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We will sketch a work in progress in collaboration with
Emmanuel Paul and Julio Rebelo, based on some results
due to several people, mainly:

Ph. Boalch, S. Cantat, M. A. Inaba, K. Iwasaki, M. Jimbo, F.

Loray, B. Malgrange, T. Miwa, M. van der Put, M-H Saito, K.
Ueno, E. Witten,...

In the present state it is mainly a PROGRAM.
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Py dtz Y =6y>+t.

Py dt2 =23 +ty+a.
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With o, ‘)’f‘“(‘) e C.
Non-linear second order O.D.E. whose all
moving singularities are poles (Painlevé property).
Fixed singularities: oo for Py, Py, plus 0 for Py, Py, Py, plus
0, 1 for PV/.
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Figure: Paul Painlevé 1863-1933
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Painlevé differential equations
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Pi, Py, Py: Painlevé. Presentation
Py, Py: Gambier.

Py Richard Fuchs (son of Lazarus Fuchs), in

relation with isomonodromic deformations of linear

O.D.E..

Painlevé equations are (up to equivalence) all the
non-linear second order O.D.E. whose all moving
singularities are poles (Painlevé property) and which are
not reducible to “already known cases” (linear equations,
Riccati equations, differential equation of elliptic
functions).

Property of “irreducibility”: new transcendental functions,
proved by Nishioka (1988) and H. Umemura (1989).

The Painlevé equations except P\, were discovered in
relation with the Painlevé property.



A misunderstanding

The Painlevé equations, except Py, were discovered in relation
with the Painlevé property. At Painlevé time there was some
interest in the so-called Painlevé property, in particular (1
think...) in relation with the success of S. Kowalevska for
the problem of the top. Today Painlevé property remains
quite popular, due in particular (I think...) to the fact that
there exists an effective test.

BUT the fact that so important equations (the O.D.E. of
the “special functions of the XX-th century”...) were
discovered starting from Painlevé property is a chance (2
is small !). The really important pointis NOT the Painlevé
property but the fact that all Painlevé equations translate
phenomena of isomonodromic (or more generally
iso-irregular: Garnier) deformations of linear O.D.E..

All O.D.E. coming from isomonodromic (or more generally
iso-irregular) deformations have the Painlevé property
(Malgrange, Miwa...) but the converse can be false for
equations of order > 2.
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Presentation

Our project is to use the “true origin” of the Painlevé
equations, that is the fact that they translate phenomena
of isomonodromic (or more generally iso-irregular)
deformations of linear O.D.E., to understand their
dynamics.



Our main purpose is to “understand the dynamics” of the
six Painlevé equations, in particular to be able to compute
their non-linear differential Galois groupoids in Malgrange
sense. We conjecture that, for “generic values” of the
parameters, these groupoids are “as big as possible”:
conservation of the area (as for P, a result of G. Casale).

The results are known for Py, (Cantat, Loray, lwasaki,
M.H. Saito...) and our idea is to “imitate” the method for
the remaining equations Py, P, Py, , Py, P

In the case of Py, one translates, via the Riemann-Hilbert
correspondance, the initial franscendental problem (the
study of the dynamics of the equation, or “equivalently” of
the study of the non-linear monodromy around 0, 1, o)
into a purely topological problem: the study of the
dynamics induced by a braid group on a character
variety. The character variety is an affine algebraic
surface (with a complex Poisson structure) and the action
is polynomial and explicit.
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In the case of Py, one translates, via the Riemann-Hilbert i IFETlE
correspondance, the initial transcendental problem into a Presentation
purely topological problem: the study of the dynamics induced

by a braid group on a character variety. The character variety

is an affine algebraic surface (with a complex symplectic

structure) and the action is polynomial and explicit.

In the case of Py, Py, Py, , Py, P;, we can translate, via
the irregular Riemann-Hilbert correspondance (in
Martinet-Ramis style), the transcendental initial problem
into a new one. This new problem is no longer purely
topological. It is necessary to replace the four punctured
sphere by some irreqular curves, the braid group by
some wild braid groups and the character varieties by
some wild character varieties (replacing representations
of a fundamental group by representations of a wild
fundamental groupoid).



More precisely:

—in the case of Py, the Painlevé flow is conjugated to the
isomonodromy flow on a fibre bundle of character
varieties;

— in the case of the others Painlevé equations, the wild
Painleve flow (i.e. the Painlevé flow “plus” the Stokes
actions) is “conjugated”to the wild isomonodromy flow on
a fibre bundle of wild character varieties;

We will explain the mechanism in a quite general situation
and afterwards we will give an idea of what is happening
in the particular case of the irregular Painlevé equations
using some recent results of M. van der Put and M.H.
Saito.
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A dream....
Based on ideas of the Japanese school (lwasaki...) for the classic case
and of Ph. Boalch for the wild case (using Martinet-Ramis approach)

CLAIM (conjectural)

Many "interesting” algebraic dynamical systems “express
iso-irregular deformations of linear connections.

Then it is possible to “compute effectively their dynamics”
(by hand or using computer algebra) as (Poisson) actions

of braid goups or wild braid groups on (Poisson) algebraic
varieties.

This opens the possibility to compute differential
invariants and the Malgrange differential groupoid for
such systems.

Chaos seems to be more or less the rule and to call
“integrable” such systems (it is the “classical”
terminology) is not so appropriate !
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Following:

S. Cantat, M. A. Inaba, K. lwasaki, F. Loray, M-H Saito,...
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Character varieties
Let X be a compact Riemann surface X (of genus g) and

ai,...,am marked points on it (m = 0 is allowed). Let G
be a linear complex algebraic group G (G = GL,(C),
G = SLy(C),...).

We consider the set of representations
m(X\{a1,...,am},*x) — G, € X\ {a1,...,am} being a
fixed base point, modulo the adjoint action of G
(equivalence of representations):

Hom(mi(X \ {a1,...,am}), G)/G,

Hom := Homy,. It is a character variety.

The quotient is in some algebraic sense (categorical quotient,
Jordan equivalence), | skip the details: for the irreducible case
there is no problem...

We suppose now that X := P'(C) ~ S? and m > 0 and we
denote the character variety x(S2,). Then the fundamental
group m1(P'(C) \ {a1,...,am}) is the (non abelian) free group
generated by m — 1 (homotopy classes of) loops 1, ..., Vm—1:
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We suppose now that X := P'(C) ~ S? and m > 0 and we
denote the character variety y(S2,). Then the fundamental

group m1(P'(C) \ {a1, ..., am}) is the (non abelian) free group
generated by m — 1 (homotopy classes of) loops 1, ..., Ym—1:

we can choose m — 1 points ay, ..., an_1 (respectively)

“very near” of ay,...,am_1, m— 1 paths 61,...,5m_1
(from xto ay,...,am_1) and m— 1 loops 1, ..., Ym_1
based at &; and turning "one time” around a;, then:

i = 0i7; 07

We can identify a representation p with:

(Mq == p(11), ..., M1 := p(Ym-1)) € G™
and the character variety x(S2,) with G™'/G (adjoint
action).
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There is an alternative description, replacing the
fundamental group based at %, by a fundamental
groupoid “based at x, ay,...,an_1". Then a
representation p is the data of p(d1) € G, ..., p(dm-1) € G
and p(1) € G,...,p(Am-1) € G. We can identify the
character variety y(S2,) with G>™—2/G™.

