
!”’

Vladimir S. Matveev (Jena)

(Non)existence of integrals that are

polynomial in momenta

Rouen 15.11.2012

arXiv:1010.4699 (J. Geom. Phys 2011) joint with V.
Shevchishin

arXiv:1111.4690 (Phys. Rev. D 2012) joint with B.
Kruglikov



Plan of my talk.

I will show two results:

1 the first result is joint with V. Shevchishin: we constructed all
metrics on 2-dimensional surfaces admitting, besides the
Hamiltonian, one integral that is linear in momenta and one
integral that is cubic in momenta.
• The result is based on a trick that can be applied in
many other problems

2 the second result is joint with B. Kruglikov: we proved
nonintegrability in the class of integrals that are polynomial of
degree 6 6 in momenta of a certain metric that was
conjectured to be integrable by physicists.
• The result is based on a method that can be applied in

many other situations



Trick that leads to the first result: Linear algebra background of the trick

Fact (1st year linear algebra course). Let V be a finite-dimensional
nontrivial real vector space and L : V → V be a linear map. Then, there
exists a 1- or 2-dimensional linear subspace Ṽ ⊆ V such that L(Ṽ ) = Ṽ .

Proof. In a certain basis, the matrix of L has one of the following
Jordan normal forms




λ 1 ∗ ∗
0 λ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


 ,




α β ∗ ∗
−β α ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


 ,




λ 0 ∗ ∗
0 µ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


 .

In all the cases the space spanned by the first two basis vectors is
invariant. In the 1st and 3rd case the space spanned by the first basis
vector is invariant



PDE background of the trick

We consider the following linear system of PDE:

∑

k,i

c i,k
j

∂ui

∂xk

+
∑

i

c i
j ui = 0 , j = 1, ...,m. (1)

Here (u1, ...,uℓ) are the unknown functions to find, the coefficients c i,k
j

and c i
j are functions thought to be known, everything lives in a small

neighborhood W ⊂ R
n and is at least as smooth as I need in the proofs.

Fact (1st year calculus). Assume the coefficients c i,k
j and c i

j are
independent of x1. Then, for any solution (u1, ...,uℓ) of (1), the tuple(

∂
∂x1

u1, ...,
∂

∂x1
uℓ

)
is also a solution.

Proof. We differentiate the equations (1) and interchange the partial
derivatives to obtain

∂

∂x1



∑

k,i

c i,k
j

∂ui

∂xk

+
∑

i

c i
j ui


=

∑

k,i

c i,k
j

∂

∂xk

(
∂

∂x1
ui

)
+
∑

i

c i
j

(
∂

∂x1
ui

)
= 0 .



First problem to solve: 2D superintegrable metrics with one linear and one cubic integral
(joint with V. Shevchishin);arXiv:1010.4699 (J. Geom. Phys 2011)

Setup. g is a 2D Riemannian (local) metric on W ⊆ R
2(x ,y). We

consider its Hamiltonian

H : T ∗W → R , H = g ijpipj .

A function F : T ∗W → R is an integral, if {H,F} = 0. Geometrically,
integrals are conservative quantities, i.e. are functions that are constant
along the orbits of the Hamiltonian system.

For example, H itself is an integral, since {H,H} = 0 because of the
antisymmetry of { , }.

Functions are functionally independent, if their differentials are linearly
independent at almost every point.

Definition 1

The metric g is superintegrable, if there exist two integrals L,F of a
certain special form︸ ︷︷ ︸

to be explained

such that L,H,F are functionally independent.



The special form I will consider

The metric g is superintegrable, if there exist two integrals L,F of a
certain special form︸ ︷︷ ︸

to be explained

such that L,H,F are functionally independent.

I will assume that L is linear in momenta,

L = b1(x ,y)p1 +b2(x ,y)p2,

and F is cubic in momenta,

F = a0(x ,y)p3
1 +a1(x ,y)p2

1p2 +a2(x ,y)p1p
2
2 +a3(x ,y)p3

2 .

Why the integrals are homogeneous polynomials in momenta?

There is no sense to consider integrals that

are polynomial in momenta
but are not homogeneous polynomial in momenta,

since every homogeneous term is an integral (Darboux, Whittaker) .

Moreover, if the integral is analytic in momenta, then there exists
an integral that is polynomial in momenta.



