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Abstract. In this note we introduce certain invariants of real Lefschetz fibra-

tions. We call these invariants real Lefschetz chains. We prove that if the fiber

genus is greater than 1, then the real Lefschetz chains are complete invari-
ants of totally real Lefschetz fibrations. If however the fiber genus is 1, real

Lefschetz chains are not sufficient to distinguish real Lefschetz fibrations. We

show that by adding a certain binary decoration to real Lefschetz chains, we
get a complete invariant.

1. Introduction

This note is devoted to a topological study of Lefschetz fibrations equipped with
certain Z2 actions compatible with the fiber structure. The action is generated by
an involution, which is called a real structure. Intuitively, real structures are topo-
logical generalizations of the complex conjugation on complex algebraic varieties
defined over the reals. Real Lefschetz fibrations appear, for instance, as blow-ups
of pencils of hyperplane sections of complex projective algebraic surfaces defined by
real polynomial equations. Regular fibers of real Lefschetz fibrations are compact
oriented smooth genus-g surfaces while singular fibers have a single node. The in-
variant fibers, called the real fibers, inherit a real structure from the real structure
of the total space. We focus on fibrations whose critical values are all fixed by the
action and call such fibrations totally real. We also assume that the fixed point set
of the base space is oriented. We use the term directed to indicate such fibrations.

The main results of this article are exhibited in Section 6 and Section 8 in which
we treat the cases of fiber genus g > 1 and g = 1, respectively. In Section 6, we
introduce real Lefschetz chains and prove that if g > 1, then real Lefschetz chains
are complete invariants of directed genus-g totally real Lefschetz fibrations over
the disk (Corollary 6.4). The case of g = 1 (elliptic fibrations) is considered in
Theorem 8.1. We show that directed totally real elliptic Lefschetz fibrations over
D2 are determined uniquely by their decorated real Lefschetz chains. Furthermore,
in both cases we study extensions of such fibrations to fibrations over a sphere and
obtain complete invariants of directed totally real Lefschetz fibrations over a sphere.

It is possible to give a purely combinatorial shape to decorated real Lefschetz
chains. We will discuss such combinatorial objects (which we call necklace diagrams)
and their applications in [9] (see also [1] for other applications of necklace diagrams).

The present work is organized as follows. In Section 2, we settle the definitions
and introduce basic notions. Section 3 is devoted to the topological classification
of equivariant neighborhoods of real singular fibers. We show that real Lefschetz
fibrations around real singular fibers are determined by the pair consisting of the
inherited real structure on one of the nearby regular real fibers and the vanishing
cycle which is invariant under the action of the real structure. We call such a pair
a real code.
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In Section 4, we compute the fundamental group of the components of the space
of real structures on a genus-g surface. These computations are applied in Section 5
where we define a strong boundary fiber sum (that is, the boundary fiber sum of
C-marked real Lefschetz fibrations) and show that if the fiber genus is greater than
1, then the strong boundary fiber sum is well-defined. Section 6 is devoted to
C-marked genus-g > 1 fibrations. We show that directed C-marked genus-g > 1
totally real Lefschetz fibrations are classified by their strong real Lefschetz chains.
As a corollary, we obtain the result for non-marked fibrations.

Because of the different geometric nature of the surfaces of genus g > 1 and
g = 1, we apply slightly different techniques to deal with the case of g = 1. In
Section 7, we define a boundary fiber sum of non-marked real elliptic Lefschetz
fibrations. We observe that the boundary fiber sum is not always well-defined.
This observation leads to a decoration of directed totally real Lefschetz chains. In
the last section, we introduce decorated real Lefschetz chains and prove that they are
complete invariants of real elliptic Lefschetz fibrations. We also study extensions
of such fibrations to fibrations over a sphere.

Let us note that real Lefschetz chains are, indeed, sequences of real codes each
of which is associated to a neighborhood of a real singular fiber. Obviously, each
real Lefschetz fibration with real critical values defines a real Lefschetz chain which
is, by definition, invariant of the fibration. The natural question to ask is to what
extent real Lefschetz chains determine the fibration. This note explores an answer
to this question.

Acknowledgements. This work is extracted from my thesis. I would like to
express my gratitude to my supervisors Sergey Finashin and Viatcheslav Kharlamov
for sharing their deep insight and knowledge.

2. Basic definitions

Throughout the paper X will stand for a compact connected oriented smooth
4-manifold and B for a compact connected oriented smooth 2-manifold.

Definition 2.1. A real structure cX on a smooth 4-manifold X is an orientation
preserving involution, c2X = id, such that the set of fixed points, Fix(cX), of cX is
empty or of the middle dimension.

Two real structures cX and c′X are considered equivalent if there exists an orien-
tation preserving diffeomorphism ψ : X → X such that ψ ◦ cX = c′X ◦ ψ.

A real structure cB on a smooth 2-manifold B is an orientation reversing in-
volution B → B. Such structures are similarly considered up to conjugation by
orientation preserving diffeomorphisms of B.

The above definition mimics the properties of the standard complex conjugation
on complex manifolds. Actually, around a fixed point every real structure defined
as above behaves like complex conjugation.

We will call a manifold together with a real structure a real manifold and the
fixed point set the real part.

Remark 2.2. It is well known that for given g there is a finite number of equivalence
classes of real structures on a genus-g surface Σg. These classes can be distinguished
by their types and the number of real components. Namely, one distinguishes
two types of real structures: separating and non-separating. A real structure is
called separating if the complement of its real part has two connected components,
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otherwise we call it non-separating (indeed, in the first case the quotient surface
Σg/c is orientable while in the second case it is not). The number of real components
of a real structure (note that the real part forms the boundary of Σg/c), can be
at most g + 1. This estimate is known as Harnack inequality [6]. By looking at
the possible number of connected components of the real part, one can see that
on Σg there are 1 + [ g2 ] separating real structures and g + 1 non-separating ones.
A significant property of the case of genus-1 surfaces is that the number of real
components, which can be 0, 1 or 2, is enough to distinguish the real structures.

In this article we stick to the following definition of Lefschetz fibrations.

Definition 2.3. A Lefschetz fibration is a surjective smooth map π : X → B such
that:

• π(∂X) = ∂B and the restriction ∂X → ∂B of π is a submersion;
• π has only a finite number of critical points (that is, the points where dπ is

degenerate), all the critical points belong to X \ ∂X and their images are
distinct points of B \ ∂B;
• around each of the critical points one can choose orientation-preserving

charts ψ : U → C2 and φ : V → C so that φ ◦ π ◦ ψ−1 is given by
(z1, z2)→ z1

2 + z2
2.

When we want to specify the genus of the non-singular fibers, we prefer calling
them genus-g Lefschetz fibrations. In particular, we will use the term elliptic Lef-
schetz fibrations when the genus is equal to one. For each integer g, we will fix a
closed oriented surface of genus g, which will serve as a model for the fibers, and
denote it by Σg. In what follows we will always assume that a Lefschetz fibration is
relatively minimal; that, is none of its fibers contains a self intersection -1 sphere.

Definition 2.4. A real structure on a Lefschetz fibration π : X → B is a pair of
real structures (cX , cB) of X and B such that the following diagram commutes

X
cX //

π

��

X

π

��

B
cB // B.

A Lefschetz fibration equipped with a real structure is called a real Lefschetz fibra-
tion and is sometimes referred as RLF. When the fiber genus is 1, we call it a real
elliptic Lefschetz fibration (abbreviated RELF).

Definition 2.5. An R-marked RLF is a triple (π, b, ρ) consisting of a real Lefschetz
fibration π : X → B, a real regular value b and a diffeomorphism ρ : Σg → Fb such
that cX |Fb ◦ ρ = ρ ◦ c where c : Σg → Σg is a real structure. Let us note that if
∂B 6= ∅, then b will be chosen in ∂B.