Variant:

We can “add” to X the real blow up of each point
aiy,...,am-1, thatis m—1 circles S' and choose points
ai,...,am_1 respectively on each circle (“tangential
points”). We get a m — 1 pointed surface X (with a
boundary).

In order to parametrize the character variety, we can
change the “basis” of the fundamental groupoid, leaving
the #; fixed and changing the choice of the (homotopy
classes) of the ¢;.
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The case of the four punctured sphere

Let S2 = P'(C)\ {a1, a, a3, a4} and G := Sh(C).

Let p : m1(S5) — Sk(C). The knowledge of the matrices

p(71), p(72), p(73), p(v4) modulo, for each one, the ad-

joint action of Sk(C) is equivalent to the knowledge of the

four parameters:

a:=Tr(p(11)), b:=Tr(p(72)), ¢ :=Tr(p(13)), d == Tr (p(72))-

We can associate to p three more parameters:
x:=Tr(p(7172)), ¥ :=Tr(p(7273)), X := Tr(p(v371)),

invariant under overall conjugation.

We have p(v1)p(72)p(73)p(v4) = 1, the knowledge of the

representation p is equivalent to the knowledge of the

three matrices p(1), p(72), p(v3) € Sk(C). We can

identify Rep(S%, Sk(C)) with the affine variety (Sh(C))®

(of dimension 9).

The polynomial map: x : Rep(S2, Sh(C)) — C’ defined

by p— x(p) :=(a,b,c,d, x,y, z) is invariant under

(overall) conjugation.
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The case of the four punctured sphere: the
character variety
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The polynomial map: x : Rep(S3, Sk(C)) — C’ defined by Character varieties

. . . i and the dynamics
p+— x(p) == (ab,c,d,x,y,z)is invariant under conjugation. of Painlevé VI

Equations
The components of x satisfy the quartic equation:
x>+ y?+ 224+ xyz=Ax+By +Cz+ D,
where
A:=ab+cd, B:=bc+ ad, C:= ac+ bd
D:=4—a—b%>—c?—d?— abcd.

The family C[Rep(S2, Sk(C))]%(®) of polynomial
functions on Rep(S%, Sk(C)) invariant par Sh(C) is
generated by the components of x, the algebraic quotient
Rep(S2, Sk(C))/Sk(C), that is the character variety, is
isomorphic to the hypersurface of C” defined by the
above equation: a six-dimensional quartic.



The algebraic quotient Rep(S2, Sh(C))/Sk(C), that is the
character variety, is isomorphic to the hypersurface of C’
defined by the equation:

F(x,y,z) =x?+y?+ 7%+ xyz— (Ax+ By + Cz+ D) =0,

a six-dimensional quartic.

If we fix the parameters a, b, ¢, d (“local monodromies” at
the singular points up to conjugation), and therefore

A, B, C, D, then x, y, z belongs to a cubic surface
S(A,B,C,D) of C3.

There is a volume form:

dxndy  dyAdz az A dx

T 2ztxy-C 2x+tyz- A 2y+tzx_B

on (the smooth part of) this surface
(Q AN dF = dx Ady A dz). It defines a complex symplectic
structure.
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. INVARIANTS I...
There is an area form:
J.P. Ramis

__dxANdy  dyAndz  dzAdx
T 2z4xy—-C 2x+yz—A 2y+zx-B

Character varieties

on (the smooth part of) the cubic surface S g,c p). It definesa  andthe dynamics

of Painlevé VI

complex symplectic structure. Equations

This is a particular case of a very general result: there is
a complex canonical Poisson structure on the character
varieties and on the irregular character varieties and the
corresponding symplectic foliations corresponds to the
fixation of local data at the singular points: Ph Boalch,...
The dynamics induced by braiding groups and wild
braiding groups on the character varieties respects these
foliations, they induces algebraic symplectic dynamics on
algebraic varieties (in the present case cubic surfaces).
One our main projects is a systematic study of such
dynamics, beginning with the “simplest cases” (!!!) related
to the Painlevé équations Pv, Plv, P///, ,P//, P/.



Monodromy of a linear differential system

Let (A): % = A(z)Y be a complex linear differential
system of rank n on a Riemann surface X (z local
coordinate), with A an holomorphic matrix. More
generally we can suppose A meromorphic and replace X

by X'\ S, S being the singular set of A.

If a,b € X and if v is a continuous path from ato b, we
can extend analytically along ~ any local solution at a and
we get a local solution at b, the result depends only on
the homotopy class [v] of v. We get a linear isomorphism
M., : Soly — Solp. If v is a loop (a = b), then M, is a
linear automorphism of the complex vector space Sol,,
the monodromy of v. We get a map:

p:m(X,a) — GL(Soly)

It is an homomorphism of groups (opposite structure on ),
the associated to the system
(A).
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Figure 2. Fuchsian Riemann-Hilbert problem.

Figure: Monodromy
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We consider a logarithmic connection V on a trivial rank e
n complex vector bundle on the Riemann sphere with RhT e
singurarities at ay,...,am (m > 2). Choosing a

coordinate z on the sphere, with a, = oo, this amounts to

giving a differential system:

Lay
“dz

A2)Y, with A(z):= > A

(A) Z — aj

i=1,...,m—1

the matrices A; (residues) being constant. The residue at
am=00is Am = —-A1 —...— An_1.
The Riemann Hilbert map associates to the Fuchsian
system (A) its monodromy representation

p:m(PY(C)\ {a1,...,am},*x) — GLy(C).
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Riemann-Hilbert map, Riemann-Hilbert
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problem
We Choose Simple IOOpS Vi around ai: based at *x, SUCh Character varieties
that v1 ...vm is contractile. if”g;h;ﬁe“iyéniﬁm
We set a := (a1 ey am), A = (A1 - 7Am), Equations

then RH,; amounts to the map:

{AJA1+ -+ An=0} = {(My,...,Mp)|Mp---My =1},
where M; := p(v;).

If an irreducible representation p is given, by

M := (My,..., Mp), with M, - -- My = [, then there exists
A, with Ay + --- + Ap = 0, such that RHa(A) = M. The
(strong) Riemann-Hilbert problem admits a solution.

It is important to notice that the Riemann-Hilbert map is in
general transcendental (cf. the case of m = 3: the
hypergeometric functions). Therefore it is not so
surprising that, as we will see, RH can transform a
franscendental dynamics into an algebraic dynamics.



Isomonodromic deformations

If we move a € P'(C), the points a, ..., a, remaining
distinct, the topology of P'(C)\ {a, ..., am} does not
change, but, if m > 4, the complex structure changes,
there are moduli. The basis of the deformation is

B :=C™\ U, Aj, where Aj := {x; = x;}.

Schlesinger studied the following problem, the problem of
isomonodromic deformations: is it possible to vary the
matrices A as one move a € B in order to realise “the
same monodromy data” M (up to overall conjugation).
Locally this makes sense, starting from a% := (&9, ..., a%)
one can use the same loops to generate:

m(PY(C)\ {&),..., &%}, ) and m(P'(C) \ {ai,...,am}, %),
if a is “sufficiently near” of aC.
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Isomonodromic deformations and
Schlesinger equations
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Character varieties
and the dynamics
of Painlevé VI
Equations

Schlesinger discovered that if the matrices A; satisfy the
following differential equations, then the monodromy data
is localy preserved (up to overall conjugation):

oA, [ALA]  0A Z [Ai, Al
J#

831' N aj — aj’ 0a; aj — gj

Conversely, in the generic case, an isomonodromic
deformation satisfies the Schlesinger equations.



