CLASSIFICATION OF TOTALLY REAL ELLIPTIC LEFSCHETZ
FIBRATIONS VIA NECKLACE DIAGRAMS

NERMIN SALEPCI

ABSTRACT. We show that totally real elliptic Lefschetz fibrations admitting a
real section are classified by their “real loci” which can be encoded in terms of
a combinatorial object that we call a necklace diagram. By means of necklace
diagrams, we obtain an explicit list of certain classes of totally real elliptic
Lefschetz fibrations.

1. INTRODUCTION

As is well known, a Lefschetz fibration is a projection from an oriented connected
smooth 4-manifold onto an oriented connected smooth surface such that there exist
finitely many critical points around which one can choose complex charts on which
the projection takes the form (z1,22) — 2% + 23. Regular fibers of a Lefschetz
fibration are oriented closed smooth surfaces of genus g, while singular fibers have
only nodes. In the present work, we consider only those fibrations whose fiber genus
is 1. We call such fibrations elliptic Lefschetz fibrations. Without loss of generality,
we assume that each singular fiber contains only one node and that no fiber contains
a self intersection -1 sphere (fibrations with the latter property are called relatively
minimal).

We study real elliptic Lefschetz fibrations; that is to say, elliptic Lefschetz fibra-
tions whose total and base spaces have real structures which are compatible with
the fiber structure. A real structure on an oriented smooth 4-manifold is defined as
an orientation preserving involution whose fixed point set (called the real part) has
dimension 2, if it is not empty. Two real structures are considered the same if they
differ by a conjugation by an orientation preserving diffeomorphism. It is worth
mentioning here that not every 4-manifold admits such an involution. Examples of
4-manifolds which do not admit real structures can be found in [3]. Likewise, a real
structure on a smooth oriented surface is defined as an orientation reversing invo-
lution. Obviously every surface admits a real structure. Besides, the classification
(up to conjugation by an orientation preserving diffeomorphism) of real structures
on surfaces is known. There are two invariants that determine the conjugacy class
of a real structure: its type (separating/non-separating) and the number of the
components of its real part. A real structure is called separating if the real part
divides the surface into two disjoint halves; otherwise, it is called non-separating.
Throughout the present work, we focus on fibrations over S2, and the real structure
considered on S? is the one induced from the complex conjugation, denoted conj,
on CP!. By definition of real Lefschetz fibrations, fibers over the real part S' of
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conj inherit real structures from the real structure of the total space. Such fibers
are called real (fibers). A real elliptic Lefschetz fibration has 3 types of real regular
fibers. They are distinguished by the number of real components that can be 0,1, 2
(only the structure with 2 real components is separating on Tg).

For the sake of simplicity, most of the time we assume that the real part S' of
(82, conj) is oriented. Fibrations with such a feature are called directed. Moreover,
we consider mainly fibrations which admit a real section (a section compatible with
the real structures). But the cases of non-directed fibrations as well as of fibrations
without a real section are also covered. The only essential condition imposed on
fibrations is that all the critical values are real. Fibrations with this property are
called totally real.

Our main interest is the topological classification of totally real elliptic Lefschetz
fibrations. Two real Lefschetz fibrations will be considered isomorphic if they differ
by orientation preserving equivariant diffeomorphisms. Recall that the classification
of elliptic Lefschetz fibrations over S? has been known for over 30 years. It is due to
B. Moishezon and R. Livné [4] that (non-real, relatively minimal) elliptic Lefschetz
fibrations over S? are classified (up to isomorphism) by the number of the critical
values. The latter is divisible by 12 and the class of elliptic Lefschetz fibrations with
12n critical values is denoted by E(n), n € N. Furthermore, E(1) is isomorphic to

the fibration CP2#9CP? — CP', obtained by blowing up a pencil of cubics in CP?,
and E(n) = E(n — 1){rE(1) where #§F stands for the fiber sum.

In this note, we give the real version of this result for totally real elliptic Lefschetz
fibrations. The classification is obtained by means of certain combinatorial objects
that we call necklace diagrams. Necklace diagrams are combinatorial counterparts
of real Lefschetz chains introduced in [6].

Main results of this work are presented as Theorem 4.1 and Theorem 7.1 in which
we treat the cases of directed totally real elliptic Lefschetz fibrations admitting a
real section and, respectively, those fibrations possibly without a real section. As
immediate corollaries (Corollary 4.4, respectively, Corollary 7.2) of these theorems,
we obtain that non-directed totally real elliptic Lefschetz fibrations admitting a
section are classified by their necklace diagrams (defined up to symmetry and with
the identity monodromy), while those fibrations possibly without a real section
are classified by the symmetry classes of their refined necklace diagrams with the
identity monodromy. As a consequence of Corollary 4.4, we obtain an explicit list
of totally real E(1) and E(2) that admit a real section. We investigate the algebraic
realizations of these fibrations and show that certain fibrations on the list are not
algebraically realizable. We also consider some operations on the set of necklace
diagrams: mild/harsh sums, flip-flops and metamorphoses. These operations allow
us to construct new necklace diagrams from the given ones. By means of these
operations, we construct an example of a real Lefschetz fibration which cannot be
written as a fiber sum of two real fibrations (see Proposition 6.5).

Acknowledgements. The material presented here is extracted from my thesis.
I am deeply indebted to my supervisors Sergey Finashin and Viatcheslav Kharlamov
for their guidance and limitless support. I owe many thanks to Andy Wand who
wrote the program to get the explicit list of necklace diagrams, who also edited my
present and past articles as a native english speaker. I thank Alex Degtyarev for
his precious comments on the first manuscript and for productive discussions.
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2. REAL LOCI OF REAL ELLIPTIC LEFSCHETZ FIBRATIONS AND NECKLACE
DIAGRAMS

Let 7 : X — S? be a directed real elliptic Lefschetz fibration. Consider the
restriction, 7g : Xg — S*, of 7 to the real part Xz of X. By definition, fibers of g
are the real parts of the real fibers of 7. The base S is oriented (as 7 : X — S? is
directed), whereas the total space Xg is either empty or a surface not necessarily
oriented nor connected.

