:

1
|σ |

∫

σ
ζσ = 1 and, for allσ ′ ∈ E , σ ′ 6= σ ,

∫

σ ′
ζσ = 0. (3)

When one of the vertices ofσ = K|L is a hanging node, it means thatσ separates a
cell obtained by splitting the mesh, sayL, from an unsplit one, sayK. The support
of ζσ is still K ∪ L and onL, ζσ is still given by (3). LetΣ be the initial face of
K including σ , and letζΣ be the Rannacher-Turek usual shape function (i.e. the
function satisfying an analogue of (3) on the initial mesh).Then, we defineζσ onK

by ζσ (x) =
|σ |

|Σ |
ζΣ (x).

K

Lσ
Σ

σ
Σ|σ |

|Σ |ζΣ

ζσ

Fig. 3 Piecewise definition ofζσ .

Finally, dropping the time index, the discretization of thediffusion term reads:

−(∆∆∆u)σ =
1

|Dσ |
∑

K∈M

∫

K
∑

σ ′∈E (K)

uσ ′(∇∇∇ζσ ′ ·∇∇∇ζσ ). (4)

In the convection term, the velocity interpolates at the internal dual facesu⋆
ε is

chosen centered:uε = (uσ +uσ ′)/2, for ε = Dσ |D′
σ . To make the description of

the scheme complete, we now only need to define the mass fluxes through the dual
faces (Fn

σ ,ε)ε∈Ẽ
: this is the purpose of the next section.

3.2 Discrete kinetic energy and mass fluxes

The discrete mass fluxes through the faces of the dual mesh arebuilt so that a finite
volume discretization of the divergence constraint (1b) holds over the dual cells:

∑
ε∈Ẽ (Dσ )

Fn
σ ,ε = 0, σ ∈ Eint. (5)
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This is crucial in order to reproduce, at the discrete level,the derivation of a kinetic
energy balance equation, thus ensuring discrete analoguesof the usual L∞(L2)- and
L2(H1)- stability estimates for the velocity. It may be shown that Relation (5) holds
if the dual fluxes are computed from the primal ones(Fn

K,σ )σ∈E (K) at the previous
time-step so as to satisfy the following three constraints (see [1, 5] for details):

• (H1) –For all primal cellK in M , the set(Fσ ,ε)ε⊂K of dual fluxes through faces
included inK satisfies the following linear system, withξ σ

K = |DK,σ |/|K|:

FK,σ + ∑
ε∈Ẽ (Dσ ), ε⊂K

Fσ ,ε = ξ σ
K ∑

σ ′∈E (K)

FK,σ ′ , ∀σ ∈ E (K). (6)

• (H2) –The dual fluxes are conservative:Fσ ,ε =−Fσ ′,ε for all ε = Dσ |D′
σ .

• (H3) –The dual fluxes are a bounded function of the primal ones(FK,σ )σ∈E (K):

|Fσ ,ε | ≤ Cmax{|FK,σ |, σ ∈ E (K)} , K ∈M , σ ∈E (K), ε ∈ Ẽ (Dσ ), ε ⊂K.

3.2.1 Dual fluxes for non-refined meshes

The system of equations (6) has an infinity of solutions, which makes necessary
to impose in addition the constraint (H3). Since (6) is linear with respect to the
Fσ ,ε , σ ∈ E (K),ε ∈ Ẽ (Dσ ), ε ⊂ K, a solution of (6) may thus be expressed as:

Fσ ,ε = ∑
σ ′∈E (K)

(αK)
σ ′

σ FK,σ ′ , σ ∈ E (K),ε ∈ Ẽ (Dσ ) andε ⊂ K,

and (H3) is equivalent to requiring bounded coefficients((αK)
σ ′

σ )σ ,σ ′∈E (K). In ad-
dition, sinceξ σ

K = 1/(2d) for all K ∈ M andσ ∈ E (K), system (6) is completely
independent from the cellK under consideration. We may thus consider a particular
geometry forK, let us sayK = (0,1)d, and find an expression for the coefficients
((αK)

σ ′

σ )σ ,σ ′∈E (K) which we will apply to all the cells, thus automatically satisfy-
ing the constraint (H3). A technique for this computation isdescribed in [1, Sec-
tion 3.2]. The idea is to build a momentum fieldw with a constant divergence and
such that

∫
σ w · nK,σ dσ(x) = FK,σ , for all σ ∈ E (K). Then, an easy computation

shows that the definitionFσ ,ε =
∫

ε w ·nσ ,εdσ(x) satisfies (6). The set of coefficients
((αK)

σ ′

σ )σ ,σ ′∈E (K) obtained for a quadrangle is given in [1, Section 3.2]; extension
to the three-dimensional case is straightforward.