Motivation and history

Superintegrable systems possess deep and interesting geometry, are
useful, and were actively studied

In mathematical physics (Winternitz ... ): many physical
phenomena can be described with the help of superintegral
systems
In differential geometry: solution of many natural problems are
superintegrable (Koenigs, Darboux, Lie 18xx,
Bryant-Manno-M∼ 2006)
As source of examples: one can answer many natural questions
about superintegrable metrics using algebra and without
integrating ODE and PDE (Kalnins, Kress, Miller ...).

The case Linear + Cubic is the first unsolved case

If both integrals are linear, the metric has constant curvature
The case when one integral is linear and another is quadratic
was solved by Darboux in the XIXth century. He has a
complete local classification.
The case when both integrals are quadratic was solved by
Koenigs in the XIX th century. He has a complete local
classification. By Kiyohara 1991, no nontrivial examples on
closed surfaces are possible.



Who tried and how they tried

Who: Our case, when one integral is linear and another is cubic, was
actively attacked recently by Winternitz and his (former) doctoral
students Gravel and Marquette, and, independently, by Rañada.
They could solve the problem under the additional assumption that
the Hamiltonian system has the form

1
2 (p2

x +p2
y )+V (x ,y).

In this case no new phenomena compared with the case “two
quadratic integrals” appear (in the classical case; in the quantum
case there are additional superintegrable systems (Post-Winternitz
2011)).

How: Because of the existence of the linear integral, one can think that
the metric is f (x)(dx2 +dy2). The existence of the cubic integral is
a system of 5 nonlinear PDE on 4 unknown functions of two
variables (coefficients of the integral) and the function f , which is
intractable by standard methods.

Our advantage: We do essentially the same, but we know the trick



How we have found all (1+3)-superintegrable metrics: first rewrite as PDE and then
apply the trick

Take the coordinate system such that g = f (x)(dx2 +dy2) (the local
a.e. existence follows from the existence of the linear integral); in this
coordinates the linear integral is py .

Then, the existence of the integral

F = a0(x ,y)p3
1 +a1(x ,y)p2

1p2 +a2(x ,y)p1p
2
2 +a3(x ,y)p3

2

is equivalent to the solution of a linear system of 5 PDE on the 4
unknown ai whose coefficients do not depend on y : indeed,

{H,F} =
∑

i=1,2

[
∂H

∂pi

∂F

∂xi

−
∂F

∂pi

∂H

∂xi

]
= 0

This is a homogeneous polynomial of degree 4 in p = (p1,p2) whose
coefficients are expressions in ai ,

∂ai

∂xj
, f (x), f ′(x). Its 5 coefficients are our

equations.

Fact (classics). The system is of finite type
(
its solution space F3 is a

finite-dimensional linear vector space (dim 6 10 by Kruglikov 2008)
)

Fact (trivial). Since f does not depend on y , the coefficients of the
system of equation do not depend on y .



Applying the trick

Assume there exists a 3rd degree integral F that is functionally
independent of L = py and H.

Consider the space F3 of all integrals that a polynomial of degree 3 in
momenta.

This is a vector space; it is at least 3-dimensional, since the function p3
y ,

py ·H and our 3rd degree integral F are its elements, and at most
10-dimensional by Kruglikov 2008.

On the space, consider the linear endomorphism

L : F3 →F3, L(F ) =
∂F

∂y
.

The formula once more:

L(a0(x ,y)p3
1 +a1(x ,y)p2

1p2 +a2(x ,y)p1p
2
2 +a3(x ,y)p3

2)

=
(

∂a0(x,y)
∂y

)
p3

1 +
(

∂a1(x,y)
∂y

)
p2

1p2 +
(

∂a2(x,y)
∂y

)
p1p

2
2 +
(

∂a3(x,y)
∂y

)
p3

2 .

It is well-defined (the result is again an integral):
indeed, the property that F is an integral is a system of linear PDE on ai ;
the coefficients of this system do not depend on y so for every solution
(a0, ...,a3) we have that ∂a0

∂y
, ..., ∂a3

∂y
is also a solution.



Take an eigenvalue µ of L, assume first that µ is real and 6= 0︸ ︷︷ ︸
additional assumption

.

Then, there exists an integral F such that {py ,F} = ∂F
∂y

= µF .
For

F = a0(x ,y)p3
1 +a1(x ,y)p2

1p2 +a2(x ,y)p1p
2
2 +a3(x ,y)p3

2

the equality ∂F
∂y

= µF reads

∂a0(x,y)
∂y

p3
1 +∂a1(x,y)

∂y
p2

1p2 +∂a2(x,y)
∂y

p1p
2
2 +∂a3(x,y)

∂y
p3

2

= µa0(x ,y)p3
1 +µa1(x ,y)p2

1p2 +µa2(x ,y)p1p
2
2 +µa3(x ,y)p3

2

and implies a0(x ,y) = eµy ã0(x), ... , a3(x ,y) = eµy ã3(x).