By definition of real Lefschetz fibrations, the map 7g is an S'-valued Morse
function on Xp whose regular fibers can be S', S! ITS' or the empty set. On the
other hand, singular fibers are either a wedge of two circles (this occurs in the case
when the critical point is of index 1) or a disjoint union of S' with an isolated point
or just an isolated point (these cases occur when the critical point is of index 0 or
2). As an immediate consequence, we note that the real part Xg is not empty if
7 has a real critical value. (We consider fibrations with real critical values, so Xg
will never be empty throughout this article.)

For the sake of simplicity, we first focus on fibrations which admit a real section.
By a real section, we understand a section s : S> — X commuting with the real
structures. Existence of a real section assures that fibers of 7r are never empty, so
there are only two possible topological types for regular fibers: S' or S* II'S!.

We now introduce a decoration on the base S' of g : Xgp — S! as follows.
First, label the critical values of g by “X” or “o” according to the parity of indices
of the corresponding critical points. Namely, if the corresponding critical point is
of index 1, label the critical value by “x”, otherwise by “o”. (Note that mg has
critical values as long as 7 has real critical values.) Second, consider a labeling on
the set of regular intervals, S' \ {critical values}. Over each regular interval the
topology of the fibers of 7R is fixed; moreover, it alternates as we pass through a
critical value. We label regular intervals over which fibers have two components by
doubling the interval, see Figure 1. Intervals over which the fibers are a copy of S*
remain unlabeled. The oriented base S' together with such a decoration is called
an oriented uncoated necklace diagram.

Fi1G. 1. An example of an uncoated necklace diagram.

We consider some “standard” pieces out of which all possible uncoated necklace
diagrams can be built. It is convenient for us to take pieces with two consecutive
critical values (in order to avoid the problem of matching real structures). Let us
choose a regular value on S* (for some later use we choose the point on an unlabeled
regular interval). With respect to this point and the orientation of S!, we have 4
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instances for a pair of two critical values. In order to simplify the decoration, for
each instance we introduce a new notation as shown in Figure 2.
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Q

Fi1G. 2. Portions of the Xk and the pieces of uncoated necklace
diagrams, and corresponding necklace stones.
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The oriented S' decorated using elements of the set S = {O,0, >, <} is called
an oriented necklace diagram (an example is shown in Figure 3). We call the
elements of the set S (necklace) stones and the pieces of the circle between the
stones (necklace) chains. Two oriented necklace diagrams are considered identical
if they contain the same types of stones going in the same cyclic order.

X
‘,ﬁO,’ \@

E &
- C >
8 o
S

Fia. 3. A necklace diagram.

It is obvious from the construction that oriented necklace diagrams are invari-
ants of directed real elliptic Lefschetz fibrations. For non-directed real Lefschetz
fibrations, we do not have a preferable orientation on the necklace diagram. Non-
directed fibrations, hence, determine a pair of oriented necklace diagrams related
by a mirror symmetry in which O-type and CHtype stones remain unchanged, while
>-type and <-type stones interchanged.

3. MONODROMY REPRESENTATIONS OF STONES

Monodromies of real Lefschetz fibrations along certain loops (namely, loops on
which the real structure acts as a reflection) can be written as a composition of
two real structures, see [5]. In particular, the monodromy around a real singular
fiber can be written as t, = ¢’ o ¢ where t, denotes the positive Dehn twist along
the vanishing cycle a on a (non-real) marked fiber F' = T? and ¢, ¢’ are the real
structures pulled back from the nearby real fibers. (If the fibration is directed, we
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choose the marked fiber so that ¢ and ¢’ are the real structures acquired from the
left and, respectively, right real fibers).

Recall that monodromy of elliptic Lefschetz fibrations are elements of the map-
ping class group Map(T2) (the group of isotopy classes of orientation preserving
diffeomorphisms) of the torus. It is known that Map(T?) is isomorphic to the
group of orientation preserving automorphisms of H(T?,Z) = Zu® Zv. The latter
is known to be isomorphic to SL(2,Z).

Let T? 22 S* x S! so that u = S* x {0} and v = {0} x S'. Then, we consider two
presentations of Map(T?) ~ SL(2,7Z):

SL(2,Z) = {[tu] = ( 01 > and [t,] = ( o > : Eﬁé‘lﬁiﬂﬁ%};5””'5“”“] }

—{x—(_(l) (l))andy—(_(l) 1):x2—y3,x4—id}

where t,, denotes the Dehn twists along w and [t,,] is the matrix representation of
the induced isomorphism %,,*. One can switch from the first presentation to the
second by setting x = [t,][to][tu] = [to][tu][tv] and y = [tu][t].

Each real structure, ¢ : T?> — T2, induces an isomorphism ¢, on Hl(T27Z) ~
Zu ® Zwv that defines two rank 1 subgroups HS (T?) = {y € H\(T?,Z) : c.y = +v}.
(If ¢ has one real component, then H,(T? Z)/ < H¢,H¢ >= Z/2Z, otherwise,
Hy(T?, Z) = H{ ® H¢.) Moreover, a real structure ¢ on a real fiber F' defines a pair
of bases £ (u,v) so that u £ v generates H. This defines a canonical identification
of Hl(F, Z) to Hl(Tz,Z).

To each decoration around a critical value g, we assign the transition matrix P,
from a basis of H{ & H® C Hy(T?,Z) to a basis of Hfr/ @ H® C Hy(T?,Z) where
¢, are left and, respectively, right real structures on the real fibers near F.