Figure: Ludwig Schlesinger 1864-1933, follower and son-in-law

of Lazarus Fuchs
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Schlesinger equations and Py, INVARIANTS ..
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We suppose that m = 4 and that the A; are trace free
rank two matrices: A; € sh(C). o
aracter varieties

Using the action of the Mébius group on P'(C), we can and the dynamics

of Painlevé VI

suppose that a1 = 0,a>, = t,a3 = 1, a4 = oco. Then the Equations
Schlesinger equations are:

0A1 _ [Az, Al %_[A1,A2]+[A3,Az] 0As _ [A2, Ag
ot t ot t t—1 ot t—1

This is a differential system with the unknown function
(A1, Ao, A3) (9 scalar unknown functions).

The Schlesinger system preserves Ay = —Ay — A> — Agz.
We fix the eigenvalues of A;: (i=1,2,3) and we
suppose that A, = —Ay — A> — As is diagonalizable. Then
we can conjugate the system such that

A4 = Diag ( )-
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Schlesinger equations and Py,
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The Schlesinger system preserves Ay = —A; — A> — As. We fix

the eigenvalues of A;: (i =1,2,3) and we suppose that »

Ay = —Ay — Ax — As is diagonalizable. Then we can conjugate Sﬁj‘ iﬁi‘i}!iﬁi‘éis

the system such that RhT e
A4 = Diag ( )-

It is possible to choose a pair (y, x) of conjugate
coordinates on the space of the entries of Ay, As, A3 such
that the Schlesinger system is equivalent to a differential
system on (y, x). There is a good choice such that,
eliminating x, we get an equivalent second order
differential equation which is a Painlevé VI equation with
a convenient choice of parameters.

Explicitly, using the fact that the (1,2) entry of A4 is 0, we
see that the (1,2) entry of z(z — 1)(z — )Z, 15 isa
degree one polynomial in z. We define y(t) as the unlque
zero of this polynomial (Jimbo-Miwa).




Another parametrization of Py, INVARIANTS -
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P H . Character varieties
V/( ) and the dynamics
of Painlevé VI
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d?y 1,1 1 1 ay., 1 1 1 .dy
ae =Gyt G ety

yly—=1)(q—1t), (0, 1) 07t 05 t—1 105 t(t—1)
Bi-17 \ 2 oy opoiET 2 o

0= ((}1 . ()2 ()3 {)4)

+

Each solution t — y(t) extends analytically as a meromorphic
function on the universal covering of P'(C) \ {0, 1,c0}: the
Painlevé property.



The space of initial conditions of Py, IARANTS -
J.P. Ramis
The naive phase space of Py,(¢) is

(P'(C)\ {0,1,00}) x C*:
Character varieties
and the dynamics

(t,q(t),q' (1)) € P! (C)\ {0,1,00}) x c? of Painlevé VI

Equations

The “good” phase space is a convenient
semi-compactification, a fiber space

M(6) — PY(C)\ {0,1, 0},

whose fiber at any point ty € P'(C) \ {0, 1, 00} is the
Okamoto space of initial conditions: the Hirzebruch
surface F» blown-up at 8 points minus some divisor, a
union of 5 rational curves (Kazuo Okamoto 1979).

The Painlevé foliation gives a local analytic trivialisation of
the bundle (which is not algebraically locally trivial).

Then the non-linear monodromy of Py, () is given by a
representation:
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The Painlevé foliation gives a local analytic trivialisation of
the bundle:
Character varieties
and the dynamics
M(0) = PY(C)\ {0,1, o0}, of Painievs VI

Equations

Then the non-linear monodromy of Py, () is given by a
representation:

m1(P1(C)\ {0,1, 00}, ) — Diff(M(0), )

We get a dynamics on the space of initial conditions. The
main idea is, using the Riemann-Hilbert correspondence,
to replace this franscendental dynamics by a simple
algebraic dynamics.
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Character varieties and Py,: comparison of
dynamics

The Okamoto space of initial conditions M(¢) can be

. . Character varieties

interpreted as the moduli space of rank 2, trace free, and the dynamics
of Painlevé VI

meromorphic connections having simple poles at et
0, t,1, co with prescribed residual eigenvalues

01 6 O3 B4

izA igA i?' iE.
The Riemann-Hilbert correspondence provides an
analytic diffeomorphism M(0) — S(a 5.c.p), Where
é( A,B,c,0) is the minimal desingularization of S4 g c p)-
The Painlevé foliation corresponds to the Schlesinger
foliation and the Schlesinger foliation corresponds to the
natural isomonodromic connection on the bundle of
character varieties Sia 5.c.p) — P'(C) \ {0, 1, c0}.
Therefore the monodromy of Py,(¢) corresponds to the
before described representation :

m1(P1(C)\ {0,1,00}, %) — Aut(S(a5.c.0))-

J.P. Ramis
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INVARIANTS |...

Transformations

J.P. Ramis

In order to study a differential system we can use two
types of transformations:

@ Transformations of the independant variable z, that is

analytic automorphisms ¢ of U: z := ¢(u). We Invariants of
replace the infinitesimal automorphism < by ODE
d _dzd _ (e
du — dudz — ¢ (u)dz'

@ Linear transformations of the unknown vector func-
tion Y.

In the two cases we can use only “known” transforma-
tions. In the first case we will use Médbius transformations
(homographies), in the second we will use “rational”
transformations Y = PZ, with P € GL,(K), K ¢ M(U)
being a field of “known” functions, containing the entries
of the matrix A of the given system, the “rationality field”.



Rationality fields: differential fields

We can work with various rationality fields, we need on K
(or K) a structure of differential field.

INVARIANTS |...
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Rationality fields: differential fields

J.P. Ramis
We can work with various rationality fields, we need on K
(or K) a structure of differential field.
Invariants of
@ Global cases: Meromorphic

K := C(z), K :== M(C), K := M(U), U c P'(C);
d/dz;

INVARIANTS |...



Rationality fields: differential fields

We can work with various rationality fields, we need on K
(or K) a structure of differential field.

@ Global cases:
K := C(z), K :== M(C), K := M(U), U c P'(C);
d/dz;

@ Local cases:

K := C({z}) (the field of fractions of convergent
power series C{z}) K :=C({(z — a)});

INVARIANTS |...
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Rationality fields: differential fields

We can work with various rationality fields, we need on K
(or K) a structure of differential field.

@ Global cases:
K := C(z), K :== M(C), K := M(U), U c P'(C);
d/dz;

@ Local cases:
K := C({z}) (the field of fractions of convergent
power series C{z}) K :=C({(z — a)});

@ Formal cases:

K := C((2)) (the field of fractions of C[[Z]]);
K := C((1/2)) (the field of fractions of C[[1/Z]])...

INVARIANTS |...
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According to the cases we need on K (or K ) a structure
of differential field.
More generally we introduce the notions of differential
ring.
A commutative ring (with an unity 1) with an operator
(R,0),0: R— R(resp. (R,¥),v: R— R)isa
differential (resp. difference) ring if:
@ 0 is additive: if f, g € R, then
o(f+g)=0f+0g,;
@ Jis aderivation: if f,g € R, then 9(fg) = (0f)g + fog
(resp. 0 is a homomorphism: if f,g € R, then
9(fg) = (9f)(09))-
Constants: Cg := {f € R|0f = 0}. Here in all the cases
the constants field is C.

INVARIANTS |...
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Gauge transformations

We consider a differential field (K, 9) and a differential
system:
oY =AY, Ae My(K).