A C-marked RLF is a triple (π, {m, m̄}, {ρ, ρ̄}) including a real Lefschetz fibra-
tion π : X → B a pair of regular values m, m̄ = cB(m) and a pair of diffeomorphisms
ρ : Σg → Fm, ρ̄ = cX |Fm ◦ ρ : Σg → Fm̄ where Fm and Fm̄ = cX(Fm) are the fibers
over m and m̄, respectively. As in the case of R-marking, if ∂B 6= ∅, then we
choose m in ∂B. When precision is not needed we will denote Fm, Fm̄ by F and F̄ ,
respectively.
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Two real Lefschetz fibrations π : X → B and π′ : X ′ → B′ are said to be
isomorphic if there exist orientation preserving diffeomorphisms H : X → X ′ and
h : B → B′ such that the following diagram is commutative

X
H //

π
��

X ′

π′

��

X

cX ??���� H //

π

��

X ′
cX′

??���

π′

��

B
h // B′

B
h //

cB ??����
B′.

cB′

??���

Two R-marked RLFs are called isomorphic if they are isomorphic as RLFs such
that h(b) = b′, and the following diagram is commutative

F
H //

cX

��

F ′

cX′

��

Σg
ρ′

::tttttρ

ddJJJJJ

c

��

F
H

// F ′

Σg.
ρ′

::tttttρ

ddJJJJJ

Two C-marked RLFs are called isomorphic if they are isomorphic as RLFs and
the following diagram is well-defined and commutative

F
H //

cX

��

F ′

cX′

��

Σg
ρ′

::tttttρ

ddJJJJJ

id

��

F̄
H

// F̄ ′

Σ̄g.
ρ̄′

::tttttρ̄

ddJJJJJ

Definition 2.6. A real Lefschetz fibration π : X → B is called directed if the real
part of (B, cB) is oriented. (If cB is separating, then we consider an orientation on
the real part inherited from one of the halves B \ Fix(cB).)

Two directed RLFs are isomorphic if they are isomorphic as RLFs with the
additional condition that the diffeomorphism h : B → B preserves the chosen
orientation on the real part.

Unless otherwise stated all fibrations we consider are directed.

Remark 2.7. The notion of Lefschetz fibration can be slightly generalized to cover
the case of fibrations whose fibers have non-empty boundary. Then, X turns into
a manifold with corners and its boundary, ∂X, becomes naturally divided into two
parts: the vertical boundary ∂vX which is the inverse image π−1(∂B), and the
horizontal boundary ∂hX which is formed by the boundaries of the fibers. We call
such fibrations Lefschetz fibrations with boundary.
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3. Elementary real Lefschetz fibrations

In this section, we classify real structures on a neighborhood of a real singular
fiber of a real Lefschetz fibration. Such a neighborhood can be viewed as a Lefschetz
fibration over a disc D2 with a unique critical value q = 0 ∈ D2. We call such a
fibration an elementary real Lefschetz fibration. Without loss of generality, we may
assume that the real structure on D2 is the standard one, conj , induced from
C ⊃ D2.

Let π : X → D2 be an elementary RLF. By definition, there exist equivariant
local charts (U, φU ), (V, φV ) around the critical point p ∈ π−1(0) and the critical
value 0 ∈ D2 respectively such that U and V are closed discs and π|U : (U, cU ) →
(V, conj ) is equivariantly isomorphic (via φU and φV ) to either of ξ± : (E±, conj )→
(Dε, conj ), where

E± = {(z1, z2) ∈ C2 : |z1| ≤
√
ε,

∣∣z2
1 ± z2

2

∣∣ ≤ ε2}
and

Dε = {t ∈ C : |t| ≤ ε2}, 0 < ε < 1

with ξ±(z1, z2) = z2
1 ± z2

2 .
The above real local models, ξ± : E± → Dε, can be seen as two real structures on

the neighborhood of a critical point. These two real structures are not equivalent.
The difference can be seen already at the level of the singular fibers: in the case
of ξ+ the two branches are imaginary and they are interchanged by the complex
conjugation; in the case of ξ− the two branches are both real (see Figure 1).

c

z2
1 − z2

2 = 0
z2
1 + z2

2 = 0

real part

c

Fig. 1. Actions of real structures on the singular fibers of ξ±.

To understand the action of the real structures on the regular real fibers of ξ±,
we can use the branched covering defined by the projection (z1, z2) → z1. Thus,
we have:

• in the case of ξ+, there are two types of real regular fibers; the fibers
Ft with t < 0 have no real points, their vanishing cycles have invariant
representatives (that is, c(at) = at set-theoretically), and in this case, c
acts on the invariant vanishing cycles as an antipodal involution; the fibers
Ft with t > 0 has a circle as their real part and this circle is an invariant
(pointwise fixed) representative of the vanishing cycle;
• in the case of ξ−, all the real regular fibers are of the same type and the

real part of such a fiber consists of two arcs each having its endpoints on
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the two different boundary components of the fiber; the vanishing cycles
have invariant representatives, and c acts on them as a reflection.

a
c

−r 0 r

real part

ac

z2
1 + z2

2 = −r z2
1 + z2

2 = rz2
1 + z2

2 = 0

(z1, z2)→ z2
1 + z2

2

z2
1 − z2

2 = 0 z2
1 − z2

2 = rz2
1 − z2

2 = −r

(z1, z2)→ z2
1 − z2

2

aa

c c

−r r

real part

0

Fig. 2. Nearby regular fibers of ξ± and the vanishing cycles.

Using the ramified covering (z1, z2)→ z1, we observe that the horizontal bound-
ary of the fibration ξ± is equivariantly trivial and has a distinguished equivariant
trivialization. Moreover, since the complement of U in π−1(V ) does not contain
any critical point, X can be written as union of two RLFs with boundary: one of
them, U → V , is isomorphic to ξ± : E± → Dε, and the other one is isomorphic
to the trivial real fiber bundle R → Dε whose real fibers are equivariantly diffeo-
morphic to the complement of an open regular neighborhood of the vanishing cycle
a ⊂ Fb. The action of the complex conjugation on the boundary components of the
real fibers of R → Dε determines the type of the model, ξ± : E± → Dε glued to
R → Dε: in the case of ξ+ it switches the boundary components while in the case
of ξ− boundary components are preserved (and the complex conjugation acts as a
reflection on each of them).

We use the above decomposition to get first a classification of directed R-marked
elementary RLF, and then we discuss the cases of C-marked and non-marked fi-
brations.

Let Ac
g denote the set of equivariant isotopy classes of non-contractible curves

on a real surface (Σg, c) and Vcg the set of equivariant isotopy classes of non-
contractible embeddings ν : S1 × I → Σg such that c ◦ ν = ν and LR,c

g the set
of isomorphism classes of directed R-marked elementary real Lefschetz fibrations
whose distinguished fiber is identified with (Σg, c).

We consider the map Ω : Vcg → LR,c
g defined as follows. Let [ν] be a class in Vcg

with a representative ν. As c ◦ ν = ν, the closure, Σνg , of Σg \ ν(S1 × I) inherits a
real structure from (Σg, c). Let Rν = Σνg × Dε → Dε be the trivial real fibration
with the real structure cRν = (c, conj ) : Rν → Rν and let Eν± → Dε denote the
model ξ± : E → Dε whose marked fiber is identified with ν(S1 × I). Depending
on the real structure on the horizontal boundary S1 × Dε → Dε (where the real
structure on S1 × Dε is taken as (c∂Σνg

, conj )) of Rν → Dε, we choose either of
Eν± → Dε. We then glue Rν → Dε and the suitable model Eν± → Dε along their
horizontal trivial boundaries to get a fibration in LR,c

g .

Lemma 3.1. Ω : Vcg → LR,c
g is well-defined.