Lemma 3.1. For each decoration around a critical value, we get the following
matrices defined up to sign.
1 0 20
-1 2 )7 P>><— - -1 1 >7

21 1 1

0 1)’ Poom =19 2)'

Remark 3.2. By definition of real Lefschetz fibrations, around each critical point
and its image, one can choose equivariant local (closed) charts on which the fibration
is equivariantly isomorphic to either of £+ : (Ex, conj) — (D, conj), where Ex =
{(21,22) € C? : |z < Ve, [+ 23| <€e}and D.={t € C : [t| <€}, 0<e<1
with &4 (21, 22) = 27 4+ 22. From the models {1 one can see immediately that in
the case of &4 (this is the model for the critical point of index 0, 2) there are two
types of real regular fibers distinguished by their real parts. In both types, one can
choose an invariant representative of the vanishing cycle, and the action of the real
structure on the invariant representative can be either the antipodal map or the
identity. On the other hand, in the case of {_ (this is the case of critical points
of index 1) the real structure acts on the invariant representative of the vanishing
cycle as a reflection. Consequently, in the former situation (which corresponds

[1P]

to the decoration “o”) the class of the vanishing cycle gives an element in H¢,

P—><< =

N[

P70< ==

(SIS
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while in the latter case (the case corresponding to the decoration “x”) the class
of the vanishing cycle gives an element of H¢. (A detailed discussion about the
local models can be found in [6, Section 3] where the above claims are depicted in
Figure 2.)

Proof:  Explicit calculations are made for P_, . and Ps,_; the other cases are
similar.

Let g be a critical value. We consider a sufficiently small e-neighborhood D, C s?
of g such that conj(D,) = D, and D, N {critical values} = ¢ and choose a non-real
point m on dD,. By means of the shortest paths on 0D, from m to the left ¢g—e and
right ¢ + € real points of D, we pull the real structures on Fy+. back to F,. Fix
an auxiliary identification T? with the fiber F, and let ¢ : T? — T2 (respectively,
¢ : T? — T?) be the real structure obtained by pulling back the real structure on
F,_. (respectively, Fy;) so that the (local) monodromy is the composition ¢ o c.

The case of (—x <) : as discussed in Remark 3.2, the critical value of the type
“x” provides a generator of H® C Hy(T? Z). Let b denote the corresponding
vanishing cycle and § the homology class of b. Set < 8 >= H¢ and choose a
generator o for HS such that o+ 3 = 2 (since ¢ has one real component). From the
local monodromy decomposition, we get ¢, = t, o ¢4; therefore,

c;(a) = tb*(c*(a)) = — Qﬂ
cl(B) = toulc(B)) = =P

Obviously, the class a + ¢, (a) = 2a — 28 € HfL/, while 8 — .(3) € HY. We

set o = QT_B and 3’ = 8 so that we have B’ = (¢/, ') with < o/ >= Hi/ and

< >=H®. Then, P_y. = %( 1o

The case of (> o—): we repeat the same with the difference that the vanishing
cycle a gives a generator o for H¢, and we choose a generator 3 for H¢ so that
a3 =1 (the left real structure c is separating). From the local monodromy
decomposition, we get

W) = a
LB) = talei(B) =B —a.

Therefore, o' = a and ' = B— ¢, () = 28+« is a basis of Hi/ and, respectively,
of H¢'; thus, Pooo = ( P

(As a8 > 0if and only if (—«)- (=) > 0, the matrices are defined up to sign.) O

C
C

Remark 3.3. Intuitively, the monodromy assigned to a decoration around a critical
value can be interpreted as the half of the monodromy around the real critical
value. Namely, it is the monodromy assigned to the path shown in Figure 4. It is
straightforward to check that P_,. = MP;;_M and P_,. = MP>_01_M where

M=M"1= ( o ) Moreover, one observes that

Pox-P_x<= <P>><7)(MP;1<—M) = [tv]B

where [t,] g denotes the matrix of ¢,. with respect to the base B = («a, 8). Similarly,
one has Poo P_oc =[ty]paswellas P_y Psyw_ = [ty]pr and P_ocPso_ = [tu] B
where B’ = (o/, 3').
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F1G. 4. An example of a decomposition of the monodromy associ-
ated to the decoration of a real critical value.

Following Lemma 3.1, to each necklace stone, we assign the following products
(defined up to sign).

Po =P x<Psx— :<_; (1)>7
o rr (32)

Py =Py P :;(_} ;)
Po =P ocPsx- —;(_i) 1)

Because we choose the marked point on an unlabeled interval, the matrices
have coefficients in %Z. If the marked point was chosen on a labeled interval, the
matrices would be elements of PSL(2,Z). (The reason why we prefer a point on
an unlabeled interval is to get a nice relation between necklace stones and the real
part, see Remark 4.6.) The subgroup generated by {Po,Pn,P~,P.} is conjugate
to PSL(2,Z) = {x,y : 2> = y> = id}. To be able to work with PSL(2,Z), we
consider the following lemma.

Lemma 3.4. Let R = %( 1 -1 ) and P = R™'PR.

Then, for each necklace stone, we obtain the following factorization.
Po = yzy

Po = zyzyx
P. =y°z
P. = axy?

Proof: It follows from the observation that P> = [t,], P« = [t,], while Pq =
[tu][tv][tu]_la Po = [tu]_l[tv][tu]~ O

The matrices Pp, Po,P~.,P. are called monodromies of stones. The product
(with respect to a chosen marked point and to the orientation) of monodromies of
necklace stones is called the monodromy relative to the marked point of the oriented
necklace diagram. The monodromy of an oriented necklace diagram is, thus, defined
as the conjugacy class of its monodromy relative to a marked point.

Proposition 3.5. Let 7 : X — S? be a directed totally real elliptic Lefschetz
fibration admitting a real section. Then, the monodromy of the oriented necklace
diagram associated with w is the identity in PSL(2,Z).



