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Abstract This paper is dedicated to the simulation of two-phase flows on the basis
of a two-fluid model that allows to account for the disequilibrium of velocities, pres-
sures, temperatures and chemical potentials (mass transfer). The numerical simula-
tions are performed using a fractional step method treating separately the convective
part of the model and the source terms. The scheme dealing with the convective part
of the model follows a Finite Volume approach and is based on a relaxation scheme.
In the sequel, a special focus is put on the discretization of the terms that rule the
mass transfer. The scheme proposed is a first order implicit scheme and can be ver-
ified using an analytical solution. Eventually, a test case of the heating of a mixture
of steam and water is presented, which is representative of a steam generator device.

1 Introduction

Most of the industrial processes used for generating electricity require the use of
fluids, and especially water. The water is used either as a coolant fluid or to ensure
the production of mechanical work through the turbines which are motionned by
steam. If we focus on a nuclear power plant based on a Pressurized Water Reactor
(PWR), the water is used as liquid or vapour depending on the circuit under consid-
eration. In particular, the secondary circuit of a nuclear power plant contains steam
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and liquid water. Moreover, vaporization and condensation phenomena take place
in different parts of that circuit. In this industrial context, the two fluid approach is
often retained to perform fine 3D simulations in complex geometries.

For instance, the well-known standard two-fluid model [9] is widely used in in-
dustrial numerical codes. This model allows to deal with the velocity and tempera-
ture disequilibrium, and to take into account the mass transfer between the phases
by a source term measuring the distance to the saturation (most of the time in terms
of enthalpy or temperaure). In this model, the pressure is assumed to be the same for
the two phases at every point and every time. This pressure equilibrium is based on
the mechanical assumption of large interfaces between the two phases [9] and it ne-
glects the thermodynamical aspect of the pressure equilibrium. Indeed, the classical
thermodynamics theory states that two phases of the same fluid are in equilibrium if
and only if: the pressures, the temperatures and the chemical potentials are equal for
the two phases. In our opinion, it is crucial to recover this equilibrium condition in
a model used to perform numerical simulations of two-phase flows, mainly if mass
transfer is an important feature of the problem. We thus choose a model that also
takes explicitely into account the pressure disequilibrium between the phases.

The two-fluid model used in the sequel is related to the so-called Baer-Nunziato
model [1, 10]. Its formal derivation has been performed following a statistical ap-
proach in [8]. In one space dimension, the corresponding system possesses seven
independent variables: the statistical fraction of liquid, the statistical mean temper-
atures, the statistical mean pressures and the statistical mean velocities. The space-
time evolution of these variables is described by a set a PDEs whose convective
part is hyperbolic and whose source terms are chosen to comply with the entropy
inequality, based on the physical mixture entropy. Non-conservative products are
present in the equations but some specific closures [4] allow to define discontinuous
solutions in a unique manner.

The whole numerical scheme proposed here is based on a operator-splitting
method [15]. We first account for the convective part of the system thanks to the ex-
plicit relaxation scheme proposed in [2, 13]. The source terms are then successively
discretized by four implicit ODE schemes. Very good agreement with experiments
has been found in [11] (using a Rusanov scheme for the convective part) focusing
on situations where the mass transfer occurs due to a pressure drop. We propose
here a one-dimensional test case close to the OECD test case [14]: the mass transfer
is due to the heating of saturated water which flows in a pipe.

2 The two-fluid model

The system of PDEs governing the time-space evolution of the variables is:
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∂t(αv)+Vi(W )∂x(αv) = φv(W ),

∂t(ml)+∂x(mlUl) =−Γv(W ),

∂t(mlUl)+∂x(mlUl
2 +αlPl)−Pi(W )∂x(αl) =−Dv(W )−Γv(W )U int ,

∂t(αlEl)+∂x(αlUl(El +Pl))+Pi(W )∂t(αl) =−ψv(W )−V intDv(W )−Γv(W )H int ,

∂t(mv)+∂x(mvUv) = Γv(W ),

∂t(mvUv)+∂x(mvUv
2 +αvPv)−Pi(W )∂x(αv) = Dv(W )+Γv(W )U int ,

∂t(αvEv)+∂x(αvUv(Ev +Pv))+Pi(W )∂t(αv) = ψv(W )+V intDv(W )+Γv(W )H int ,
(1)