Proof: Let νt : S1 × I → Σg be an isotopy between ν0 and ν1. Then, there exists
an equivariant ambient isotopy Ψt : Σg → Σg such that Ψ0 = id and νt = Ψt ◦ ν0
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with Ψt ◦ c = c ◦ Ψt for all t. The diffeomorphism, Ψ1, induces equivariant dif-
feomorphisms ΨR

1 : Rν0 → Rν1 and ΨE
1 : Eν0± → Eν1± that respect the fibrations

and the gluing; thus, it gives an isomorphism of the images, Ω([ν0]) and Ω([ν1]), as
R-marked fibrations. �

Since c ◦ ν = ν, we have c(ν(S1 × { 1
2})) = ν(S1 × { 1

2})). Hence, we can define
ε : Vcg → Ac

g such that ε([ν]) = [ν(S1 × { 1
2})]. This mapping is two-to-one. Since

the monodromy does not depend on the orientation of the vanishing cycle, there
exists a well-defined mapping Ω̂ such that the following diagram commutes

Vcg

Ω

��

ε // Ac
g

Ω̂}}{{
{{

{{
{{

LR,c
g .

Theorem 3.2. Ω̂ : Ac
g → LR,c

g is a bijection.

Proof: As it is discussed in the beginning of the section, any elementary RLF can be
divided equivariantly into two RLFs with boundary: an equivariant neighborhood
of the critical point (isomorphic to one of the models, ξ±), and the complement
of this neighborhood (isomorphic to a trivial real Lefschetz fibration). Such a
decomposition defines the equivariant isotopy class of the vanishing cycle. Thus, Ω̂
is surjective.

To show that Ω̂ is injective, let us consider the classes, [a], [a′] ∈ Ac
g, such that

Ω̂([a]) = Ω̂([a′]). Let π : X → Dε (respectively, π′ : X ′ → Dε ) denote the image of
[a] (respectively, the image of [a′]). Since Ω̂ is well-defined, there exist equivariant
orientation preserving diffeomorphisms H : X → X ′ and h : Dε → Dε such that we
have the following commutative diagrams

X
H //

π ��

X ′

π′

��

X

cX ??���� H //

π

��

X ′
cX′

??���

π′

��

Dε
h // Dε

Dε
h //

conj ??���
Dε

conj

??���

F
HIF //

cX

��

F ′

cX′

��

Σg
ρ′

::tttttρ

ddJJJJJ

c

��

F
HF

// F ′

Σg.
ρ′

::tttttρ

ddJJJJJ

Clearly, H(ρ(a)) is equivariantly isotopic to ρ′(a′) where a and a′ are repre-
sentatives of [a] and [a′], respectively. Moreover, since HIF ◦ ρ = ρ′, we have
H(ρ(a)) = ρ′(a), so ρ′(a) is equivariant isotopic to ρ′(a′).

Let ψt : F ′ → F ′, t ∈ [0, 1] such that ψ0 = id and ψ1(ρ′(a)) = ρ′(a′) and that
ψt ◦ c′ = c′ ◦ψt for all t ∈ [0, 1]. Then, Ψt = ρ′−1 ◦ψt ◦ ρ′ : Σg → Σg is the required
isotopy between a and a′. �

Theorem 3.2 shows that c-equivariant isotopy classes of vanishing cycles on
(Σg, c) classify directed R-marked elementary RLFs. To obtain a classification
for directed C-marked RLFs, we study the difference between two C-markings.

Let ({m, m̄}, {ρm, cX ◦ ρm}) be a C-marking on a directed RLF, π : X →
D2. The complement, ∂D2 \ {m, m̄}, has two pieces S± (left/ right semicircles)
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b

cX

cX
◦ ρm

Fm̄

Fm

m

m̄

ρb

ρm

Fb

Σg

Fig. 3. Relation between R-marking and C-marking.

distinguished by the direction. By considering a trivialization of the fibration over
the piece of S+ connecting m to the marked real point b (the trivialization over
the piece connecting m̄ to the real point obtain by the symmetry), we can pull
the marking ρm : Σg → Fm to Fb in order to obtain a marking ρb : Σg → Fb
and a real structure c = ρ−1

b ◦ cX ◦ ρb : Σg → Σg. Any other trivialization results
in another marking isotopic to ρb and a real structure isotopic to c : Σg → Σg.
Hence, a directed elementary C-marked RLF defines a vanishing cycle defined up
to c-equivariant isotopy where the real structure c is also considered up to isotopy.

Definition 3.3. A pair (c, a) of a real structure c : Σg → Σg and a non-contractible
simple closed curve a ∈ Σg is called a real code if c(a) = a.

Two real codes, (c0, a0), (c1, a1), are said to be isotopic if there exist a pair
of isotopies, (ct, at), of real structures and vanishing cycles such that ct(at) = at,
∀t ∈ [0, 1]. Two real codes, (c0, a0) and (c1, a1), are called conjugate if there is an
orientation preserving diffeomorphism φ : Σg → Σg such that φ ◦ c0 = c1 ◦ φ and
that φ(a0) is isotopic to a1.

We denote the isotopy class of the real code by [c, a] and the conjugacy class by
{c, a}.
Proposition 3.4. There is a one-to-one correspondence between the isomorphism
classes of directed C-marked elementary RLFs and the isotopy classes of real codes.

Proof: Above we discuss how to assign a real code to a directed C-marked ele-
mentary RLF. It is straightforward to check that this map is well-defined and
surjective.

To show that it is injective, we consider two isotopy classes [ci, ai], i = 1, 2 such
that [c1, a1] = [c2, a2]. Let (π1 : X1 → D2, {m1, m̄1}, {ρm1 , ρ̄m1}) and (π2 : X2 →
D2, {m2, m̄2}, {ρm2 , ρ̄m2}) be two directed C-marked elementary RLFs, associated
to the classes [c1, a1] and [c2, a2], respectively. We need to show that π1 and π2 are
isomorphic as directed C-marked RLFs.

Note that we can always choose a representative c for both [c1] and [c2] such that
[a1] = [a2] ∈ Ac

g. Then, by Theorem 3.2, π1 is isomorphic to π2 as R-marked RLFs.
An isomorphism of R-marked RLFs may not preserve the C-markings; however, it
can be modified to preserve them.

Up to homotopy one can identify X2 with a subset,
◦
X2, of X1. Since the differ-

ence X1\
◦
X2 has no singular fiber, one can transform the marking

◦
m2 of

◦
X2 to m1

preserving the real marking and the trivializations over the corresponding paths,
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S+ and
◦
S+ (see Figure 4). This way we get an isomorphism of C-marked RLFs

preserving the isomorphism class of R-marked RLFs.

b1

S+

m1

m2 S+

Fig. 4. The difference of two C-markings.

�

For fibrations without marking we allow [c, a] to change by an equivariant dif-
feomorphism. Hence, we have the following proposition.

Corollary 3.5. There is a one-to-one correspondence between the set of conjugacy
classes of real codes and the set of classes of directed non-marked elementary real
Lefschetz fibrations. �

Remark 3.6. As the classification of real structures on a genus-g surface is known,
it is possible to enumerate the conjugacy classes, {c, a} of real codes. In the case
when a is non-separating, there are 6 classes if g = 1; 8g − 3 classes if g > 1 and is
odd; 8g − 4 classes otherwise. The formulas for separating curves can be found in
[7].

Remark 3.7. Note that there is no preferable real fiber over the boundary of the
disk if the fibration is not directed. Thus, to an elementary non-directed RLF,
we can associate two real codes, (c−, a−), (c+, a+), extracted from the “left” and
“right” real fibers, respectively. It is a fundamental property of the monodromies
of real Lefschetz fibrations that the real structures c−, c+ are related by the mon-
odromy such that c+ ◦ c− = ta− = ta+ (cf. [8]).

4. Equivariant diffeomorphisms and the space of real structures

In this section we compute the fundamental group of the space of real structures
on a genus-g surface. The computations will be essential in next sections.