8 NERMIN SALEPCI

Proof: Let {s1,...,8x} be the ordered set of stones of an oriented necklace di-
agram (order is given with respect to the orientation and a marked point) and
P = PP, ...P; be the monodromy of the necklace diagram relative to the marked
point where each P; is the monodromy of the stone s;. By reinterpreting Re-
mark 3.3 in terms of the matrices P = R™!PR associated to necklace stones, the
monodromy along a curve surrounding all real critical values can be written as the

product PiPy .. PyT P . Py 'PTIT, where T =771 =R™'MR = (¢ ) (see
Figure 5).

TP 'T TP, 'T

Fi1G. 5. A decomposition of the total monodromy.

If there is no non-real critical value, the monodromy along the curve we consider
is identical to the total monodromy of the fibration which is the identity. Thus,

}P’( o0 )P_l ( 0 ) = id (since everything conjugate to the identity is the iden-

tity). The equality assures that P is a diagonal matrix, hence it is the identity in
PSL(2,Z). O

Remark 3.6. An important observation is that Po = zPoz and P. = zPsx.
Hence, if a necklace diagram has the identity monodromy, then the necklace dia-
gram obtained from the original by replacing each C-type stone with O-type stone,
and each >-type stone with <-type stone and vice versa, has also the identity
monodromy. Necklace diagrams obtained in this manner are called dual necklace
diagrams.

Remark 3.7. Although for the moment, we focus on fibrations admitting a real
section (hence, we consider only the case of real fibers with non-empty real part),
it is worth mentioning the case of real fibers with empty real part. It is well known
that the real structures with no real component and with two real components are
isotopic to each other as orientation reversing diffeomorphisms, although they are
two non-isotopic real structures. As a result, they induce the same isomorphism on
the homology group; hence, monodromy calculations remain the same if the real
structure with two real components is replaced by a real structure with no real
component.

4. THE CORRESPONDENCE THEOREMS AND CONSEQUENCES

Theorem 4.1. There exists a one-to-one correspondence between the set of oriented
necklace diagrams with 6n stones and with the identity monodromy and the set of
isomorphism classes of directed totally real elliptic Lefschetz fibrations E(n), n € N,
that admit a real section.
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Proof: The discussions in the previous sections and Proposition 3.5 result in an
injection from the set of classes of directed totally real elliptic Lefschetz fibrations
admitting a real section to the set of oriented necklace diagrams with identity mon-
odromy. We want to show that this injection is also well-defined and surjective. To
this end, first recall that the decoration on critical values determines the isotopy
class of the vanishing cycle. (Thus, it determines the (non-real) isomorphism class
of a small neighborhood of the singular fiber.) Whereas, the decoration on regular
intervals determines the type of the real structure on the fibers over the intervals.
The decoration around a critical value, hence, dictates a conjugacy class of the pair
(c,a) where c is the real structure on the chosen nearby real fiber and a is the
vanishing cycle such that c¢(a) = a. In [6], we call such a pair a real code and show
that the isomorphism class of an equivariant neighborhood of a real singular fiber
is determined by the conjugacy class of a real code (see [6, Section 3]). An oriented
necklace diagram, therefore, defines an ordered sequence of the conjugacy classes
of real codes up to cyclic order. Such a sequence is called a real Lefschetz chain in
[6], the result, thus, follows from [6, Proposition 8.5]. O

Remark 4.2. It is easy to be convinced that the real code (¢,a) determines the
isomorphism type of an equivariant neighborhood of a singular fiber. In the case of
elliptic fibrations admitting a real section, it is also easy to see that ordered sequence
of real codes considered up to cyclic order is enough to recover the isomorphism
type of the corresponding totally real fibration. This is because the totally real
fibrations can be constructed by successive fiber sums (connected sums preserving
the fiber structure) of equivariant neighborhoods. The crucial point is that the
fiber sum operation is well-defined due to the contractibility of the components of
the space diffeomorphisms the torus with a marked point. (A detailed discussion
can be found in [6] where we cover the cases of higher genus fibrations as well as
genus 1 fibrations without a section.)

Remark 4.3. As mentioned in [6, Remark 3.6], in the case when the regular
fibers are tori, there are 6 conjugacy classes of real codes. Whereas, around each
critical value we have 4 different decorations {—x <,> x—, —o <,> o—}. These
decorations are exactly 4 of the 6 possible real codes on T?. The other two cases
appear in the case of non-existence of a real section that we discuss in the last
section.

Corollary 4.4. There exists a bijection between the set of symmetry classes of
non-oriented necklace diagrams with 6n stones and with the identity monodromy
and the set of isomorphism classes of non-directed totally real E(n), n € N which
admit a real section. (]

Each necklace diagram defines a decomposition of the identity in PSL(2,7Z) into
a product of 6n elements that are chosen from the set of monodromies of necklace
stones. There is a simple algorithm to find all necklace diagrams associated with
E(n). Applying the algorithm, we obtain the complete list of necklace diagrams of
E(1). Later Andy Wand wrote a computer program which works for n = 1, 2.

The following theorem concerns n = 1.

Theorem 4.5. There exist precisely 25 isomorphism classes of non-directed totally
real E(1) admitting a real section. These classes are characterized by the non-
oriented necklace diagrams presented in Figure 6.
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F1G. 6. List of necklace diagrams of totally real E(1) admitting a
real section.

D03

Proof: By Corollary 4.4, it is enough to find the list of symmetry classes of 6- stone
necklace diagrams whose monodromy is the identity. Each necklace diagram defines
a decomposition of the identity in PSL(2,7Z) = {x,y : 22 = y3 = id} into a product
of elements yxy, xyryx, xy?, y?z. Let S = yay,C = xyzyr, L = zy®, R = y’z.
Then,

e first consider all the words of length 6 of letters S,C, L, R such that the
product is the identity;

e then, (to get list of all oriented necklace diagrams which have the identity
monodromy) quotient out the words which are equivalent to each other up
to cyclic ordering;

e finally, quotient out the symmetry classes: in terms of words composed of
the letters S, C, L, R, symmetry classes can be interpreted as follows: two
words are considered to be equivalent if up to cyclic ordering, one is the
reversed of the other with each L is replaced by R, and vice versa. For
example, CLLSRR ~ LLSRRC.