THIS IS AN ANSATZ FOR THE COEFFICIENTS OF THE
INTEGRAL; THE FUNCTIONS INSIDE DEPEND ON THE
FUNCTIONS OF ONE VARIABLE; SO EVERY PDE ON THE
COEFFICIENTS OF THE INTEGRAL IS ACTUALLY AN ODE.
WE HAVE 5 ODE ON 5 UNKNOWN FUNCTIONS ã0, ..., ã3, f
OF x



What if µ is not real or zero?

The case when µ is complex or the eigenvalue µ = 0 the situation
is essentially the same: in the complex case we obtain 10 PDE on 1
+ 4 + 4 = 9 unknown functions, which has no solution unless µ

is purely imaginary and we again have 5 ODE on 5 unknowns and
always have a solution.

The case µ = 0 is also essentially the same; in this case we need to
consider the Jordan normal form of L|F3 .



First main result.

Theorem 1

Let (M,g) be a Riemann surface s.th. H = 1
2g ijpipj admits

(independent) linear and cubic integrals L+F . Then, a.e., ∃
coordinates (x ,y) s.th. L = py and g = 1

h2
x
(dx2 +dy2) where

h = h(x) satisfies one of the eqns (where hx := dh(x)
dx

)

(i) hx

(
A0h

2
x +µ2A0h(x)2 −A1h(x)+A2

)
=
(
A3

sin (µx)
µ

+A4cos(µx)
)

(ii) hx

(
A0h

2
x −µ2A0h(x)2 −A1h(x)+A2

)
=
(
A3

sinh(µx)
µ

+A4cosh(µx)
)

(iii) hx

(
A0h

2
x −A1h(x)+A2

)
=
(
A3x +A4

)

with some real constants A0, . . . ,A4 and µ > 0 in cases (i,ii).
In all three cases F3(g) = span〈L3,L·H,F1,F2〉 (4-dimensional
unless g has constant curvature).

The explicit formulas for F1,F2 are of the form:
(i) F1(x ,y) = cosh(µy) · fi ,1, F2(x ,y) = sinh(µy) · fi ,2,
(ii) F1(x ,y) = cos(µy) · fii ,1, F2(x ,y) = sin(µy) · fii ,2,
with some polynomials fi ,ii ;1,2 in h(x),hx ,hxx ,hxxx (and in px ,py ).
Case (iii) is similar.



How to calculate the curvature of the metric?

Message. Though the formulas in Theorem 1 may look ugly, one
can work with them.

The curvature of g = (dx2+dy2)
h2

x
is

R = hxxxhx −h2
xx (∗)

Now, differentiating the ODE for h (for example,

hx

(
A0h

2
x +µ2A0h(x)2−A1h(x)+A2

)
=
(
A3

sin(µx)
µ

+A4cos(µx)
)
)

w.r.t. x and with respect to x ,x , we obtain hxx and hxxx ,
substituting in (∗) we obtain the formula for the curvature.
Theorem. h(x) from Theorem 1 corresponds to the metrics of
constant curvature iff

(a) it is a polynomial in x of deg 6 2, or

(b) h(x) = csin(µx +ϕ0), or

(c) h(x) = c+exp(µx)+ c−exp(−µx)

In particular, for almost all A0, ...,A4 the metric does not have
constant curvature.



When is the metric Darboux-superintegrable

Theorem. The metrics from Theorem 1 are Darboux-superintegrable, if
and only if A0 = 0.



What is the dimension of the space of 3rd degree integrals?

Theorem. For the metrics from Theorem 1, the dimension of the
space of 3rd degree integrals is precisely 4.
Fact (Kruglikov 2008). The maximal dimension of the 3rd

degree integrals is 10; the submaximal is 6 7; Kruglikov
conjectured that the submaximal is actually 4; by our result the
Kruglikov conjecture is true under the assumption that there exists
a linear integral



Can the metric be extended to a closed surface? Yes: Second main result

Theorem 2 (Global solution on the sphere S2.)

Assume that parameters of the equation
hx

(
A0(h

2
x −h(x)2)−A1h(x)+A2

)
=
(
A3sinh(x)+A4cosh(x)

)
(ii)

satisfy A0 > 0, A4 > |A3| (and µ = 1). Let h(x) be a unique local solution
of the eqn (ii) such that hx(x0) > 0. Then the solution h(x) extends to

the whole line x ∈ R and the metric g = (dx2+dy2)
h2

x
extends to a

real-analytic metric on the Riemann sphere S2 = C∪{∞} with the
complex coordinate z = ex+iy .
Moreover, both cubic integrals F1,F2 also extend real-analytically on the
whole S2.