where αk denote the statistical fractions and satisfy αl + αv = 1, ρk denote the
densities, mk = αkρk are the partial masses, Uk the velocities, Pk the pressures
and Ek the total energies which read Ek = ρk(ek +U2

k /2). The specific internal
energies ek are obtained through an EOS defined with respect to the pressures
and densities: ek = ek(ρk,Pk). Closure laws have to be provided for the velocities
Vi(W ), V int(W ), U int(W ), for the pressure Pi(W ) and for the energy H int(W ), where
W = (αl ,ml ,mlUl ,αlEl ,mv,mvUv,αvEv). We follow the choice proposed in [4, 6, 7]:
Vi(W ) =Uv, Pi(W ) = Pl , U int =V int = (Ul +Uv)/2 and H int =UlUv/2. We also de-
fine the total mass m = ml +mv, the mean velocity U with mU = mlUl +mvUv, and
the total energy of the mixture E = αlEl +αvEv.

The source terms for the pressure relaxation φv(W ), for the mass transfer Γv(W ),
for the drag force Dv(W ) and for the heat exchange ψv(W ) are then chosen ac-
cording to the entropy inequality for the mixture s = mlsl(ρl ,Pl)+mvsv(ρv,Pv) and
the associated entropy-flux ηs = mlUlsl(ρl ,Pl)+mvUvsv(ρv,Pv), where sk are the
physical phasic specific entropies. The source terms can then be chosen as:

Γv(W ) = 1
τg(W )

mlmv
(ml+mv)(|µv|/Tv+|µl |/Tl)

(µl/Tl−µv/Tv),

Dv(W ) = 1
τu(W )

mlmv
ml+mv

(Ul−Uv),

ψv(W ) = 1
τt (W )

mlCV,lmvCV,v
mlCV,l+mvCV,v

(Tl−Tv),

φv(W ) = αlαv
Kp(W ) (Pv−Pl),

(2)

with the positive characteristic time scales τg, τu, τt , and the positive parameter Kp
which has the dimension of a kinematic vicosity [5]. The chemical potentials are
denoted by µk = ek +Pk/ρk−Tksk, Tk = Tk(ρk,Pk) stand for the temperatures and
CV,k are the specific heat capacities.

Model (1) with the closures proposed above is defined for a statistical liquid frac-
tion in ]0,1[. Otherwise, if for instance αl = 0, the quantities ρl , Ul and el are not
defined in a unique manner. It is important to note that due to the choice of the
closures for (1), αl remains in ]0,1[ if the initial condition for αl belongs to ]0,1[
everywhere on the spacial domain and if αl is in ]0,1[ on the boundary of the domain
(especially at the inlets). Other properties of this model can be found in [3, 4, 8].
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With this model, the thermodynamical equilibrium is reached if and only if the
temperatures, the pressures and the chemical potentials are equal. In the pressure-
temperature plane, the set of couples (P,T ) which are solutions of the system:

Tl = T = Tv, Pl = P = Pv,
µl(Tl ,Pl)

Tl
= µv(Tv,Pv)

Tv
⇔ µl(T,P) = µv(T,P), (3)

represents the so-called saturation curves for which the two phases co-exist in a
stable manner. For any couple (P,T ) which is not solution of (3), only one of the
two phases is stable (i.e. the other one tends to vanish). When considering Stiffened
Gas EOS in the pressure-temperature plane, the chemical potential reads:

µk(Tk,Pk)
Tk

= γkCV,k− sk(Tk,Pk),

sk(Tk,Pk) = sk,0 + γkCV,k ln(CV,kTk)− (γk−1)CV,k ln
(

Pk+Pin f ,k
γk−1

)
,

(4)

where γk > 1, CV,k and Pin f ,k are constant. We can exhibit explicitely the saturation
curve for the temperature with respect to the pressure. It is defined only if γvCV,v 6=
γlCV,l and reads:

Tsat(P) = e

(
βl−βv+γvCV,v−γlCV,l

γvCV,v−γlCV,l

)(
(P+Pin f ,v)

(CV,v(γv−1))

(P+Pin f ,l)
(CV,l (γl−1))

)( 1
γvCV,v−γlCV,l

)
, (5)

where βk = sk,0 + γkCV,k ln(CV,k)+ (γk− 1)CV,k ln(γk−1) are the constant parts of
the entropies sk(Pk,Tk). The saturation curve for the pressure with respect to the
temperature can not be written explicitely.