3.2.2 Dual fluxes for 2D-refined meshes

Here again, we may restrict the computation to square cells.In 2D, if a primal cell is
surrounded with four refined cells, the half-diamond cells are obtained by splitting
the cell in four sub-squares, each one being split in two triangles. Hence, eight dual
fluxes must be computed; if some of the neighboring cells are not refined, one uses a
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coarseningprocedure. We begin with computing the dual fluxes across thefour sub-
squares faces (solid gray color in Fig. 4) so that (6) holds, with (FK,σ )σ∈E (K) denoted

here byFi (4≤ i ≤ 11) andFσ ,ε , σ ∈ E (K),ε ⊂ K denoted here bỹFi (4≤ i ≤ 7).
The linear system to solve has a one dimensional kernel and a particular solution
satisfying(H3) is given in Fig. 4. Then, the dual fluxes across the diagonal facesF̄i

(0≤ i ≤ 3) (dashed gray color in Fig. 4) are computed by isolating the sub-squares
and applying the procedure described above for the non-refined case.

0

1

2

3

F11

F10

F6

F7

F4 F5

F9 F8

F̃7

F̃5

F̃4

F̃6

F̄3

F̄0

F̄1

F̄2

F̃4 =
3
8
( F5 + F6 − F11 − F4 ) +

1
8
( F7 + F8 − F9 − F10)

F̃5 =
3
8
( F7 + F8 − F5 − F6 ) +

1
8
( F9 + F10− F11− F4 )

F̃6 =
3
8
( F9 + F10− F7 − F8 ) +

1
8
( F4 + F11− F5 − F6 )

F̃7 =
3
8
( F4 + F11− F9 − F10) +

1
8
( F5 + F6 − F7 − F8 )

Fig. 4 Dual fluxes for the neighboring cell of refined cells (2D case).

3.2.3 Dual fluxes for 3D-refined meshes

The procedure is the same as in the 2D-case. The first step consists in splitting the
cube in eight sub-cubes and computing the dual fluxes across the faces of these
sub-cubes. The formula of one of these intermediate fluxesF̃ is given in Fig. 5. The
computation of the other fluxes across the faces separating two sub-cubes is deduced
by permutations of the indices.

In the second step, each sub-cube is split in 3 half-diamondsof equal volumes.
One obtains 24 half-diamonds and 48 internal half-diamond faces of two possible
types (see Fig.6). The dual fluxes across these faces are obtained by isolating the
sub-cubes and applying the procedure described above for the non-refined case.

4 Numerical test

We assess the behavior of the proposed numerical scheme on anexact analytical
solution to the stationary Navier-Stokes equations known as the Kovasznay flow [7].
Computations are performed with the free software CALIF3S developed at IRSN
[2]. The velocity and pressure fields are given by:
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four of the eight internal faces

F̃

24 F̃ = 7 ( F14+ F21 + F27 )− 7 ( F15 + F19+ F25 )

+ 2 ( F7 + F20 + F26 )− 2 ( F6 + F18+ F24 )

+ 2 ( F11+ F16 + F29 )− 2 ( F13 + F17+ F23 )

+ ( F9 + F10 + F28 )− ( F8 + F12+ F22 )

Fig. 5 Intermediate dual fluxes for the neighboring cell of refined cells (3D case).

F̄

F̄

Fig. 6 Two possible types of internal half-diamond faces (3D case).

u =




1−eλx cos(2πy)

λ
2π

eλx sin(2πy)


 , p=

1
2
(1−e2λx), λ =

1
2µ

−
( 1

4µ2 +4π2)1/2
,

whereµ stands for the viscosity of the flow, taken here asµ = 1/40. The computa-
tional domain isΩ = (−0.5,1)× (−0.5,1.5). The mesh is built from a regularn×n
grid, where we refine the sub-domainΩ f = (−0.5,0.5)× (−0.5,0.5)∪ (0.5,1)×
(0.5,1.5) by splitting each (square) cell included inΩ f in four sub-squares. The
solution is computed by the projection scheme, by letting a fictitious transient tend
to the desired steady state. Boundary conditions are given by the analytical solution.
The obtained numerical errors for various values ofn are gathered in the following
table, whereuexactandpexactstand for the exact velocity and pressure, respectively.

n ‖u−uexact‖L2(Ω) ‖p− pexact‖L2(Ω)

10 0.183 0.0812
20 0.0384 0.0334
40 0.00825 0.0158
80 0.00211 0.00782
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Fig. 7 Contour lines of the fieldu1. The dashed lines materialize the boundary of the refined area
(bottom-left and top-right sub-domains).

The observed order of convergence in L2-norm is approximately 2 for the veloc-
ity and 1 for the pressure. The contour lines of the first component of the velocity are
drawn on Fig. 7. We may check that no spurious perturbation appears along the lines
separating the refined and non-refined parts of the computational domain (in other
words, the lines composed by the union of the faces includinga hanging node). The
theoretical study of this scheme is underway, and the error analysis confirms these
experiments.
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