Remark. θ := arctan(e−x) and ϕ := y are spherical coordinates on S2.



Previous results on integrable metrics on closed surfaces.

Many classical examples (Jacobi, Lagrange, Euler) of integrable
metrics on S2 with linear or quadratic first integral.

Kovalevskaya top (1889): Metric on S2 with degF = 4.

Goryachev(-Chaplygin) top: (1916) Metric on S2 with degF = 3

Linear or quadratic integrable metrics on closed surfaces are
completely understood: Kolokoltsov, Kiyohara,
Bobenko-Nehoroshev, M∼,. . . ) (1984-. . . )

Selivanova (1999) and Dullin-M∼ (2004) generalized by Valent
(2010): new metrics on S2 admitting cubic F ,

Kiyohara,(2001), metric on S2 with F of any degree d > 3

Kiyohara,(1991), If g on S2 admits quadratic F1,F2

(dimF2(g) > 3) ⇒ Rg ≡ const.

M∼-Shevchishin (2011): The first one which is polynomially
superintegrable.



Open problems (hurry, they are simple).

Open Problem 1

Generalize our results for integrals of higher degree in momenta.

Comment: The trick works

Open Problem 2

Generalize our results for the pseudo-Riemannian metrics.

Comment: The trick works

Open Problem 3

Quantize the cubic integral.

Comment 1: For all previously known superintegrable systems, the
integrals survive the quantiziation.
Comment 2: The trick still works!!

Open Problem 4

All geodesics of global superintegrable metrics are closed; so the metrics
are the so-called Tannery metrics. Describe the metrics in the terms of
Tannery. This also could allow to see them as the induced metrics on
some surfaces in R

3.



Second problem I discuss: Nonexistence of an integral that is polynomial in momenta of
degree 6 6 for the Zipoy-Voorhees metric.

What is ZIPOY-VOORHEES metric? It is solution of the
vacuum Einstein equation Ric ≡ 0; found by Zipoy and Voorhees in
1966 and 1970:

(
x + 1

x − 1

)
δ


 (x

2
− y

2
)

(
x2

− 1

x2
− y2

)
δ
2 (

dx2

x2
− 1

+
dy2

1− y2

)
+ (x

2
− 1)(1− y

2
)dφ

2


 −

(
x − 1

x + 1

)
δ

dt
2
.

Here δ is an arbitrary number.
For δ = 0 we obtain the flat metric, for δ = 1 the Schwarzschild

metric.
May be the next simplest example is δ = 2; in this case the metric

looks as follows

ds2 =
(

x + 1

x − 1

)2
[
(x

2
− y

2
)

(
x2

− 1

x2
− y2

)4(
dx2

x2
− 1

+
dy2

1− y2

)
+ (x

2
− 1)(1− y

2
)dφ

2

]
−

(
x − 1

x + 1

)2

dt
2
.



Main question I will discuss in this part of the talk

Does the Zipoy-Voorhees metric admits an integral that is
polynomial in momenta and that is functionally independent of and
is in involution with the linear integrals pt ,pφ?

The property that two integrals F1,F2 are in involution means
{F1,F2} = 0; in our case it means that I does not depend on t and on φ.
The mathematical background of the latter assumption is clear in view of
the first part of my talk: if the function I is an integral, the functions ∂I

∂t

and ∂I
∂φ

are also integrals. Thus, if ∂I
∂t

6= 0, we obtain too many integrals
which is no good.



Integrable systems are rare — why we hope that Zipoy-Voorhees is integrable?

Numerical observation of J. Brinks (2008): the projection of the
orbits of the reduced system to (x ,y)−plane for Zipoy-Voorhees metric
with δ = 2. Similar behavior have some other explicitly given SAV-metrics
(Manko-Novikov).

ds2 =
(

x +1

x − 1

)2
[
(x

2
− y

2
)

(
x2

− 1

x2
− y2

)4(
dx2

x2
− 1

+
dy2

1− y2

)
+ (x

2
− 1)(1− y

2
)dφ

2

]
−

(
x − 1

x + 1

)2

dt
2
.