If we introduce a linear transformation Y = PZ on the
unknown vector Y: P € Gly(K), whose entries belong to
the “rationality field” K, we get:

AY = 9Y = 9(PZ) = (0P)Z + POZ
APZ = QY = 9(PZ) = (0P)Z + PdZ
0Z = (P 'AP - P 'oP)Z

or
0Z =BZ, with B:=P 'AP— P 'oP.

We can replace the gauge group Gl,(C) by a linear
algebraic group G: P € G(K).

INVARIANTS |...
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Following Birkhoff (1913) we consider some problems of
classification of differential systems that is the study of
the quotients of Gl,(K) by the corresponding equivalence
relations. More precisely the purpose of Birkhoff was to
identify each equivalence class by a set of invariants (the
analysis) such that conversely to a set of invariants
corresponds an unique equivalence class (the synthesis).

There are two classes of invariants:
(computable by hand or using computer algebra) and
transcendental invariants.

If the matrix A of the system is constant (i.e. if its entries belong
to Ck) then we can choose the matrix P constant and we get:

B:=P 'AP - P '9P = P'AP

and the corresponding equivalence class is the similitude class
of the matrix A.

INVARIANTS |...
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Riemann-Hilbert Problems

The direct problem of the classification is to get a
complete set of invariants, characterizing the class. The
inverse problem is to start from a set of “invariants” and to
build an equation (up to equivalence).

The main tool of Birkhoff for the solution of the inverse
problem is a theorem of factorization of matrix functions
(Birkhoff factorization theorem 1911). The problem was
initially stated by Riemann (posthumous note, 1876),
anterior results are due to Hilbert (1905) and Plemelj
(1906, 1908). Birkhoff result was later improved by
Garnier (1951).

A weaker version is equivalent to a theorem of

classification of fibre bundles on the Riemann sphere
(Grothendieck 1957).

INVARIANTS |...
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Fundamental solutions

Let Y/ = AY be a meromorphic differential system on
P'(C) (or more generally on a Riemann surface X).

Let S be its singular set (a finite subset of P'(C)). Let x
be a regular point, due to Cauchy theorem there exists a
holomorphic fundamental solution F in a neighborhood of
* (we can choose F(x) = /), extending it by analytic
continuation, we get an holomorphic matrix F on the
universal covering of (P'(C) — S; %) (or (X — S; x)) which
is a solution (in the evident sense).

If F; is another fundamental solution, then F = FC,
where C € GIy(C) is a constant matrix and conversely.

Let G be a connected linear algebraic group and let g be
its Lie algebra. We suppose A € g(K), if F(z) = I, then F
takes its values in G. If F; is another fundamental solution
taking its values in G, then F; = FC, where C € G(C).

INVARIANTS |...
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An example: the hypergeometric differential WARARTS -
. J.P. Ramis
equations
The first solution of the classification problem is due to B.
Riemann in the case of the hypergeometric differential
equations:

Invariants of
Meromorphic
O.D.E.

(Eapn) z(0=2)y"+ Iy —(a+B+1)zly' —aB =0,
a, B, v € C. Hypergeometric series:
e N (@n(B)n _ 1) (e
2F1 (047/8")/,2) : Z (’Y) nl (a)n - Ck(Ck ) (Oé n+ )
Fundamental system of solutions at the origin:

oFi (o, B;7:2), Z'V7aF(a—y+1,8—~7+1;2—7;2).



Fundamental system of solutions at the origin (generic INVARIANTS ..
case): J.P. Ramis

2Fi(a, Bi7:2), 2" eFi(a—v+1,8 -7+ 12—72).

Monodromy around the origin: z — €™z (analytic
continuation along a simple loop around 0):

1 0
Mo = j : nvariants of
’ <O 6*2/7‘ > :\/Ieromotrph{c
Monodromy exponents: ODE.
—at0: 0,11

We can put the hypergeometric equation in system form,
then starting from a fundamental solution F in a small
neighborhood of the point x: z = 1/2, we get, by analytic
continuation along a loop ¢ at 1/2 a linear permutation of
the solutions (monodromy transformation):

M, e Gl(Soly »), and, using F, a monodromy matrix /\/;:

F— FM,.



Fundamental system of solutions at the origin (generic INVARIANTS ..
case): J.P. Ramis

2Fi(a, Bi7:2), 2" eFi(a—v+1,8 -7+ 12—72).

Monodromy around the origin: z — €™z (analytic
continuation along a simple loop around 0):

1 0
My = . Invariants of
P \0 e it
Monodromy exponents: ODE

—at 0: 0,119
—at 1: o.p

We can put the hypergeometric equation in system form,
then starting from a fundamental solution F in a small
neighborhood of the point x: z = 1/2, we get, by analytic
continuation along a loop ¢ at 1/2 a linear permutation of
the solutions (monodromy transformation):

M, e Gl(Soly »), and, using F, a monodromy matrix /\/;:

F— FM,.



Fundamental system of solutions at the origin (generic INVARIANTS ..
case): J.P. Ramis

2Fi(a, Bi7:2), 2" eFi(a—v+1,8 -7+ 12—72).

Monodromy around the origin: z — €™z (analytic
continuation along a simple loop around 0):

Mo = <2) eg’f“> ' Meromorphic

Monodromy exponents: ODE

—at 0: 0,119

—at 1. o.p

—atoo: 0.7 —a— /.
We can put the hypergeometric equation in system form,
then starting from a fundamental solution F in a small
neighborhood of the point x: z = 1/2, we get, by analytic
continuation along a loop ¢ at 1/2 a linear permutation of
the solutions (monodromy transformation):
M, e Gl(Soly »), and, using F, a monodromy matrix /\/;:

F— FM,.



The map ¢ — M, induces a map (the monodromy
representation):

U (P1 (C) - {07 1 ) OO}; 1/2) - GI(SO/1/2)
and, using F (equivalently a basis of Sol; ;) a map:
7T1(P1(C) —{0,1,¢};1/2) — Ghk(C),

defined up to conjugation.

Using a “good choice”for F, B. Riemann computed this
representation for the hypergeometric differential equa-
tions using only trigonometric functions. More generally
we can compute it from “natural choices” for F using
trigonometric functions and I function. The monodromy is
(generically) a transcendental function of ., 7, ~.

INVARIANTS |...
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If F = PFy, with P € Gk(C(z)) (gauge transformation), INVARIANTS 1...
then P is invariant by the monodromy. As FM, = PF{M;,, JP. Ramis
F; is transformed by the monodromy into Fy My, therefore

the monodromy is invariant by equivalence (local mono-

dromy or global monodromy).

This remains true in the general case: Y’ = AY with

A € GIn(C(2)). If S ¢ P'(C) is the set of poles of A, then Invariants of

Meromorphic

we have a monodromy representation: ODE.
m(P'(C) - S; z) — Gl(Soly,),

o being a regular point (zo € P'(C) — S), and using a
fundamental solution F at zy (Cauchy existence theorem)
we get a map:

m(P'(C = S; z9)) — GIn(C)

This is invariant by
equivalence.

There is also a local version and a formal version (using
the formal monodromy).



In the global, local, formal cases, the monodromy
representation gives some invariants. It is natural to ask
the following questions:

@ |s it possible to deduce “all the invariants” from the
knowledge of the monodromy (is the monodromy a
“complete set of invariants”) ?

@ |s it possible from the knowledge of a finite dimensio-
nal representation of the fundamental group w1 to get
a differential system up to equivalence ?