Let Cc(Σg) denote the space of real structures on Σg which are isotopic to a
fixed real structure c, and let Diff0 (Σg) denote the group of orientation preserving
diffeomorphisms of Σg which are isotopic to the identity. We consider two subgroups
of Diff0 (Σg): the one, denoted Diff c

0 (Σg), consists of those diffeomorphisms which
commute with c, and the other, Diff0 (Σg, c), is the group of diffeomorphisms which
are c-equivariantly isotopic to the identity. The group Diff0 (Σg) acts transitively
on Cc(Σg) by conjugation. The stabilizer of this action is the group Diff c

0 (Σg).
Hence, Cc(Σg) can be identified with the homogeneous space Diff0 (Σg)/Diff c

0 (Σg).

Lemma 4.1. The space Diff c
0 (Σg) is connected for all c : Σg → Σg if g > 1, and

for c : Σg → Σg which has one real component if g = 1.
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Proof: (We will use different techniques for the cases g > 1 and g = 1.)
The case of g > 1: we consider the fiber bundle description of conformal struc-

tures on Σg, introduced in [2]. Let Conf Σg denote the space of conformal struc-
tures on Σg equipped with C∞-topology. The group Diff0 (Σg) acts on Conf Σg by
composition from right. This action is proper, continuous, and effective; hence,
Conf Σg → Conf Σg/Diff0 (Σg) is a principle Diff0 (Σg)-fiber bundle (cf. [2]). The
quotient is the Teichmuller space of Σg, denoted TeichΣg . Note that conformal
structures can be seen as equivalence classes of Riemannian metrics with respect to
the relation that two Riemannian metrics are equivalent if they differ by a positive
function on Σg. Let RiemΣg denote the space of Riemannian metrics on Σg. Then,
we have the following fibrations

{u : Σg → R : u > 0} // RiemΣg

p2

��

Diff0 (Σg) // Conf Σg

p1

��

TeichΣg .

The real structure c acts on Diff0 (Σg) by conjugation. This action can be ex-
tended to Conf Σg and RiemΣg as follows. We fix a section s : TeichΣg → Conf Σg of
the bundle p1 and we consider a family of diffeomorphisms φsζ : Diff0 (Σg)→ p−1

1 (ζ)
parametrized by TeichΣg such that φsζ(id) = s(ζ). Let s(ζ) = [µx] for some Rie-
mannian metric µx on Σg. Then, we define φsζ(f(x)) = [µf(x)] for all f ∈ Diff0 (Σg).
The action of the real structure, thus, can be written as c.[µf(x)] = [µc◦f◦c(x)].
Clearly the definition does not depend on the choice of the representative of the
class [µf(x)], so the action extends to RiemΣg .

Let FixConf Σg
(c) denote the set of fixed points of the action of c on Conf Σg

and FixRiemΣg
(c) be the set of fixed points on RiemΣg . Note that s(ζ) = φsζ(id) ∈

FixConf Σg
(c) for all ζ ∈ TeichΣg . Indeed, each [µf(x)] where f ∈ Diff c

0 (Σ1) is in
FixConf Σg

(c).
The space FixConf Σg

(c) is connected. If FixConf Σg
(c) were disconnected, then

the inverse image FixRiemΣg
(c) would also be disconnected in RiemΣg . However,

it is known that RiemΣg is convex; thus, FixRiemΣg
(c) is convex, so it is connected.

Therefore, FixConf Σg
(c) ∩ Diff0 (Σg) = Diff c

0 (Σg) is connected since FixConf Σg
(c)

is a union of sections.
The case of g = 1: if c has one real component, then the quotient Σ1/c is the

Möbius band. The space of diffeomorphisms of the Möbius band has two connected
components [4]: the identity component and the component of the diffeomorphism
induced (if the Möbius band is obtained from I × I, by identifying the points t× 0
with the points 1− t× 1, t ∈ I = [0, 1]) from the reflection of I × I with respect to
I× 1

2 . This diffeomorphism is not isotopic to the identity because before identifying
the ends it reverses the orientation of I × I, and it lifts to a diffeomorphism of Σ1

(considered as the obvious quotient of [−1, 1]× [−1, 1]) induced from the the central
symmetry of [−1, 1] × [−1, 1]. This diffeomorphism is not isotopic to the identity
on Σ1 since it reverses the orientation of the real curve.
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Therefore, we have

{f : Σ1/c→ Σ1/c : f̂ : Σ1 → Σ1 is isotopic to id} = {f : Σ1/c→ Σ1/c : f ∼= id}.
The former is identified by Diff c

0 (Σ1) and the latter is connected. �

Lemma 4.2. For any real structure c : Σg → Σg,

π1(Diff0 (Σg)/Diff0 (Σg, c), id) =
{

0 if g > 1
Z if g = 1.

Proof: Note that the subgroup Diff0 (Σg, c) acts on Diff0 (Σg) by composition from
left. Such an action is free, so Diff0 (Σg)→ Diff0 (Σg)/Diff0 (Σg, c) is a Diff0 (Σg, c)-
fiber bundle. The fibers, Diff0 (Σg, c), can be identified with the group Diff0 (Σg/c)
because the lifting of diffeomorphisms of Σg/c can always be assured by means of
the orientation double cover of Σg/c. (Note that if c is non-separating, then Σg/c is
non-orientable. In this case, Diff0 (Σg/c) denotes the space of all diffeomorphisms
of Σg/c and Diff0 (Σg/c) is component of the identity.)

Now, we consider the long exact homotopy sequence of this fibration.

· · · → π2(Diff0 (Σg))→ π2(Diff0 (Σg)/Diff0 (Σg, c))→ π1(Diff0 (Σg, c))→
π1(Diff0 (Σg))→ π1(Diff0 (Σg)/Diff0 (Σg, c))→ π0(Diff0 (Σg))→ · · ·

The case of g > 1: the space Diff0 (Σg) is contractible for g > 1 [2], so is
Diff0 (Σg/c) [3]. Therefore, from the homotopy long exact sequence of the fibration
we obtain π1(Diff0 (Σg)/Diff0 (Σg, c), id) = 0.

The case of g = 1: it is known that Σ1 is deformation retract of Diff0 (Σ1) [5], so
the space Diff0 (Σ1) can be considered as a group generated by the rotations which
lift to the standard translations on the universal cover.

To understand Diff0 (Σg, c), we first consider the case when c has two real com-
ponents. Note that, in this case, the quotient Σ1/c is topologically an annulus, so
π1(Diff0 (Σ1/c), id) = Z [5]. We fix an identification of % : C/Z2 → Σ1 such that
the real structure c is the one induced from the standard complex conjugation on
C. We consider the following family of diffeomorphisms

R′1t : C/Z2 → C/Z2 R′2t : C/Z2 → C/Z2

(x+ iy)Z2 → (x+ t+ iy)Z2 (x+ iy)Z2 → (x+ i(y + t))Z2

where t ∈ [0, 1] and (x + iy)Z2 denotes the equivalence class of x + iy in C/Z2.
Clearly R′j0 = R′j1 = id and for each t ∈ [0, 1], R′jt , j = 1, 2 is isotopic to identity.
The homotopy classes of R1

t = % ◦ R′1t ◦ %−1 and R2
t = % ◦ R′2t ◦ %−1 form a basis

of π1(Diff0 (Σ1), id). Moreover, with respect to the identification %, each diffeomor-
phism R1

t is in Diff0 (Σ1, c), so the loop R1
t is a generator of π1(Diff0 (Σ1, c), id).