O

It is worth mentioning here that there are 8421 necklace diagrams of 12 stones
with the identity monodromy. Below, in Proposition 4.9, we give an explicit list
of necklace diagrams corresponding to certain classes. Later, we also explore some
interesting examples.

Remark 4.6. The topological invariants of Xg can be read from the necklace
diagram of 7 : X — S%. Namely, 6o(Xg) = f2(Xr) = [O] +1 and £1(Xr) = 2(|0| +
1) where 3; denotes the i*" Betti number (with Zs coefficients) and |O|, |J| denote
the number of O-type and, respectively, O-type stones of the necklace diagram
associated with mg. Consequently, we have the Euler characteristic x(Xgr) = 2(|O|—
IO]), and the total Betti number 5. (Xgr) = 2(|O] + |O]) + 4.

Recall that in general we have 0, (Xr) < £.(X) (known as Smith inequality). It is
known that G.(E(n)) = 12n ([2]), so the Smith inequality implies that 5, (E(n)gr) <
12n.
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Proposition 4.7. Each 6n-stone necklace diagram with the identity monodromy
contains at least two arrow-type stones.

Proof:  As mentioned above S,(E(n)r) < 12n. Meanwhile, we have 3, (E(n)r) =
2(]0| + ) + 4. Thus, |O] + |O| < 6n — 2 on a 6n-stone necklace diagram, so there
are at least two arrow-type stones. ([

Definition 4.8. A real structure cx on X is called mazimal if B.(Xgr) = B:(X).
A necklace diagram is mazimal if |O] + |O| = 6n — 2.

There are 4 maximal E(1) whose necklace diagrams that are depicted on the top
line of Figure 6. For n = 2 we have:

Proposition 4.9. There are 10 isomorphism classes of maximal non-directed to-
tally real E(2) admitting a real section. Corresponding necklace diagrams are given
in Figure 7. (I

ML
SENINLE
({3

Fic. 7. List of necklace diagrams of maximal totally real E(2)
admitting a real section.

5. APPLICATIONS OF NECKLACE DIAGRAMS

In this section, we study the algebraic realization of the totally real elliptic Lef-
schetz fibrations admitting a real section. The crucial observation is that any
algebraic elliptic Lefschetz fibration E(n) admitting a real section can be seen
as the double branched covering of a Hirzebruch surface of degree 2n, branched
at the exceptional section and a trigonal curve disjoint from the section. In [7],
S. Yu. Orevkov introduced a real version of Grothendieck’s dessins d’enfants for
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the trigonal curves, which are disjoint from the exceptional section, on Hirzebruch
surfaces. We apply his result by converting language of real dessin d’enfants to the
language of necklace diagrams.

5.1. Trigonal curves on Hirzebruch surfaces. The Hirzebruch surface, H(k),
of degree k is a complex surface equipped with a projection, m : H(k) — CP!,
which defines a CP'-bundle over CP! with a unique exceptional section s such that
s-s = —k. In particular, H(0) = CP' x CP" and H(1) is CP? blown up at one
point.

Each Hirzebruch surface H (k) can be obtained from H(0) by a sequence of blow-
ups followed by blow-downs at a certain set of points. If these points are chosen to
be real, then the resulting Hirzebruch surface has a real structure inherited from
the real structure conj x conj on H(0). This will be the real structure of our
consideration. With respect to this real structure, the real part of H(k) is a torus
if k is even; otherwise it is a Klein bottle.

In this note, we only consider nonsingular curves, so by a trigonal curve on a
Hirzebruch surface H (k) we understand a smooth algebraic curve C' C H (k) such
that the restriction of the bundle projection, 7 : H(k) — CP!, to C is of degree
3. A trigonal curve on H (k) is called real if it is invariant under the real structure
of H(k).

5.2. Real dessins d’enfants of trigonal curves. We choose affine (complex)
coordinates (x,y) for H(k) such that the equation x = const corresponds to fibers
of m and y = oo is the exceptional section s. Then, with respect to such affine
coordinates any (algebraic) trigonal curve can be given by a polynomial of the
form y® + u(x)y + v(z) where u and v are real one variable polynomials such that
degu = 2k and degv = 3k.

The discriminant of y* + u(z)y + v(z) = 0 with respect to y is —4u3 — 27v?.

4u®

Let D = 4u® + 27v2. The fraction j = =5 is the j-invariant of a trigonal curve

C C H(k). The j-invariant defines a real rational function j : CP* — CP' whose
poles are the roots of D, zeros are the roots of u (taken with multiplicity 3), and
the solutions of j = 1 are the roots of v (taken with the multiplicity 2).

Let us color RP! as in Figure 8. Then, the inverse image j ' (RP') turns natu-
rally into an oriented colored graph on CP!. Since j is real, the graph is symmetric
with respect to the complex conjugation on CP!. Around the vertices the graph
looks as shown in Figure 9. (Detailed discussion on j-invariant of trigonal curves
can be found in [1], [7].)

0 1 00
%—*} X

F1G. 8. Coloring of RP?.

The following theorem gives the conditions which are sufficient for real algebraic
realizability of a graph and the existence of respective polynomials u, v, D.