For the hypergeometric differential equations and the
complex linear two-dimensional representations of the
free group Z « Z the answers are yes. It is due to
Riemann.

In the general case it can be no. The simplest example is
y' —y =0on P'(C): the monodromy is trivial, it is the
same than the monodromy of zy’ — y = 0 and the two
equations are not equivalent.

INVARIANTS |...
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. \ . . . INVARIANTS |...
There is a nice class of linear differential systems such

that the answers are yes, the regular singular systems.

The condition is local at the singularities.

A system Y’ = AY is Fuchsian at z; if A admits a simple

pole at zy, it is regular singular at z; if it is locally

meromorphically equivalent to a Fuchsian system at z;. variants of
If zy = 0, if % is the polar part of Aat 0 and if Ag € Mp(C) ~ Vermorehie
is non resonant (i.e. the difference of the eigenvalues are

never positive integers), then the system Y’ = AY is

locally equivalent to the system:

J.P. Ramis

zZY' = AyY.

For differential equations there is no difference between
Fuchsian and regular singular, the condition (at z;) is:
it is possible to write the equation:
y(”) + bn_1y(n—1) 4+ 4 boy =0
with by, ..., b,_1 holomorphic at z;.



In the non regular singular case there are other invariants
than the monodromy. A non regular singular singularity is
said irregular. The question is essentially local at the
irregular singularities and it is related to the divergence of
the fundamental solutions.

If 0 is an irregular singularity of the system Y’ = AY, then
this system admits a formal fundamental solution
(Hukuhara-Turrittin), x local coordinate:

F = A(t)xteQ/D),

with x = t,v € N*, H € GI,(C((t)), L € M,(C),
Q = Diag(q1, ..., qn), 91, - -, qn € $C[F].
“In general” H is divergent.

For simplicity we will describe only the unramified case:
v:=1.

INVARIANTS |...
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INVARIANTS |...

J.P. Ramis
The archetypal example is the Euler equation:
2.,/ o
X .y +y =X Invariants of
Meromorphic
O.D.E.

or its “homogeneous version” (x~'(x2y’ + y))' = 0.

Euler equation admits a divergent formal power series

solution:
+00

D (=1) X"

n=0



We return to a formal fundamental solution:

F = H(x)xte®1/X),

Formal monodromy M = e?"L (v = 1), we have

F(e”"x) = F(x)M.

The formal invariants (in particular the formal
monodromy) are obtained from L, Q (and v).

The meromorphic invariants for a fixed normal formal
form stems from the divergence of H (Stokes
phenomena). Intuitively they correspond to a “branching”
of the “sum” of A, a (purely unipotent) “monodromy”
around “infinitely near singularities” defined by Q.

INVARIANTS |...
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Summability and Stokes phenomena

“Generically” the entries of the matrix H are k-summable
(Ramis), where k is the Katz rank of the system (A) (the
biggest slope of the Newton polygon of (A)). More
generally they are multisummable (Martinet-Ramis...).

Therefore, for all d € S, it is possible to define two
summation operators S:; and S, associating to A two
matrices H;,r and H_ which are holomorphic on a “small”
sector bisected by d.

In general H = H, they differ only for a finite number of
directions: the singular directions (or Stokes-lines, or
anti-Stokes lines ...). Choosing a branch of the
Logarithm, that is d € R above d € S', we get two actual
fundamental solutions F := S F and Fy := S, F.
There exists a unique constant matrix Sty such that:

FJ_ = Fd_ Sty,

Sty # I'if and only if d is a singular direction.

INVARIANTS |...
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There exists a unique constant matrix Sty such that:
+ _ —
Fy = F4 Sty,

Sty # 1'if and only if d is a singular direction. In that case
Sly is the Stokes matrix associated to d. It is unipotent.

There is a relation between the formal monodromy M, the
Stokes matrices and the aciual monodromy M:

M = M Sty,, - - - Sty,

(dy <--- <dm < dy +27).
For the Stokes matrices, a change into the choice of a

branch of the logarithm corresponds to a conjugation by a
power of .

Intuitively a Stokes matrix corresponds to a loop around a
singularity (or a pack of singularities) “infinitely near” of 0
ond.

INVARIANTS |...
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Generalized Riemann-Hilbert
correspondance, local version

To a germ of irregular meromorphic system, in the
unramified case, we can associate:

11, -
Qe —[=], M, andthe Sty.
z'z

We will say that these data defines a representation of
the wild local fundamental group m ,(C,0). (Itis possible
to give precise definitions at the price of some abstraction...)

Conversely to such data (satisfying some compatibility
conditions), it is possible to associate a germ of
meromorphic system. It is the generalized (or wild)
Riemann-Hilbert correspondance (Birkhoff,
Balser-Jurkat-Lutz, Sibuya, Malgrange...) in the local case.

INVARIANTS |...
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Generalized Riemann-Hilbert
correspondance, global version

Let X be a Riemann surface.
In the regular singular-case we associate to a meromor-
phic differential system (A) on X its monodromy
representation:

pm(X\ S;x) — GI(Sol,.(A)

RH: (A) — p.

In the irregular case we can imitate this process, repla-
cing the fundamental group by a wild fundamental group
(Martinet-Ramis, Bolibruch-Malek-Mitschi), however the
correspondance it not “perfect”, it is in fact necessary to
use a wild fundamental groupoid. What are missing are
some “links” between the base point x and each irregular
singular point a;, more precisely a continuous path
between x and a (generic) direction a; at a;, followed by
an “antisummation path” along 3; (Jimbo-Miwa-Ueno,
Boalch, Witten, van der Put-Saito).

INVARIANTS |...
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EDWARD WITTEN

FIGURE 2. A Riemann surface C|, here taken to be of genus go = 1,
with an irregular singularity at a point p. A basepoint is taken at
g. Show are the Stokes rays near p and the important paths in
defining the generalized monodromy data.

Figure: Wild fundamental groupoid: g=1, m=1

INVARIANTS |...
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Representations of the wild fundamental

groupoid, global version

(The idea)

Links:

L;:Sol, — Soly,i=1,...m.

INVARIANTS |...
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Representations of the wild fundamental

groupoid, global version
(The idea)

Links: L;:Sol, — Solg, i=1,...m.

@ X :=P'(C), genus g :=0:

I =Ly MLy ... LT My Ly,
/\/I,':/\A/I,'Stdi,ri...Stdi,r1 i:1,...m.

INVARIANTS |...
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Representations of the wild fundamental

. . J.P. Ramis
groupoid, global version
(The idea)
Links: L;:Sol, — Solg, i=1,...m.
—p —0: e
@ X :=P'(C), genus g:=0: L

I =Ly MLy ... LT My Ly,
/\/I,':/\A/I,'Stdi,ri...Stdi,r1 i:1,...m.

@ X := Xy, genusg:

I=UViU7 VT U VU 'V ' Ly ML L M Ly,
Mi:MiStdi,ri"'Stdi,r17 i:1,...m.

INVARIANTS |...



Gauge group

Let G be a connected linear algebraic group and let g be
its Lie algebra.

Let (A) : 29X = A(2)Y, we suppose A € g(K), where
K := C({z}) (A is a meromorphic matrix taking its values
in the vector space g), then:

Qe gl €G, andthe Stge G

(Kolchin, Babbitt-Varadarajan, Martinet-Ramis, Boalch).
We say that G is a gauge group for the system (A).