Thus, from the homotopy exact sequence we get π1(Diff0 (Σ1)/Diff0 (Σ1, c), id) = Z.
If c has no real component, then the quotient Σ1/c is a Klein bottle, so the

group Diff0 (Σ1/c) is isomorphic to S1 and is generated by the rotation which lifts
to a translation in the universal cover of the Klein bottle [4]. Let us now fix an
identification % : R2/Z2 → Σ1 such that the real structure c is induced from the
real structure

R2/Z2 → R/Z2

(x, y)Z2 → (x+ 1
2 ,−y)Z2 .
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The classes of family of diffeomorphisms Rjt = % ◦R′jt ◦ %−1, j = 1, 2 where

R′1t : R2/Z2 → R2/Z2 R′2t : R2/Z2 → R2/Z2

(x, y)Z2 → (x+ t, y)Z2 (x, y)Z2 → (x, y + t)Z2 .

form a basis of π1(Diff0 (Σ1), id). Moreover, with respect to the identification % each
diffeomorphismR1

t is in Diff0 (Σ1, c), and soR1
t is a generator of π1(Diff0 (Σ1, c), id) =

Z. Therefore, we get π1(Diff0 (Σ1)/Diff0 (Σ1, c), id) = Z.
If c has a unique real component, C, then the restriction f |C of f ∈ Diff0 (Σ1, c)

defines a diffeomorphism of C. Such a restriction defines a fibration, Diff0 (Σ1, c)→
Diff0 (C), whose fibers isomorphic to Diff0 (Σ1, C) = {f ∈ Diff0 (Σ1, c) : f |C = id}.
Note that Diff0 (Σ1, C) ∼= Diff0 (Σ1 \ C, ∂) where Σ1 \ C denotes the closure of
Σ1 \C and Diff0 (Σ1 \ C, ∂) the group diffeomorphisms of Σ1 \ C which are identity
on the boundary.

Topologically Σ1 \ C is an annulus, so Diff0 (Σ1 \ C, ∂) is contractible [5]. From
the homotopy long exact sequence of the following fibration

Diff0 (Σ1,C) // Diff0 (Σ1, c)

��

Diff0 (C)

we get πk(Diff0 (Σ1, c), id) ∼= πk(Diff0 (C), id), ∀k.
Let us now choose an identification % : C/Λ→ Σ1 where Λ is the lattice generated

by v1 = ( 1√
2
, 1√

2
) and v2 = ( 1√

2
,− 1√

2
). Then, the real structure c can be taken as

the one induced from the complex conjugation on C.
We consider R′i(t) : C/Λ→ C/Λ, t ∈ [0, 1] such that

R′1t : C/Λ → C/Λ R′2t : C/Λ → C/Λ
(x+ iy)Λ → (x+ t+ iy)Λ (x+ iy)Λ → (x+ i(y + t))Λ.

Again, the classes of Rjt = % ◦ R′jt ◦ %−1, j = 1, 2 form a basis for Diff0 (Σ1)
while R1

t can be taken as a generator for π1(Diff0 (Σ1, c), id) = Z. Therefore,
π1(Diff0 (Σ1)/Diff0 (Σ1, c), id) = Z.

�

Proposition 4.3. For any real structure c : Σg → Σg,

π1(Cc(Σg)) = π1(Diff0 (Σg)/Diff c
0 (Σg), id) =

{
0 if g > 1
Z if g = 1.

Proof: By Lemma 4.1, Diff c
0 (Σg) is connected for all real c : Σg → Σg, g > 1 and

for the real structure c : Σ1 → Σ1 which has one real component. Hence, in these
cases Diff c

0 (Σ1) = Diff0 (Σ1, c), so the result follows from Lemma 4.2.
In the case when c : Σ1 → Σ1 has 2 real components, the space Diff c

0 (Σ1) has
two connected components. Note that the diffeomorphism R2

1
2

( induced from the

translation, (x + iy)Z2 → (x + i(y + 1
2 ))Z2 , on C/Z2) is equivariant; however, it is

not equivariantly isotopic to the identity. Hence, Diff c
0 (Σ1) has two components:

the component, Diff0 (Σ1, c), of the identity and the component of the rotation R2
1
2
.

(In what follows, we denote R2
1
2

by R 1
2
.)
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We can identify rotations in Diff0 (Σ1)\Diff0 (Σ1, c) with S1 by letting R2
t → 2πt.

Then, rotations in the quotient Diff0 (Σ1)/Diff c
0 (Σ1) are identified with S1/θ∼(θ+π),

so we have π1(Diff0 (Σ1)/Diff c
0 (Σ1), id) = Z.

The case when c : Σ1 → Σ1 has no real component can be treated similarly using
the identification % : R2/Z2 → Σ1. �

5. Boundary fiber sum of C-marked real Lefschetz fibrations

Let (D2, conj ) be a real disk with oriented real part. We denote by S± the
upper/ lower semicircles of ∂D2. We consider also left/ right semicircles, denoted
by S±, and the quarter-circles S±± = S± ∩ S±. (Here directions right/ left and up/
down are determined by the orientations D2 and of the real part.) Let r± be the
real points of S±, and c± the real structures on F± = π−1(r±).

Definition 5.1. Let (π′ : X ′ → D2, {b′, b̄′}, {ρ′, ρ̄′}) and (π : X → D2, {b, b̄}, {ρ, ρ̄})
be two directed C-marked real Lefschetz fibrations such that the real structures
c′+ on F ′+ and c− on F− induce (via the markings) isotopic real structures on Σg.
Then, we define the strong boundary fiber sum (the boundary fiber sum of C-marked
RLFs) as follows.

Σg ρρ�
Fb

c−F �
+ F−c�

+

bb�

b̄� b̄

r−r�
+

F �
b�

We choose trivializations of π′−1(S+
+) and π−1(S+

−) such that the pull backs of
c′+ and c− give the same real structure c on Σg. The trivialization of π′−1(S+) can
be obtained as a union Σg×S+

+ ∪Σg×S−+�(x,1+)∼(c(x),1−) and similarly π−1(S−) =
Σg×S+

− ∪Σg×S−−�(x,−1+)∼(c(x),−1−). The strong boundary fiber sum X ′\ΣgX →
D2\D2 is, thus, obtained by gluing π′−1(S+) to π−1(S−) via the identity map.

Remark 5.2. (1) In fact, the construction described above creates a manifold
with corners, but there is a canonical way to smooth the corners; hence, the strong
boundary fiber sum is the manifold obtained by smoothing the corners.

(2) By definition, the strong boundary fiber sum is associative but not commu-
tative.

(3) The strong boundary fiber sum of C-marked RLFs is naturally C-marked.

Proposition 5.3. If g > 1, then the strong boundary fiber sum, X ′\ΣgX → D2,
of directed C-marked genus-g real Lefschetz fibrations is well-defined up to isomor-
phism of C-marked RLFs.

Proof: Note that the boundary fiber sum does not affect the fibrations outside
a small neighborhood of the interval where the gluing is made. Let us choose a
neighborhood N which is real and far from the critical set. Obviously, the real
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structures on the fibers over the real points of N are isotopic. Therefore, each fiber
sum defines a path in the space of real structures on Σg, and the difference of two
strong boundary fiber sums gives a loop in this space. Thus, the result follows from
the contractibility (shown in Proposition 4.3) of this loop in the case of g > 1. �

6. Strong real Lefschetz chains associated to C-marked real Lefschetz fibrations

Let us now consider a directed C-marked totally real Lefschetz fibration π :
X → D2. We slice D2 into smaller discs, D1, D2, . . . , Dn (ordered with respect
to the orientation of the real part of (D2, conj )) such that each Di contains only
one critical value and the base point b (which is chosen to be the “north pole”, see
Figure 5). Let r1, r2, . . . , rn, rn+1 be the real points of ∪ni=1∂Di and let ci be the
real structure on Σg pulled back from the inherited real structure of Fri .

 

b

...

...
r1 r2 rn rn+1× ××. . . . .

b̄

r3

Fig. 5. Slicing D2 into small discs having one critical value.