3 Discretization scheme

The overall scheme is based on a fractionnal step method [15]. We first account
for the convection terms, which corresponds to system (1) with Γv(W ) = Dv(W ) =
ψv(W ) = φv(W ) = 0. In the sequel, this step is achieved using the relaxation scheme
described in [2]. It is not recalled here and the convergence curves obtained for an-
alytical test cases can be found in [12]. This scheme has proven to be accurate and
has shown good capability to treat small values of αk, which are very important fea-
tures for industrial simulations.

In the second step of the algorithm, source terms Γv(W ), Dv(W ), ψv(W ) and
φv(W ) are accounted for successively through the corresponding ODE system with
the time step ∆ t fixed by the convection scheme. The corresponding schemes for
Dv(W ), ψv(W ) and φv(W ) are implicit and are described in [7, 11, 12]. For each
source term, analytical solutions can also be found in these references. We focus
here on the scheme that handles the mass transfer term Γv(W ). Paying attention to
the properties of mass, momentum and total energy conservation for the mixture,
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the ODE system for the mass transfer obtained from system (1) is:
∂t (αvρv) = Γv,
∂t (αvρvUv) =U intΓv,
∂t (αvEv) = H intΓv,
∂tαv = ∂t(m) = ∂t(mU) = ∂t(E) = 0.

(6)

Starting from an initial value W n of W at time tn, we describe now how the value
W n+1 is computed at time tn+1 = tn +∆ t.

We first approximate system (6) by taking τg = τg(W (t = 0)). The solutions
for the statistical fractions are obvious: αk(t) = αk(t = 0), which enables to write
the source term Γv as a function of the densities and the specific internal energies:
Γv = Γ̃v(ρl ,el ,ρv,ev). Moreover, thanks to the closures for U int and H int , the internal
energies remain constant:

∂t(mvev) = 0 and ∂t(mlel) = 0. (7)

If we now use the fact that the mass of the mixture is conserved, Γv can be written
as a function of ml(t) (or mv(t)) and the initial conditions:

Γv = Γ̃v(ρl ,el ,ρv,ev)

= Γ̃v

(
ml

αl(t=0) ,
(mlel)(t=0)

ml
, (ml+mv)(t=0)−ml

αv(t=0) , (mvev)(t=0)
(ml+mv)(t=0)−ml

)
= Γ̄v(ml).

(8)

A straightforward consequence of this property is that the mass equation (i.e. the
first equation of (6)) can be solved independently of the other equations. In general,
the source term Γv can not be explicitely integrated. We thus solve the mass equation
using one time-step ∆ t of the Euler implicit scheme:

mn+1
l = mn

l −∆ tΓ̄v(mn+1
l ), with mn+1

l ∈ [0,mn
l +mn

v ]. (9)

The solution mn+1
l at the end of the time step may be computed by a dichotomy

algorithm. The function Y → Γ̄v(Y ) is non-linear and might be non smooth. We can
state the following result setting F(Y ) = mn

l −Y −∆ tΓ̄v(Y ). Since Γv vanishes for
ml = 0 or mv = 0 we obviously have F(0) = mn

l and F(mn
l +mn

v) = −mn
v . If we

assume that Y → Γ̄v(Y ) is continuous, its form ensures that if the masses mn
k are

positive, then the masses mn+1
k are also positive. Finally, if F is continuous and

strictly monotone on [0,mn
l +mn

v ], there exists a unique solution to (9) in ]0,mn
l +

mn
v [. Once the mass mn+1

l has been computed, the term Γ̄v(mn+1
l ) and the remaining

equations can be updated using one step of the implicit Euler scheme:
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α

n+1
l = αn

l , mn+1
l = mn

l −∆ tΓ̄v(mn+1
l ), mn+1

v = mn−mn+1
l ,

(mlUl)
n+1 = (mlUl)

n−∆ tUn+1
int Γ̄v(mn+1

l ), (mvUv)
n+1 = mUl

n− (mlUl)
n+1,

(αlEl)
n+1 = (αlEl)

n−∆ tHn+1
int Γ̄v(mn+1

l ),

(αvEv)
n+1 = (αvEv)

n +(αlEl)
n− (αlEl)

n+1.
(10)

In fact, the two momentum equations form a 2× 2 linear system whose determi-
nant ∆G,u is always positive if and only if the partial masses are positive, since:
∆G,u = (mn

l mn+1
v +mn+1

l mn
v)/2. Once the velocities Un+1

k are known, the update of
the total energies En+1

l and En+1
v is straightforward . This scheme is a first-order

scheme which ensures the conservation of the total mass, the total momentum and
the total energy of the mixture. The positivity of the fractions and the partial masses
is ensured.