INVARIANTS |...
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BRAID GROUPS AND MAPPING CLASS GROUPS
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Contents
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Braid

"Flat"
Braid

Braid groups and
mapping class
groups

Figure: Braids



Figure:

Braid
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E. Brieskorn (1988):

The beauty of braids is that they make ties between so
many different parts of mathematics: combinatorial
theory, number theory, group theory, algebra, topology,
geometry and analysis, and, last but not least,

singularities.

5

Figure: E. Brieskorn
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Description using braiding of strands INVARIANTS ..

The group law IR e

4 > 4 4>
x 3 > /\A 3 x 3 F&
x: 2 :\/ 2 > 2 y Braid groups and

1 1 > 1 \ mapping class

groups

X Y XY

Figure 1: Examples of 4-braids X,Y and their product XY

Figure: Braids



Braid groups, following E. Artin (1925)

The Artin braid group on n strands B, is the group
generated by n— 1 elements o4, ..., 0,_1 satisfying the
relations:

Figure: Emil Artin 1898-1962

INVARIANTS |...
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Braid groups, following E. Artin (1925)

The Artin braid group on n strands B, is the group
generated by n— 1 elements o4, ..., 0,_1 satisfying the
relations:

@ vjoj = ojo;, it [j—i] >2;

Figure: Emil Artin 1898-1962

INVARIANTS |...
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Braid groups, following E. Artin (1925)

The Artin braid group on n strands B, is the group
generated by n— 1 elements o4, ..., 0,_1 satisfying the
relations:

@ vjoj = ojo;, it [j—i] >2;

@ 0i0j410] = 0j410i0j41, i= 1,...,n—2, if n> 3.

Figure: Emil Artin 1898-1962
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INVARIANTS |...

Generators of braid groups: geometric
interpretation with strands

J.P. Ramis

~— [ e o °
Braid groups and

S~——0w *— > — - mapping class
groups
e —~—~—

’—/—H\
r—F— 6—0 ~——e

Figure: Generators o1, 02,03 of By



INVARIANTS |...

The braid group B; is trivial and the braid group B> is
isomorphic to Z.

For n = 3, the Artin braid group Bs is generated by o1 and
oo With only one relation oyo201 = 020102.

The center of Bj is the subgroup generated by

J.P. Ramis

(o1 02)3 = (010201 )2.

Braid groups and
mapping class

1 1 1 O groups

induces a group homomorphism:
There is an exact sequence:

I — ((0102)%) — B3 — PSLy(Z) — 1



Permutation groups and pure braid groups

Let &, be the permutation group of n elements.

Taking account only of the origin and the extremity of the
strands, we get a group homomorphism: B, — &,. This

homomorphism is onto and, by definition, its kernel is the:

pure braid group P.

INVARIANTS |...
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Braid groups and configuration spaces

The configuration space of n points on the complex plane
C is, by definition,

Conf,:={z:=(z,...,25) € C"| z; # z;, if i # j}.

The permutation group &, acts on Conf, by permutation
of the coordinates of z.

There is an interpretation of the groups B, and P, as
fundamental groups:

Pn = T (Confn,*), Bn — T (Confn/Gn,*)

Let v :=(v1,...,7n) : [0, 1] — Conf, be a continuous
loop. The graphs of 4, ..., v, form a subset of [0, 1] x C”
which can be interpreted as a geometric (pure) braid.
Variants. We can replace the complex plane C by the disk
D. We can also interpret B, as a mapping class group.

INVARIANTS |...
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Figure: Braids and punctured disks

INVARIANTS |...
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—

Figure: Pure braid and loop on the configuration space
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Braid groups and mapping class groups

Let D, be the closed unit disc with n marked points
ai,...,an. The braid group B, is isomorphic to the group
9M(D,) of diffeotopies of Dy, that is the subgroup of the
group of diffeotopies of the closed disc leaving fixed the
boundary 0D = S' and the set of marked points.

Idea of a proof

Let f € M(D,), we represent it as a diffeomorphism ¢
preserving the orientation. Interpreting ¢ as a diffeomorphism
of D, we know that it is isotopic to idp,. If t € [0, 1] — ¢ is an
isotopy, the n maps (t, a;) — (t, ¢:(ar)) € [0,1] x D
(i=1,...,n) define a geometric braid and we get a map
9M(D,) — Bp. It is clearly an homomorphism of group,
exhibiting the inverse one can prove that it is an isomorphism.

INVARIANTS |...
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The group 9(D,) induces an automorphism of the
fundamental group (D). It acts on the “natural”
systems of generators of 71(Dp) (such a system identifies
the fundamental group with a free group F, :=Zx---xZ).

We are interested in the subgroup of M(D,) fixing each
a;, I =1,...,n. ltis isomorphic to the pure braid group P
and also to the mapping class group of the n+ 1 punctu-

red sphere S2_ ;.

INVARIANTS |...
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y‘ J.P. Ramis
B

t, t tr

Braid groups and

\
7 \ mapping class
C o groups
4

Figure 11: The braid action 5; : (i, %, %) = (77} %)

Figure: Half-monodromy and braiding (Ilwasaki...)



Figure: Monodromy and braiding (O. Lisovyy)
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The pure braid group Ps and the dynamics of ™"
the Painlevé equation Py, P Ramis

Using the Riemann-Hilbert map, it is possible to interpret

the (analytic) dynamics of Py, as a dynamics on the

character variety x(S2, Sk(C)) corresponding to the

action of the mapping class group of S2, or equivalently Braid groups and
mapping class

to the pure braid group Ps. Hence we get a polynomial groups
action of PSL(Z) on the cubic surfaces S 5,c p)-

Let I3 C PSLy(Z) be the subgroup whose elements
coincide with identity modulo 2. Then (EI'-Huti):

the morphism I'; — Aut(S(a 5,c.p)) is injective, the index
of its image is bounded by 24 and it is generically an
isomorphism.



Let in C PSL,(Z) be the subgroup whose elements
coincide with identity modulo 2. Then (EI'-Huti):

the morphism I'; — Aut(S(a 5,c,p)) is injective, the index
of its image is bounded by 24 and it is generically an
isomorphism.

Using this result it is possible to prove that the

non-commutative Galois differential groupoid,
of Py, in Malgrange sense, is

the groupoid of transformations conserving the area,
except in the Picard-Painlevé case (Cantat-Loray).

The irreducibility of Py, in Nishioka-Umemura sense
follows (Casale).

INVARIANTS |...

J.P. Ramis
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INVARIANTS I...
Let, as above, S? = P'(C)\ {ay, ap, a3, a4} and JP. Ramis
G := Shk(C).
Let p : m1(S5) — Sk(C) be a representation.
We set:

My := p(m1), Mz := p(72), Ms = p(73).

We consider Braid
groups and

. mappi |
N:={(5x,5y,8:)| 82 =5 =5 =1} =Zp x Zr  Zy. Do class

(-1 -2y _(1 0 /10
x=\o 1 )% o -1)% 2 1

The group I'§ can be identified with A and the standard
modular group I'> corresponds the subgroup (of index 2)
of A containing the words of even length in the involutions
Sx, Sy, Sz.



INVARIANTS |...