Theorem 5.1. [7] Let T' C S® be an embedded oriented graph where each of its
edges is one of the three kinds: | , = and some of its vertices are colored
by the elements of the set {o,e, x}, while others remain uncolored. Let T satisfy
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,,,,,,,,,, > - ) ;
v

F1a. 9. The graph around the inverse images of zeros of D, v, u, respectively.

the following conditions:

o the graph T is symmetric with respect to an equator of S*, which is included
mto I';

” s divisible by 6, and the incident edges are

, and oUtgoing mmmm;

e the valency of each vertex “ e
colored alternatively by incoming

e the valency of each vertex “o” is divisible by 4, and the incident edges are

colored alternatively by incoming mm, and outgoing ... ;

[43 b2

e the wvalency of each vertex “ x 7 is 2, and the incident edges are colored
alternatively by incoming .. , and outgoing

o the valency of each non-colored vertex is even, and the incident edges are
of the same color;

e cach connected component of S* \T is homeomorphic to an open disk whose
boundary is colored as a covering of RP* (colored and oriented as in Fig-
ure 8) and the orientations of the boundaries of neighboring disks are op-
posite.

Then, there exists a real rational function j = % whose graph is T'. (And
thus, there exist a mon-singular real algebraic trigonal curve associated to
the j-invariant.)

Definition 5.2. A graph on S? satisfying the six conditions of the above theorem
is called a real dessin d’enfant.

Remark 5.3. Let us accentuate the fact that there is no relation between the
decorations “x”, “o” of the critical values that we use to introduce the necklace
diagrams and the coloring of the vertices of the real dessin d’enfants considered in

this section.

5.3. Relation to the real scheme. The real scheme of a trigonal curve imposes
strong restrictions on the arrangement of the real roots of u, v and D. For example,
the zeros of D correspond to the points where the trigonal curve is tangent to the
fibers of m, : H(k) — CP!. A typical correspondence for certain model pieces of
the curve is shown in Figure 10. Because the graph is symmetric with respect to
the equator, we consider the part of the graph lying on one of the semi-disks.

As we mention in the previous section, necklace diagrams encode the topology
of the real part (except orientability) of E(n) which admit a real section. Indeed,
the real part of totally real E(n), admitting a real section, consists of spherical
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O O C

X * x i

! I
S 27C

F1G. 10. Segments of the curve corresponding to fragments of the
minimal graphs.

components (the number of which is |O|) and a higher genus component which is
an orientable surface of genus |O| + 1 if n is even; a non-orientable surface with
2(|8] 4+ 1) cross-caps, otherwise.

Definition 5.4. A segment of a necklace chain is called essential if it is one of the
segments shown in Figure 11.

FiGc. 11. Essential segments.

5.4. Applications.

Proposition 5.5. If a real elliptic Lefschetz fibration, E(n), admitting a real section
is algebraic then the corresponding necklace diagram has the following properties:
e there are not more than 2n essential segments,
e the sum of the number of essential segments and the number of arrow-type
stones cannot be greater than 6n.
Proof: For a trigonal curve on H(2n) defined by y®+u(x)y+v(z), degu = 2-2n and
degv = 3 - 2n. Thus, the real dessin d’enfant can have at most 4n vertices colored
by “e” and at most 6n vertices colored by “o”. The result follows from the obser-
vation that each essential interval corresponds to a graph fragment which contains
at least two “e” type vertices and at least one “o” type vertex, while each arrow-
type stone corresponds to a fragment having at least one “o” type vertex, see [1]. O

By listing the necklace diagrams violating the conditions of Proposition 5.5, we
get:

Corollary 5.6. The totally real elliptic Lefschetz fibrations corresponding to the
necklace diagrams depicted in Figure 12 are not realized algebraically.

O
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ROCERIR TR IALS:

Fic. 12. The last diagram violates the second condition, while all
the others violate the first one.

Lemma 5.7. If a totally real elliptic Lefschetz fibration admitting a real section is
algebraic then the totally real elliptic Lefschetz fibration whose necklace diagram is
dual to the necklace diagram of the former is also algebraic.

Proof:  The crucial observation is that although the real parts of fibrations as-
sociated with dual necklace diagrams are topologically different, trigonal curves
appearing as the branching set of coverings E(n) — H(2n) are the same. Duality
of necklace diagrams corresponds, indeed, to the two different liftings of the real
structure of H(2n) to E(n), see Figure 13. Thus, the result follows. O

Fic. 13. For each trigonal curve on H(2n), there are two real
structures of E(n).

Theorem 5.8. All totally real E(1) admitting a real section are algebraic except
those fibrations whose necklace diagram is one of the diagrams listed in Figure 12.

Proof: By Theorem 5.1 it is enough to construct real dessins d’enfants correspond-
ing to necklace diagrams which are not prohibited by Proposition 5.5. Following
Lemma 5.7, we only need to consider necklace diagrams with |O] > |OJ. Fig-
ures 14-15 show the required real dessins d’enfants. (In the figures, the real part is
depicted around necklace diagrams. The dotted inner circle stands for the lift of the
exceptional section. Because of the symmetry, we only draw a half of the graph.) O

6. NECKLACE CALCULUS AND FURTHER APPLICATIONS

In this section, we consider certain operations on the set of necklace diagrams.
These operations allow us to construct new necklace diagrams from the given ones.

6.1. Necklace sums. A necklace sum is basically the connected sum of the un-
derlying oriented circle and it refers to the fiber sum of the corresponding real
Lefschetz fibrations. We consider two types of necklace sums which we call mild
sum and harsh sum. To perform a mild sum, we cut each necklace diagram at a
point on the chain then reglue the diagrams crosswise respecting the orientation.
The harsh sum, on the other hand, is obtained by cutting necklace diagrams at
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F1c. 14. Real dessin d’enfants.

a stone and regluing them according to the table shown in Figure 16. It follows
from their definition that both the mild sum and the harsh sum do not change the
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F1c. 15. Real dessin d’enfants.

monodromy of the diagram. Evidently, the Euler characteristic of the real part Xg
is additive with respect to the mild sum; however, it is not always additive with
respect to the harsh sum.