As asserted in Remark 3.7, for each fibration over Di we have ci+1 ◦ ci = tai
where ai denotes the corresponding vanishing cycle. Moreover, as shown in Propo-
sition 3.4, each C-marked real Lefschetz fibration over Di is determined by the
isotopy class [ci, ai] of a real code. Therefore, the fibration π : X → D2 yields a
sequence of real codes [ci, ai] satisfying ci+1 ◦ ci = tai . Obviously this sequence is
an invariant of π.

Definition 6.1. A sequence [c1, a1], [c2, a2], ..., [cn, an] of isotopy classes of real
codes is called a strong real Lefschetz chain if we have ci+1◦ci = tai for all i = 1, ..., n.

Theorem 6.2. If g > 1, then there is a one-to-one correspondence between the
strong real Lefschetz chains [c1, a1], [c2, a2], ...., [cn, an] and the isomorphism classes
of directed C-marked genus-g totally real Lefschetz fibrations over D2.

Proof: Necessity is clear. As for the converse, we consider the unique class (assured
by Proposition 3.4) of directed C-marked elementary real Lefschetz fibration asso-
ciated to each real code [ci, ai]. We then glue these elementary fibrations (from left
to right respecting the order determined by the chain) using the strong boundary
fiber sum. The result, thus, follows from Proposition 5.3. �

Let us note that if we consider non-marked fibrations, then the real codes around
real singular fibers are defined up to conjugation. Thus, we are motivated to give
the following definition and state the immediate corollary of Theorem 6.2.
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Definition 6.3. A sequence {c1, a1}, {c2, a2}, ..., {cn, an} of conjugacy classes of
real codes is called a real Lefschetz chain if tai ◦ ci is conjugate to ci+1 for all
1 ≤ i ≤ n.

Corollary 6.4. If g > 1, then there is a one-to-one correspondence between the
real Lefschetz chains {c1, a1}, {c2, a2}, ..., {cn, an} and the isomorphism classes of
non-marked directed genus-g totally real Lefschetz fibrations over D2. �

If the total monodromy of the fibration π : X → D2 is the identity, then we
can consider the extension of π to a fibration π̂ : X̂ → S2. Two such extensions,
π̂ : X̂ → S2 and π̌ : X̌ → S2, are considered isomorphic if there is an equivariant
orientation preserving diffeomorphism H : X̂ → X̌ such that π̂ = π̌ ◦H.

Proposition 6.5. Let π : X → D2 be a C-marked genus-g real Lefschetz fibration
whose total monodromy is the identity. If g > 1, then π can be extended uniquely
up to isomorphism to a real Lefschetz fibration over S2.

Proof: Once again, the difference of two extensions corresponds to a loop in the
space of real structures. Hence, the result follows from Proposition 4.3. �

Corollary 6.6. If g > 1, then there is a one-to-one correspondence between the
strong real Lefschetz chains [c1, a1], [c2, a2], ...., [cn, an] such that cn+1 ◦ c1 = (tan ◦
cn) ◦ c1 = id and the isomorphism classes of directed C-marked genus-g totally real
Lefschetz fibrations over S2. �

Remark 6.7. It is known that the components of the space of diffeomorphisms
of the torus fixing a point is contractible [2], so Theorem 6.2 can be adapted to
C-marked real elliptic Lefschetz fibration admitting a real section (a section com-
patible with the real structures). Details can be found in [7, Section 5.4]. In the
next section, we treat the case of non-marked elliptic Lefschetz fibrations, which
possibly do not admit a real section.

7. Boundary fiber sum of non-marked real elliptic Lefschetz fibrations

To deal with the case of elliptic fibrations, we introduce the boundary fiber sum
for non-marked fibrations. (Although we concentrate on the case of g(F ) = 1, the
definition applies to any genus.)

Definition 7.1. Let π′ : X ′ → D2 and π : X → D2 be two directed non-marked
RLFs. We consider the real fibers, F ′+ and F− of π′ and π over the real points
r′+ and r−, respectively. Let us assume that the real structure c′+ : F ′+ → F ′+ is
conjugate to c− : F− → F−. Namely, there is an orientation preserving equivariant
diffeomorphism φ : F ′+ → F−. Then, the boundary fiber sum of X ′\F,φX → D2 is
obtained by identifying the fibers F ′+ and F− via φ.

The boundary fiber sum does depend on the choice of φ in such a way that
the two boundary fiber sums defined by the equivariant diffeomorphisms φ, ψ :
F ′+ → F− are isomorphic, if ψ ◦ φ−1 : F− → F− can be extended to an equivariant
diffeomorphism of X → D2 (or similarly if φ−1 ◦ ψ : F ′

+
→ F ′

+
can be extended to

an equivariant diffeomorphism of X ′ → D2). The necessary and sufficient condition



16 Nermin Salepci

F−F �
+

r−r�
+

φ→

for ψ ◦ φ−1 : F− → F− to extend to an equivariant diffeomorphism of the fibration
X → D2, is that ψ ◦ φ−1 takes the unique vanishing cycle a of X → D2 to a curve
equivariantly isotopic to a.

Note that if c(a) = a, then c induces an action on a. Such an action can be
the identity, a reflection or an antipodal involution. It is not hard to show that
if c : Σ1 → Σ1 has one real component, then Σ1 contains a unique c-equivariant
isotopy class of non-contractible curves on which c acts as a reflection, a unique
class of curves where the action of c is an antipodal involution, and a unique real
curve; if c has 2 real components, then Σ1 contains no c-equivariant isotopy class of
curves on which c acts as an antipodal involution, a unique class of curves on which
c acts as a reflection, and two classes of real curves (in which case, we call a pair of
representatives of different classes c-twin curves); if c has no real components, then
there exist two c-equivariant isotopy classes where c acts as an antipodal involution
(as above, a pair of representatives of different classes are called c-twin curves) and
no classes of other types. The boundary fiber sum is, therefore, well-defined unless
the real structure c has no real component or c has two real components one of
which is the vanishing cycle a.

Recall that the rotation R 1
2

(introduced in the proof of Proposition 4.3) switches
the c-twin curves. Hence, c-twin curves can be carried to each other via equivariant
diffeomorphisms although they are not equivariantly isotopic, so in the case of
existence of c-twin curves, there is an ambiguity in the definition of the boundary
fiber sum X ′\X → D2 (it can be defined in two ways). To resolve the ambiguity,
we should specify how we identify the c′+-twin curves on the fiber F ′+ in X ′ with the
c−-twin curves on the fiber F− in X. In a certain case, namely if the real structure
c′+ has two real components and acts on the vanishing cycle a′ as a reflection,
the problem of switching c-twin curves can be eliminated via the transformation
introduced below.

Let π : X → D2 be an elementary directed real elliptic Lefschetz fibration such
that the real structure c+ : F+ → F+ acts on the vanishing cycle as a reflection.
As a result, one of c± : F± → F± has 1 real component while the other has 2 real
components. Without loss of generality, we can assume that the real structure c−
has 1 real component. Our aim is to construct a transformation, Tsing, of X that
does not change the isomorphism class of the fibration π : X → D2 and that is
identity over S− ⊂ ∂D2 and interchanges the real components of F+. To construct
Tsing, we consider the following well known model for elementary elliptic fibrations.

Let Ω̂ = {z| |Re(z)| ≤ 1
2 , Im(z) ≥ 1} ∪∞, (the subset bounded by Im(z) ≥ 1 of

the one point compactification of the standard fundamental domain {z| |Re(z)| ≤
1
2 , |z| ≥ 1} of the modular action on C, see Figure 6).