J.P. Ramis
Skt (My, Mo, M) — (M1, My ' MM T M)
sy o (My, Mo, M) — (MoM; "M, ' My T M)
Sz o (My, Mo, Mg) — (M, MaMy "M M)
The traces a, b, ¢, d (and therefore A, B, C, D) are fixed by Braid groups and
/\ = F;t ;nzﬁgi;g class

The action of A = in on the cubic surface Si4 5,¢c p) is
(Loray-Cantat, Lisovyy):

SX(Xay’Z) :(A_X_yzvyaz)
S}/(Xay7z) :(XyB—y—ZXaZ)
SZ(X7y7Z):(X7y7_Z_Xy)



The standard modular group ', C PSL(Z) is generated
by the three elements:

1 0

1 2
gyzsxsz:<0 1) :SS

1 -2 2o
gz:sysxz<2 3)2812822

This corresponds, modulo the Riemann-Hilbert map, to

the Painlevé VI non-linear monodromy (t turning around,
0, 1, 00). We have gxgyg- = 1.

INVARIANTS |...

J.P. Ramis
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From Py, to the other Painlevé equations

Our aim is to find a similar mechanism for the other
Painlevé equations.

It is necessary (and, we hope, sufficient...) to replace,
mutatis mutandis,

tame objects (regular singularities)
by
wild objects (irregular singularities).

INVARIANTS |...

J.P. Ramis
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REDUCTIVE GROUPS

and

GENERALIZED BRAID GROUPS

INVARIANTS |...

J.P. Ramis

Reductive groups
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braids groups



Motivation: Infinitely near points and how to
use them

As we have said it is possible to interpret an irregular
singular point as a “pack of infinitely near singularities”in
some “transcendental sense” (Garnier 1919, and later
Ramis, Deligne, Martinet-Ramis...).

It is possible to give rigourous definitions, using in
particular roots on sub-tori of algebraic groups
(Martinet-Ramis)’ then one can generalize the notion of
configuration space for such packs of infinitely near
singularities and the corresponding fundamental groups
are:

generalized braid groups,

more precisely G-braid groups, G being a reductive
algebraic group (cf. E. Brieskorn).

'An algebraic version of Ecalle pointed alien derivations,

INVARIANTS |...

J.P. Ramis
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Reductive groups

Let G be a complex linear algebraic group, by definition it
is reductive if it does not contain an invariant algebraic
subgroup isomorphic to G (i. e. to the additive group
(C,+)). Itis equivalent to say that the unipotent radical
Ru(G) of Gis trivial, or that the radical R(G) of G is an
algebraic torus.

The following conditions are equivalent:

INVARIANTS |...

J.P. Ramis

Reductive groups
and generalized
braids groups



Reductive groups

Let G be a complex linear algebraic group, by definition it
is reductive if it does not contain an invariant algebraic
subgroup isomorphic to G (i. e. to the additive group
(C,+)). Itis equivalent to say that the unipotent radical
Ru(G) of Gis trivial, or that the radical R(G) of G is an
algebraic torus.

The following conditions are equivalent:

@ G is reductive;

INVARIANTS |...

J.P. Ramis
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INVARIANTS |...

Reductive groups

J.P. Ramis

Let G be a complex linear algebraic group, by definition it
is reductive if it does not contain an invariant algebraic
subgroup isomorphic to G (i. e. to the additive group
(C,+)). Itis equivalent to say that the unipotent radical
Ru(G) of Gis trivial, or that the radical R(G) of G is an
algebraic torus.

The following conditions are equivalent:

Reductive groups
and generalized
braids groups

@ G is reductive;

@ G contains a compact group (in the sense of the
usual topology) which is Zariski dense;



Reductive groups

Let G be a complex linear algebraic group, by definition it
is reductive if it does not contain an invariant algebraic
subgroup isomorphic to G (i. e. to the additive group
(C,+)). Itis equivalent to say that the unipotent radical
Ru(G) of Gis trivial, or that the radical R(G) of G is an
algebraic torus.

The following conditions are equivalent:

@ G is reductive;

@ G contains a compact group (in the sense of the
usual topology) which is Zariski dense;

@ every rational representation of G (morphism of
algebraic groups G — GL(V)) is semi-simple.

INVARIANTS |...
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Reductive groups
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Let G be a connected complex reductive group, We fix a
maximal torus T C G (Cartan sub-group), we denote the
corresponding Lie algebras t C g. Let R C t* be the set of
roots of G relative to T (non zero weights). To a € R, we
associate the root space g, C g:

go = {Xx € g|[h x] = a(h)x,Vh e t}.
Thendimgc g, = 1. We have g =t ® P da-
Let N(T) : be the normalizer of T:
N(T) ={ge G|gT =Tg},then W:= N(T)/T is the
Weyl group of G. It can be interpreted as a finite group of
complex reflections on the complex space t. To each root
« is associated a reflection hyperplane A,,.

If G := SIy(C), then we can choose for T the group of
invertible diagonal matrices. Then t ~ C”, the roots are
X — X; — X;, the roots hyperplanes are A := {x; = x;}
and the Weyl group is the permutation group &.

INVARIANTS |...

J.P. Ramis
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Regular elements of a Cartan sub-algebra,
generalized pure braid groups

Let G be a connected complex reductive group, We fix a
maximal torus T C G (Cartan sub-group), we denote the
corresponding Lie algebras t C g. Let R C t* be the set of
roots of G relatively to T.
By definition, the regular subset of the Cartan Lie-algebra
tis:

treg := t \ Unper Aa-
We have A € tgg if and only if o(A) # 0 for all a € R.
If G := Sly(C), then treg = C" \ U, ,; Ajj (configuration
space).
By definition the generalized pure braid group associated
to the complex algebraic Lie-algebra g is 71 (treg). If
G := SIy(C), then we get the classical pure braid group.

INVARIANTS |...
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Reductive groups and deformations of O.D.E.

In order to have a “good theory” of iso-irregular
deformations, we will suppose in the following that the
local gauge groups at the irregular singularities of our
O.D.E. are connected reductive groups.

INVARIANTS |...

J.P. Ramis
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Reductive groups, positive roots, Borel
subgroups

Let G a connected complex reductive group, T C G a
maximal torus and R C t* the corresponding set of roots.
We say that R™ C R is a subset of positive roots if:

—forallaeR,a e Ror—acR

— foralla,B € R, a # 3, if a + 3 is a root, then
a+pBeERT.
If R is a subset of positive roots, then R~ := —R™*
is also a subset of positive roots.

The one-parameter subgroups U, := exp g,

a € RT, generate a unipotent subgroup U™ of G, the
unipotent radical of a Borel subgroup B* of G.
Replacing R by R, we get U~ and the opposite
Borel subgroup B~.

Using convenient coordinates, this corresponds to
triangular subgroups.

INVARIANTS |...
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WILD CHARACTER VARIETIES

BRAIDING OF STOKES DATA

and

ISO-IRREGULAR DEFORMATIONS

INVARIANTS |...
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INVARIANTS |...

Irregular points
J.P. Ramis

Let D be a germ of complex disc and a local coordinate z
vanishing at the center. We denote K := C((z)) and

O := C[[z]] (intrinsic differential algebras).

An (unramified) irregular point is the following data set:

Wild character
varieties, braiding
of Stokes data and
iso-irregular
deformations



|rregu|ar pOIﬂtS INVARIANTS I...
J.P. Ramis
Let D be a germ of complex disc and a local coordinate z
vanishing at the center. We denote K := C((z)) and
O := C[[z]] (intrinsic differential algebras).
An (unramified) irregular point is the following data set:

@ a connected complex reductive group G (with Lie
algebra g),

Wild character
varieties, braiding
of Stokes data and
iso-irregular
deformations



INVARIANTS |...