Let us note also that we can also consider necklace sum of non-oriented necklace
diagrams by fixing auxiliary orientations on diagrams.

pb| 74| 44] 2o
absdialbAlSe
2 8846 oy
08| Y4 94| yh

F1G. 16. Table of the harsh sum

Examples of mild and harsh sums are given in Figure 17.

Remark 6.1. There are two types of necklace chain segments (essential, non-
essential). It is not hard to see that the mild sum preserves algebraic realizability
if the points where the sum is taken are chosen on the same type of chain segments
and if the segments after the sum remain of the same type; or if they are chosen on
different types of chain segments. In other words, algebraic realizability is preserved
if we make a mild sum at two essential (respectively, non-essential) intervals, in a
way that after gluing we obtain again two essential (respectively, non-essential)
intervals; or if we make sum at an essential and a non-essential intervals. As for the
harsh sum, we note that it preserves algebraic realizability if the number of neither
O-type nor [-type stone decreases after the sum.
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Fi1Gc. 17. Examples of the mild and the harsh sums.

Proposition 6.2. For each n, mazrimal necklace diagrams exist and each totally
real elliptic E(n) represented by a mazimal necklace diagram is algebraic.

Proof: 1Tt is easy to see that the harsh sum of two maximal necklace diagrams where
the sum is performed at arrow-type stones of the opposite directions is maximal.
Moreover, by the remark above the harsh sum performed at two arrow-type stones of
opposite directions preserves algebraic realizability. Note also that as Theorem 5.8
asserted all maximal necklace diagrams of 6 stones are algebraic.

To finish the proof, we show that all maximal necklace diagrams of n stones are
obtained as harsh sums of maximal necklace diagrams of 6 stones. We will prove
the claim by induction on n. The first step is to check the claim for n = 2. As we
have the explicit list of maximal diagrams of 12 stones, we see immediately that any
maximal necklace diagram of 12 stones can be obtained as the harsh sum of maxi-
mal necklace diagrams of 6 stones. Now, let us assume that for n = k the claim is
true. To prove the claim for n = k+ 1, note that the monodromies of O-type stones
and C-type stones do not have any cancelation. The fact that the monodromy of
the necklace diagram is the identity and that there is no cancellation between the
monodromy of O-type stones and the monodromy of C:-type stones impose certain
conditions on the possible arrangements of stones around an arrow-type stone on a
maximal necklace diagram. By checking the possibilities of the neighborhood of an
arrow-type stone, we see that required cancelations appear only in the cases where
the arrangements come from the maximal necklace diagrams of 6 stones, so the
claim follows from the inductive step. O

6.2. Flip-flops and metamorphoses. Let N denote the set of (oriented) neck-

lace diagrams with k stones and with the identity monodromy, and let N,(;’] ) be
the subset consisting of diagrams with (|O|,|0|) = (i,5). We define two kinds of
operations on Ny: flip-flop and metamorphosis. The flip-flop preserves (|O], |O|)
and it coincides with canceling and creating handles on the real part E(n)g. On
the other hand, the metamorphosis decreases |O| or [0 by one and it appertains to
a nodal deformation of E(n)g.
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We define flip-flop as the operation which swaps the segments shown below.
Because the segments have the same monodromy, the total monodromy does not
change. Examples of flip-flop are shown in Figure 18.

flip-flop: Ny (@.9)

Fi1G. 18. Examples of flip-flops.

As |O| and || remain unchanged after a flip-flop, the Euler characteristic and
the total Betti number of the corresponding E(n)g do not change. Thus, topological
type of E(n)g is not affected by the flip-flop. In Figure 19, we interpret the effect
of a flip-flop on E(n)g.

O<
@D

>0~
D Canceling Recreatlng
L the handles the h andles

<+ 0>
Canceling . Recreating i
g O > § > A
- the handles L the handles -

F1c. 19. The effect of flip-flop on the real part.

We consider two types of metamorphoses, my, ms, of necklace diagrams. They
modify the above segments as follows. Examples of metamorphoses are depicted in

Figure 20.

Since |O| or || are modified by metamorphoses, the topological type of the cor-
responding E(n)g changes. Recall that for fibrations which admit a real section
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\

Fiac. 20. Examples of metamorphoses.

each O-type stone corresponds to a spherical component while each CHtype stone
drives a handle. Indeed, a sphere component or a genus disappears after a meta-
morphosis (or appears after a inverse metamorphosis). In Figure 21, we depict the
effects of metamorphoses on E(n)g.

O< <>

e S e e e

T - B - X -

F1G. 21. The effect of metamorphoses, m, mo, to the real part.

6.3. Applications. Below, in Figure 22 and Figure 23, we present two graphs (for
E(1) and E(2), respectively) whose vertices correspond to necklace diagrams with
fixed (|O],|d]|), and edges to necklace metamorphoses my, ms. As we mention before
the real part of totally real E(n), admitting a real section, consists of spherical
components (the number of which is |O|) and a higher genus component which is
an orientable surface of genus || + 1 if n is even; a non-orientable surface with
2(|8] + 1) cross-caps, otherwise. Each pair (|O|,|d]) and the parity of n, thus,
defines the topological type of E(n)g.

(0,4) (4,0
@ m, my @

[
©3) \mj 0.0 "0

02\/\/ 2,0)
01\/(10)

(0 0)
F1a. 22. Metamorphosis graph of E(1)g.

Examining the list of necklace diagrams of 6 stones we obtain the following:
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1.9 (55) ©,1)
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07)\ p/‘]G\Q »/25\I\Q./34\N‘/43 ./52\Q/61\)\q/ (7,0)
m\ﬁ%ﬂ&ﬁ%ﬂ&ﬁm/w
M\mmﬂxmxﬂx/w
AN PN A
03)\ /12\ /21\%/@0
02\/11\4/20
(0,1) \ / (1,0)

(0 0)

F1a. 23. Metamorphosis graph of E(2)g.