We consider the real structure cΩ̂ : Ω̂→ Ω̂ such that cΩ̂(ω) = −ω. Let Ω denote
the quotient Ω̂� 1

2 +iy∼− 1
2 +iy. The real structure cΩ̂ induces a real structure on Ω.
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Ω̂

−1 −1
2

11
2

i

0

1
2

+ iy iy

∞

Ω

Fig. 6. Moduli space of prescribed RELFs

Note that Ω is a topological real disc and can be identified with D2 so that the real
part of D2 corresponds to the union of the half-lines iy and 1

2 + iy where y ≥ 1.
For any ω ∈ Ω, the fiber over ω is given by Fω = C/(Z+ ωZ), where the fiber F∞
has the required nodal type singularity.

Let πΩ : XΩ → Ω denote the fibration such that π−1
Ω (ω) = Fω = C/(Z + ωZ),

∀ω ∈ Ω. Then, we consider the translation T ′Ω defined by

T ′Ω : XΩ → XΩ

(z)Z+ωZ ∈ Fω → (z + τ(w))Z+ωZ ∈ Fω
where (.)Z+ωZ denotes the equivalence class in C/(Z+ ωZ).
We consider τ : Ω→ Ω such that

τ(ω) = −1
2

+ (
1
2
− f(Re(ω)) + i)exp(−Im(ω) + 1)

where f : R/Z → R/Z is a smooth mapping whose graph is as shown in Figure 7
and which satisfies the following properties:

• f(0) = 1
2 (modulo Z),

• f(1− x) = 1− f(x), (⇒ f( 1
2 ) = 1

2 ) (modulo Z),
•f is linear on [ 1

4 ,
3
4 ] (modulo Z).

1
2

1
2

0−1
2

Fig. 7. The graph of f .

Note that τ has the following properties. (Equations are considered modulo the
relation − 1

2 + iy ∼ 1
2 + iy, y ≥ 1.)

• τ(−ω) = −τ(ω),
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• τ(∞) = 1
2 ,

• τ( 1
2 + iy) = − 1

2 + iexp(−y + 1) = 1
2 + iexp(−y + 1),

in particular, if y = 1, then τ( 1
2 + i) = 1

2 + i,

• τ(iy) = − 1
2 + iexp(−y + 1) = 1

2 + iexp(−y + 1),

in particular, if y = 1, then τ(i) = 1
2 + i.

Let Tsing : X → X denote the transformation induced from T ′sing : XΩ → XΩ.
By definition Tsing is equivariant and the identity over S− ⊂ ∂D2, and its restriction
to F+ is the rotation R 1

2
. (Figure 8 shows the action of Tsing on the real part. )

→Tsing

Fig. 8. The action of Tsing on the real part.

Lemma 7.2. Let π′ : X ′ → D2 and π : X → D2 be two non-marked elementary
RELFs such that both c′+ and c− have 2 real components. We assume that the
vanishing cycle a of π is real with respect to c−. Then, the boundary fiber sum
X ′\FX → D2 is well-defined if c′+ acts on the vanishing cycle a′ as a reflection.

Proof: The boundary fiber sums X ′\F,φX → D2 and X ′\F,ψX → D2 are not iso-
morphic if φ ◦ ψ−1(a) and a are c-twin curves. However, in the case when c′+ acts
on the vanishing cycle a′ as a reflection, we can apply Tsing to X ′ so that Tsing(F ′+)
differs from the fiber F ′+ by the rotation R 1

2
. Therefore, X ′\F,φX → D2 is isomor-

phic to Tsing(X ′)\F,φ◦R 1
2
X → D2 which is isomorphic to X ′\F,ψX → D2. �

8. Real Lefschetz chains associated to non-marked real elliptic Lefschetz fibrations

We now consider a non-marked directed totally real elliptic Lefschetz fibrations
π : X → D2, q1 < q2 < ... < qn. Around each critical value qi we choose a small real
disc Di such that Di ∩ {q1, q2, ..., qn} = {qi} and Di ∩Di+1 = {ri+1} ⊂ [qi, qi+1],
see Figure 9. Let ci be the real structures on the fibers Fri , 1 ≤ i ≤ n (where r1 is
the left real point of ∂D2) and ai be the corresponding vanishing cycle.

By Proposition 3.5, each directed (non-marked) fibration over Di is classified by
the conjugacy class {ci, ai} of the real code. Thus, we can encode the fibration
π : X → D2 by the real Lefschetz chain, {c1, a1}, {c2, a2}, ..., {cn, an}.

Clearly, real Lefschetz chains are invariants of directed non-marked totally real
elliptic Lefschetz fibrations over D2, but they are not sufficient for classifying such
fibrations. Additional information is needed, if for some i the real structure ci
has 2 real components and vanishing cycles corresponding to the critical values qi
and qi+1 are real, respectively, or if ci has no real component. Indeed, in these
cases the vanishing cycles corresponding to the critical values qi and qi+1 can be
the same curve, or they can be ci-twin curves. If they are ci-twin curves, then we
mark {ci, ai}R the corresponding real code {ci, ai} by adding R (here R refers to
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× × × ×q1 q2 q3 qn

...
r1 r2

rn

Fig. 9. Subdividing D2 into smaller discs.

the rotation R 1
2

which interchanges c-twin curves). The real Lefschetz chain we
obtain is called the decorated real Lefschetz chain. Figure 10 shows all possible
configurations of the real locus associated to {ci, ai} and {ci, ai}R.

:

qi qi+1ri
×

fibers

real part

×

{ci, ai}

qi qi+1ri

× ×

{ci, ai}R

:

qi qi+1ri
×

fibers

real part

×

{ci, ai}

qi qi+1ri
××

{ci, ai}R

Fig. 10. Real parts of the fibrations associated to {ci, ai} and {ci, ai}R.

Theorem 8.1. There exists a one-to-one correspondence between the decorated
real Lefschetz chains and the isomorphism classes of directed non-marked totally
real elliptic Lefschetz fibrations over D2.

Proof: Necessity is clear. As for the converse, we consider the unique class of di-
rected non-marked elementary RELF (assured by Proposition 3.5) associated to
each real code {ci, ai}. Then, we construct the required fibration by gluing elemen-
tary fibrations (from left to right) using the boundary fiber sum. As is discussed
above, the boundary fiber sum is uniquely defined in the case when the real struc-
ture on the fiber where the sum is performed has 1 real component or when it



20 Nermin Salepci

has 2 real components and acts on the vanishing cycle of the elementary fibration
glued to right as a reflection. In the case when the real structure has 2 real com-
ponents and acts on the last vanishing cycle of the already constructed fibration
π′ : X ′ → D2 as a reflection, the two possible boundary fiber sums are isomorphic
by Lemma 7.2 since in this case we can apply Tsing to X ′ (by considering Tsing on
a neighborhood N of the last critical value, as shown in Figure 11, and extending
it to X ′ as the identity outside of π′−1(N)). In all the other cases, the boundary
fiber sum is defined uniquely by the decoration. �

 

. . . . .

N

×× × ...

Fig. 11. Neighborhood over which Tsing is applied.

If c1 is conjugate to cn+1, then we can consider an extension of π : X → D2 to
a fibration over S2. As before, in the case when cn+1 has no real components or it
has 2 real components and both a1 and an are real, a decoration at infinity will be
needed.

Proposition 8.2. Let π : X → D2 be a real elliptic Lefschetz fibration associated
to a decorated real Lefschetz chain. We assume that the real structures c1 and cn+1

on the fibers over left and respectively right real point of ∂D2 are conjugate. If cn+1

(and thus c1) has 1 real component or if cn+1 (and thus c1) has 2 real components
and either cn+1 acts on the vanishing cycle an as a reflection, or c1 acts on the
vanishing cycle a1 as a reflection, then π extends uniquely to a fibration over S2.
Otherwise, there are two extensions distinguished by the decoration at infinity.