4 Heated saturated water in a pipe

The test case is derivated from the OECD/CSNI benchmark problem [14]. It con-
sists in heating saturated water flowing in a one-dimensional pipe. The increase of
heat of the fluid leads to vaporization of the water which is advected. The sketch
of the case is depicted in figure (1). Since we do not account for the head loss in
the pipe - as proposed in the OECD/CSNI benchmark problem - we do not need to
wait for a stationnary state to be established in the pipe before beginning to heat the
fluid. In fact the initial conditions given below already represent a stationnary state.
Hence the time schedule of the present case is slightly different.

The initial conditions are chosen at a pressure of P = 71.0 bars and a tem-
perature close to the saturation temperature T = 559.75 K. They are: αl = 0.99,
ρl = 739.8 kg/m3, ρv = 37.1 kg/m3, Ul = Uv = 1.468 m/s, Pl = Pv = 71.0 bars.
The EOS parameters are chosen to get these values and to recover the values of
the phasic celerities and a temperature saturation-curve (5) close to the real one in
the vicinity of the pressure P = 71.0 bars and the temperature T = 559.75 K. It
yields: CV,v = 1329.45 J/kg/K, γv = 1.257, Pin f ,v = 0, s0

v = −16274.14 J/kg/K,
CV,l = 285.14 J/kg/K, γl = 3, Pin f ,l = 2.29 108 bars, s0

l = 0. The saturation curve is
shown on figure (2) together with a tabulated saturation curve. The difference is not
negligible. Actually, due to the higher slope of the stiffened gas saturation curve, we
may underestimate the vapour production. For the inlet boundary-condition the val-
ues are the same as the initial condition values. These values provide an equilibrium
state since velocities, pressures, temperatures and chemical potentials are equal.

We are interested in the stationnary state that is reached after 10 seconds of phys-
ical time. The results obtained with the code presented in the previous sections are
given on figures (3) and (4). They correspond to an industrial mesh with 200 uniform
cells. The CFL condition 1/2 applied to the convection scheme leads to a time step
of 1.5 10−5 s. The latter is smaller than the time scales which are: τg = 2.0 10−4 s
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and τt = 1.0 10−4 s. The parameter for pressure relaxation is chosen in accordance
with [5]: Kp = 1.226 10−4. Figure (3) represents the thermodynamical variables
along the x-axis at time t = 10 s and Figure (4) gives the vapour mass fraction and
the mixture mass flow rate at the outlet of the domain for the whole simulation time.
It can be noticed that the heating mainly results in the increase of the temperature
and that the pressures do not vary a lot. At the outlet of the domain, the liquid frac-
tion starts to evolve at time t = 1 s, which corresponds to the time necessary for the
vapour generated to reach the outlet (the vapour travels at almost 1.4 m/s and there
is almost 1.4 m between the downstream edge of the heating zone and the outlet).
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Fig. 1 Sketch of the test case: geometrical
domain and time-schedule of the heating.
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dashed line represents the saturation curve
obtained with our stiffened gas EOS.

0 1 2 3 4 5 6 7
0,85

0,9

0,95

1

li
q

u
id

 f
ra

ct
io

n

0 1 2 3 4 5 6 7
7,12e+06

7,121e+06

7,122e+06

7,123e+06

7,124e+06

p
re

ss
u

re
s

0 1 2 3 4 5 6 7
1200

1202

1204

1206

1208

1210

ch
em

ic
al

 p
o

te
n

ti
al

s

0 1 2 3 4 5 6 7
559

560

561

562

563

te
m

p
er

at
u

re
s

Fig. 3 Thermodynamical variables along the x-axis at time t = 10 s. The plain lines represent the
liquid variables and the dashed lines represent the vapour variables.
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