This behavior of the projection of the orbits is very closed to the behavior in the following
canonical integrable case

Example: Consider the natural Hamiltonian system with two degrees of
freedom with the Lagrangian H(x ,y ,px ,py ) = p2

x +p2
y +U(x ,y) with the

potential of the form U(x ,y) = X (x)+Y (y), where the functions X and
Y have the following diagrams:

X(x)

x

Y(y)

y

One can check by direct calculations that this system has two
independent integrals: p2

x +X (x) and p2
y +Y (y). Therefore, for any

trajectory of the system which we consider as a trajectory in the 4D-
phase space c(t) = (x(t),y(t),px (t),py (t)) : t 7→ T ∗

R
2 there exist

constants const1,const2 such that px(t)
2 +X (x(t)) = const1,

py (t)
2 +Y (y(t)) = const2. We see that that px(t)

2 = const1 −X (x(t))
and similarly py (t)

2 = const2 −Y (y(t)) so the motion exists only the
regions such that const1 > X (x) and const2 > Y (y), so the projection of
the trajectory lives in a rectangle.



One more numerical evidence from Brinck: Poincare section.

source: WiKi

Def. Poincare section S : hy-
persurface in the phase space
transversal to orbits.
Def. Poincare mapping: sends
x ∈ S to the first intersection
of the trajectory starting from
x with S .

If the system is integrable, the orbit of the point w.r.t. the Poincare
section lies on n−1 dimensional (in our case n−1 = 1) surfaces in S .



Qualitative behavior of the orbits of the Poincare section in the ZV(δ = 2)-metric (from
Brink Phys.Rev.D)

Such numerical evidences strongly suggest that the system is integrable,
or at least is very close to integrable!



Main result of the second part of my talk

Theorem (Kruglikov-Matveev Phys. Rev. D 2012). The
Zipoy-Voorhees metric with δ = 2 does not admit nontrivial
integral that is polynomial in momenta of degree 6 7 and is in
involution with pt and pφ.

Remark. The result for quadratic integrals was known to Brink.

Unbelievable: The numeric tells that their must exist an integral;
since everything is analytic the integral is expected to be analytic
and the theorem above says that the low order term in the analytic
expression is of order 8 at least!!!



How we proved Theorem: prolongation-projection

ds2 =
(

x + 1

x − 1

)2
[
(x

2
− y

2
)

(
x2

− 1

x2
− y2

)4(
dx2

x2
− 1

+
dy2

1− y2

)
+ (x

2
− 1)(1− y

2
)dφ

2

]
−

(
x − 1

x + 1

)2

dt
2
.

Theorem (Kruglikov-Matveev 2011). The Zipoy-Voorhees metric with δ = 2 does not admit nontrivial integrals of degree 6 7

We see that the metric is given in elementary functions. The existence
of an integral of degree k in momenta is a system of linear PDE of the
first order on the unknown entries (functions of x ,y) of the tensor whose
coefficients are algebraic expressions in the entries of the metrics and
their derivatives.
Say, for m = 6 we have 120 equations on 64 unknowns.
We differentiate all equations w.r.t. x ,y and consider the derivatives of
unknowns as new unknowns. In jargon, this is called prolongation. The
obtained system is also linear, so can be written in the form Au =~0,
where A is a (known) matrix whose coefficients are algebraic expressions
in the derivatives of the metric and u is the vector whose components are
unknown entries of the Killing tensor and their derivatives. We repeat
the procedure 6 times and obtain the following table:

n 0 1 2 3 4 5 6
# of eqn 60+60 180+180 360+360 600+600 900+900 1260 +1260 1680
dim (u) 132 +120 264+240 440+400 660+600 924+840 1232+1440 1584
rk(A) 60+60 180+180 360+360 600+ 590 888+ 838 1215+ 1440 1568

This gives us an upper restriction on the dimension of Killing tensors and proves theorem.



Why we did not go over 7?

Theory works

Calculational difficulties in calculating A

Calculational difficulties in calculating rk(A).

We did not seriously try

It is clear though that one can not go too far



Conclusion

I explained two methods in the theory of integrable systems:

The first one is a simple trick that allows to reduce solving of
linear overdetermined PDE-system possessing symmetry to
solving of ODE. The trick did solve two classical problems

helped to find all (1+3)-superintegrable 2D metrics and
found all metrics admitting projective vector fields (the
problem was explicitly formulated by Sophus Lie and remained
unsolved until 2012.

The second is the computer-oriented prolongation-projection
method:

This method can effectively be used in the search for integrals
and can rigorously prove nonintegrability in a certain class of
integrals – I considered integrals that are polynomial in
momenta of degree 6 7

Definitely, there are many more problems to solve with these
methods — try. I hope to see your applications of these “my”
methods in the next conference.