Proposition 6.3. All 6-stone necklace diagrams listed in Figure 6 can be obtained
from the maximal ones by a sequences of metamorphoses, inverse metamorphoses or
flip-flops. Moreover, the list of necklace diagrams which are obtained from mazximal
diagrams only by a sequence of metamorphoses and eventually an inverse metamor-
phosis, coincide with the list of diagrams of algebraic fibrations. O

Proposition 6.4. There exist 12-stone necklace diagrams (with the identity mon-
odromy) that cannot be obtained from the mazimal necklace diagrams by necklace
operations.

Proof: Examples, shown in Figure 24, are found by investigating the list of 12-
stone necklace diagrams basically with (|0, |0]) = (9,1),(9,0),(8,1),(8,0) . (By
duality it is enough to consider the case of |O] > |O|.) The fibrations associated
with the diagrams shown in Figure 24 are algebraic. O

LB

Fia. 24. Diagrams that cannot be obtained by necklace operations.

As a corollary of the above proposition we claim that all totally real algebraic
E(1) admitting a real section can be obtained from the maximal ones by a sequences
of nodal deformations, while there are totally real algebraic E(2) which cannot be
obtained in this way.

Proposition 6.5. There exist 12-stone necklace diagrams (with the identity mon-
odromy) which are not a necklace sum of two 6-stone necklace diagrams listed in
Figure 6.
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Proof: 1In Figure 25, we construct a non-decompasable example applying a mild
sum followed by a flip-flop. Let us also note that such examples can be produced
the same way for any n > 1.

e

F1c. 25. An example of construction of a non-decomposable neck-
lace diagram.

Using the list of necklace diagrams of 6 stones (see Figure 6) and by analyzing
possible divisions of the pair (|O],|d|), we see that the 12-stone necklace diagram
shown in Figure 25 cannot be divided into two 6-stone necklace diagrams with the
identity monodromy. ]

Corollary 6.6. There exist totally real E(2) which cannot be written as a fiber sum
of two totally real E(1). O

7. TOTALLY REAL ELLIPTIC LEFSCHETZ FIBRATIONS WITHOUT A REAL SECTION
AND REFINED NECKLACE DIAGRAMS

In this section, we explore the case of totally real elliptic Lefschetz fibrations
7 : X — S? which do not admit a real section and introduce refined necklace
diagrams associated with them.

A refinement of a necklace diagram is obtained by replacing each O-type stone
with one of the following refined stones, O, @, s ¢ If the refined necklace diagram
is identical to the underlying necklace diagram then the corresponding real Lefschetz
fibration admits a real section. Examples of refinements of a necklace diagram are
shown in Figure 26.

N

Fi1G. 26. Refinement of a necklace diagram.

From Remark 3.2, it is clear that if a real structure on a fiber of 7 has no real
component, then the nearby critical values can only be of type “o”. In other words,
existence or lack of a real section influences only O-type necklace stones.

Both of the refined stones of type O,© correspond to the case where the real
structure on the real fibers over the interval between the two critical values has 2
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real components. Already the real part Xz of X distinguishes the cases of O and
O, see Figure 27. (In Figures 27 and 28 below, the dotted part depicts the traces
of the curves on which the inherited real structure acts as the antipodal map.) As
notation suggested O has to do with the case where there is a real section, and
hence, only O-type refined stones refer to a spherical component of Xpg.

Fia. 27. Real part and associated refined stones.

Recall that if the condition that the fibration admits a real section is discarded,
then the fibers of g may also be empty (which happens when the real structure
on the real fibers of 7 has no real component). We introduce the refined stones
{t and %* which correspond to the case where the real structure on the real fibers
of m has no real component. As depicted in Figure 28, the real part of Xg does
not distinguish the two situations associated with {3 %% The difference between
3 and & (as well as between O and ©) can indeed be conceived by comparing
the equivariant isotopy classes of the two vanishing cycles corresponding to the
two critical values of the necklace stone. In the case of i (respectively, O) the
equivariant isotopy classes of the two vanishing cycles are the same, while in the
case of € (respectively, ©) the two vanishing cycles are of different equivariant
classes. (A more detailed discussion can be found in [6, Section 8].)

\>4 A\ >4 \ & \
Ol ere
N K o e,
s R
_.“ — —a :—}
.
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Fi1G. 28. Real part and associated refined stones.

As mentioned in Remark 3.7, there is no difference between real structures with 2
real components and real structures with no component on the homological level. As
a consequence, the calculation of the monodromy is not affected by the refinement.
Thus, we have the following theorem.

Theorem 7.1. There is a one-to-one correspondence between the set of oriented
refined 6n-stone necklace diagrams whose monodromy is the identity and the set of
isomorphism classes of directed totally real E(n), n € N.

Proof: The proof is analogous to the proof of Theorem 4.1. It is obvious from
its construction that the refinements of necklace diagram is exactly the decoration
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of the real Lefschetz chains, see [6, Figure 10]. Thus, we relate refined necklace
diagrams with the decorated real Lefschetz fibrations, complete invariants of totally
real elliptic Lefschetz fibrations, presented in [6, Section 8]. The result, thus, fol-
lows from Theorem 8.1 and Proposition 8.2 of [6]. O

Corollary 7.2. There is a one-to-one correspondence between the set of symmetry
classes of non-oriented refined 6n-stone necklace diagrams whose monodromy is the
identity and the set of isomorphism classes of totally real E(n), n € N. (]

Below, for each fixed (|O|,|O|), we give the number of possible refinements of
6-stone necklace diagrams.

(19],|IO]) = (1,1) there are 12 refined necklace diagrams;

e (|0, 1O)) = (1,0) there are 8 refined necklace diagrams;

e (|0, I8]) = (2,0) there are 46 refined necklace diagrams;
e (|0, 18]) = (3,0) there are 84 refined necklace diagrams;
e (|0, 1O]) = (4,0) there are 251 refined necklace diagrams.
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