Proof: An extension of π : X → D2 to a fibration over S2 defines a trivialization, φ :
Σ1×S1 → π−1(∂D2) over the boundary ∂D2. Two trivializations φ, φ′ correspond
to isomorphic real fibrations if φ−1 ◦ φ′ : Σ1 × S1 → Σ1 × S1 can be extended
to an equivariant diffeomorphism of Σ1 × D2 with respect to the real structure
(cn+1, conj ) : Σ1 ×D2 → Σ1 ×D2. Let Φt = (φ−1 ◦ φ′)t : Σ1 → Σ1, t ∈ S1. Since
there is no fixed marking, up to change of marking we assume that Φt ∈ Diff0 (Σ1).

The real structure splits the boundary into two symmetric pieces, so instead
of considering an equivariant map over the entire boundary we consider a diffeo-
morphism over one the symmetric pieces. Let Φt, t ∈ [0, 1] denote the family of
such diffeomorphisms. The family, Φt, t ∈ [0, 1] defines a path in Diff0 (Σ1) whose
end points lie in the group Diff cn+1

0 (Σ1); therefore, Φt defines a relative loop in
π1(Diff0 (Σ1),Diff cn+1

0 (Σ1)), and we are interested in the contractibility of this rel-
ative loop.

We consider the following exact sequence of the pair (Diff0 (Σ1),Diff cn+1

0 (Σ1))

...→ π1(Diff cn+1

0 )→ π1(Diff0 )
f→ π1(Diff0 ,Diff cn+1

0 )
g→ π0(Diff cn+1

0 ) h→
π0(Diff0 )→ π0(Diff0 ,Diff cn+1

0 )→ 0.
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In the case when cn+1 has one real component, Diff cn+1

0 (Σ1) is connected,
so the map h is injective, so f is surjective. Therefore, elements of the group
π1(Diff0 (Σ1),Diff cn+1

0 (Σ1), id) can be seen in π1(Diff0 (Σ1), id).
In all the other cases, Diff cn+1

0 (Σ1) has two components. We mark one of the
components to get the map h injection, when restricted to the marked component.
Thus, g becomes the zero map, and so f is surjective over the marked component
of Diff cn+1

0 (Σ1). Note that decoration of real Lefschetz chains distinguishes one of
the component of Diff cn+1

0 (Σ1); hence, marking one component or other give the
two extensions distinguished by the decoration. The distinctive feature of the case
when cn+1 has 2 real components and acts an as a reflection (or c1 acts on a1 as
a reflection) is that the transformation Tsing changes one marking to other, so the
marking is not essential.

The proposition, thus, follows from Lemma 8.4 in which we show that any rel-
ative loop can be made contractible by means of some transformations T of the
fibration π : X → D2. �

Let us first define the transformation T of real elliptic Lefschetz fibrations over
D2 that is defined over a regular slice N of D2.

Let π : X → D2 be a directed RELF. We consider a real slice N of D2 which
contains no critical value, see Figure 12.

... ×

N

× ... ××

Fig. 12. Neighborhood over which T is applied.

Let ξ : I × I → N , I = [0, 1] be an orientation preserving diffeomorphism
such that first interval correspond to the real direction on N . The fibration over
N has no singular fiber; hence, it is trivializable. Let us consider a trivialization
Ξ : Σ1 × I × I → π−1(N) such that the following diagram commutes

Σ1 × I × I Ξ //

��

π−1(N)

π

��

I × I ξ
// N.

Since N has no critical value, the isotopy type of the real structure on the fibers
over the real part of N remains fixed. If the real structure c has 2 real components,
then we consider the model % : C/Z2 → Σ1 and set %̄ = (%, id) : C/Z2 × I × I →
Σ1 × I × I to define T as follows

T ′ : C/Z2 × I × I → C/Z2 × I × I
((x+ iy)Z2 , t, s) → ((x+ t+ iy)Z2 , t, s).

Then, we set T = Ξ ◦ (%̄ ◦ T ′ ◦ %̄−1) ◦ Ξ−1 on π−1(N). Since T is the identity at
t = 0, 1, we can extend T to X by the identity outside of π−1(N).
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If c has 1 real component, then we construct the transformation T using % :
C/Λ → Σ1. Similarly, if c has no real component, then we repeat the same using
% : R2/Z2 → Σ1.

Remark 8.3. 1. Since the transformation T is defined by a real rotation, T
preserves the isomorphism class of the real Lefschetz fibration.

2. The map T depends only on the isotopy type of π−1(N).

Lemma 8.4. Let π : X → D2 be a totally real elliptic Lefschetz fibration. We as-
sume that there exists at least one vanishing cycle on which corresponding real struc-
ture acts as a reflection. Then, there exists a generating set for π1(Diff0 (Σ1), id) =
Z+ Z consisting of transformations T± for some non-singular slices N±.

Proof: Let qi be the critical value such that the real structure on a nearby regular
real fiber acts on the vanishing cycle as a reflection. This assumption assures
that the neighboring real fibers have one real component on one side and 2 real
components on the other side of the critical value qi. Without loss of generality we
can assume that the real structure over a fiber over a real point which lies on the
left of qi has 2 real components. (The other case can be treated similarly.)

We choose an auxiliary C-marking ({b, b̄}, {ρ : Σ1 → Fb, ρ̄ : Σ1 → Fb̄}) and fix
an identification % : S1×S1 → Σ1. Since the real structure has 2 real components,
we can assumed that the induced real structure on S1×S1 is the reflection (α, β)→
(α,−β). The real part consists of the curves C1 = (α, 0) and C2 = (α, π). Moreover,
a representative of the vanishing cycle can be chosen as (0, β). As c+ = tai ◦ c− on
S1 × S1 the real part of c+ is the curve, C3, given homologically by 2α − β ( see
Figure 13).

ai

C1 C2

F− F+

C3

Fig. 13. Real fibers over the real points neighboring qi.

We now consider two non-singular real slices N−, N+ of D2 as shown in Fig-
ure 14. Let us suppose that the real fibers over N− are identified to F− while real
fibers over N+ are identified to F+ (where F± are as shown Figure 13). Let C ′3 and
C ′1 be curves on Fb obtained by pulling back C3 ⊂ F+ and C1 ⊂ F−, respectively.
The curves C ′3 and C ′1 intersect at one point, so we can identify Σ1 with C ′1×C ′3 so
that rotations along C ′1 and C ′3 generate the group Diff0 (Σ1, id). Hence, {T+, T−}
generates π1(Diff0 (Σ1), id). �

Theorem 8.1 applies naturally to directed non-marked RELFs over D2 which
admit a real section in which case real Lefschetz chain does not contain a real
code (ci, ai) where the real structure has no real component. Besides, in the case
when the real structure has 2 real components and the vanishing cycle is real, the
decoration is not needed since the existence of a real section determines naturally
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... ...× ×× ××

N− N+

qi

Fig. 14. Regular slices N±.

the gluing. Moreover, the extension to a fibration over S2 is uniquely defined by
the section. Hence we have the following proposition.

Proposition 8.5. Two directed RELFs over S2 admitting a real section and having
the same real Lefschetz chain up to cyclic ordering are isomorphic. �

Remark 8.6. Indeed, the proposition holds even for fibrations with a fixed real
section. If there are only real critical values, then the real sections are determined
in a neighborhood of a real part. Moreover, over the real part one can carry one
real section to another using the transformations T and double Tsing. Indeed, the
double Tsing is defined for real Lefschetz fibrations with two critical values where
the real structure extracted from the real fiber over a real point between the critical
values acts on the vanishing cycles as a reflection. The model we use to define the
double Tsing is as follows. Consider the disc D with two critical values as the double
cover of a disc with one critical value branched at a regular real point. Let D−
and D+ be two corresponding copies of the disk on the branched cover. By pulling
back the fibration XΩ over D we obtain a model fibration over D− ∪ D+. Thus,
we can apply Tsing at the same time to fibrations over D− and D+. The possible
modifications of the section is shown in the Figure 15.

T

T

Tsingdouble

Fig. 15. Modification of the real section over the real part.
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