Irregular points
J.P. Ramis
Let D be a germ of complex disc and a local coordinate z
vanishing at the center. We denote K := C((z)) and
O := C[[z]] (intrinsic differential algebras).
An (unramified) irregular point is the following data set:

@ a connected complex reductive group G (with Lie

algebra g),
@ a maximal torus T C G (with Lie algebra t C g),

Wild character
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of Stokes data and
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|rregu|ar pOIntS INVARIANTS I...
Let D be a germ of complex disc and a local coordinate z
vanishing at the center. We denote K := C((z)) and
O := C[[z]] (intrinsic differential algebras).

An (unramified) irregular point is the following data set:

J.P. Ramis

@ a connected complex reductive group G (with Lie
algebra g),

@ a maximal torus T C G (with Lie algebra t C g),

@ a positive integer r € N, r > 0 (Katz rank),

Wild character
varieties, braiding
of Stokes data and
iso-irregular
deformations



Irregular points

Let D be a germ of complex disc and a local coordinate z
vanishing at the center. We denote K := C((z)) and
O := C[[z]] (intrinsic differential algebras).

An (unramified) irregular point is the following data set:

@ a connected complex reductive group G (with Lie
algebra g),

@ a maximal torus T C G (with Lie algebra t C g),

@ a positive integer r € N, r > 0 (Katz rank),

@ an irregular type, that is:

Q.= zf+"'+ e

where A;et (j=1,....r).

Intrinsically Q € ¢(K)/4O).
We denote by H C G the normalizer of Q.

INVARIANTS |...
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INVARIANTS |...
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If X is a Riemann surface, we will denote an irregular
point “at a € X” by (a, Q) (omitting Gand T). If Q =0,
(a, Q) = (a,0) is, by definition, a regular singular point.

Wild character
varieties, braiding
of Stokes data and
iso-irregular
deformations
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Irregular curves or wild Riemann surfaces

We consider a Riemann surface X with m > 1 marked
points ay,...,am. Foreach a;, i =1,..., m, we fix:

J.P. Ramis
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Irregular curves or wild Riemann surfaces

We consider a Riemann surface X with m > 1 marked
points ay,...,am. Foreach a;, i =1,..., m, we fix:

J.P. Ramis

@ a connected complex reductive group G;,
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INVARIANTS |...

Irregular curves or wild Riemann surfaces

We consider a Riemann surface X with m > 1 marked
points ay,...,amn. Foreach a;, i =1,..., m, we fix:

J.P. Ramis

@ a connected complex reductive group G;,
@ a maximal torus T; C G;j, with Lie algebra t; C g;,
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Irregular curves or wild Riemann surfaces

We consider a Riemann surface X with m > 1 marked
points ay,...,amn. Foreach a;, i =1,..., m, we fix:

@ a connected complex reductive group G;,
@ a maximal torus T; C G;j, with Lie algebra t; C g;,
@ a positive integer r; € Q, r; > 0 (Katz rank),

INVARIANTS |...
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Irreqular curves or wild Riemann surfaces

We consider a Riemann surface X with m > 1 marked
points ay,...,amn. Foreach a;, i =1,..., m, we fix:

@ a connected complex reductive group G,

@ a maximal torus T; C G;j, with Lie algebra t; C g;,
@ a positive integer r; € Q, r; > 0 (Katz rank),

@ an irregular type at a;, that is:

Air, Ai 1

—i =

Q = e .

where z is a local coordinate vanishing at a; and
A,'J'Gt,', (j:1,,r/)

INVARIANTS |...
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Irreqular curves or wild Riemann surfaces

We consider a Riemann surface X with m > 1 marked
points ay,...,amn. Foreach a;, i =1,..., m, we fix:

@ a connected complex reductive group G,

@ a maximal torus T; C G;j, with Lie algebra t; C g;,
@ a positive integer r; € Q, r; > 0 (Katz rank),

@ an irregular type at a;, that is:

Air, Ai 1

—l 4=
Z' V4

Q=

where z is a local coordinate vanishing at a; and
A,'J'Gt,', (j:1,...,fj).

These data define an irregular curve or wild Riemann
surface. Equivalently such a curve is the data of a
Riemann surface with m marked irregular points
(a, Q) (i=1,...,m).
We denote by H; C G; the normalizer of Q;.

INVARIANTS |...
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An irregular curve or wild Riemann surface

Figure: From Ph. Boalch

INVARIANTS |...
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We will associate to an irregular curve a moduli of repre- INVARIANTS .

sentations. In order to have a good notion of deforma-
tion (some kind of flatness) we will suppose that the
coefficient A; , of the most polar part z’;,’" of Q; is regular:
Air € (teg (i=1,....,m).
Intuitively an irregular point is a pack of infinitely near
points and the regularity hypothesis allows the deforma-
tion of this pack “without crossing”. The homotopy class
of a deformation loop of the pack corresponds to an ele-
ment of a generalized braid group. This element will acts
naturally on the classes of wild representations.

J.P. Ramis

According to E. Witten, we can interpret the positions of Wild character
the a; and the Q; as the non topological data of a wild e ol

iso-irregular

representation and, on the contrary, the Stokes matrices deformations
and the actual (or equivalently the formal) monodromy as

the generalized topological data. In an iso-irregular

deformation the non topological data move but the

generalized topological data remain fixed.



INVARIANTS |...

J.P. Ramis

We have several (pack of) “times”. One is controlling the
deformations of the set of singularities (a;) (modulo the
action of the Mdbius group), the others control the

deformations of the most polar part =% of each Q;.

Z'i

Wild character
varieties, braiding
of Stokes data and
iso-irregular
deformations



Stokes data and monodromy associated to
an irregular point

Following Martinet-Ramis, Ramis, Boalch. Cf. van der Put-Singer book

Let (a, Q) be an (unramified) irregular point. We choose a
coordinate z vanishing at a and set a = 0. We will define
the Stokes data associated to (0, Q).

For each root o € R C t*, we may define g, := a0 Q,
using z we can interpret g, as a polynomial without
constant term g, € 1C[1] of degree deg g, = ra.

We interpret the real blow up of the origin as the circle S',
a direction d € S will be said to be a singular direction
(or Stokes line) supported by « if the holomorphic
function e9 has a maximal decay as z — 0 in the
direction d.

We denote by R(d) C R the non empty finite subset of
the roots supporting d € S'. It is a subset of some subset
of positive roots.

INVARIANTS |...
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Stokes data and monodromy associated to
an irregular point

We denote by R(d) C R the non empty finite subset of
the roots supporting d € S'. It is a subset of some subset
of positive roots. By definition, the Stokes group associa-
ted to a singular direction d € S' is the algebraic sub-
group Sty of G generated by the one parameter sub-
groups exp g, @ € R(d). The Stokes groups are
unipotent. The Lie algebra sty of Sty is:

P s co,

aeR(d)
it is nilpotent.

The Stokes groups Sty are normalized by H.

INVARIANTS |...
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Stokes data and monodromy associated to
an irregular point

Let (0, Q) be an irregular point, we denote by H the
normalizer of Q in G. We can define:

@ a formal monodromy M € H

@ a set of Stokes multipliers Sy € Sty, d € S! being a

singular direction; we call this set: Stokes data..
These data form “by definition” a representation p of the
(local) wild-fundamental group:
M= p(ft), Sa=plog)
Let A € b such that M = exp 2irA. The preceding
representation is associated to a meromorphic
connection formally equivalent (modulo the gauge action
of G(K)) to the connection d — (dQ + A%).
Starting from a base point on S' (a non singular
direction) and indexing the singular directions
counterclockwise, we get the actual monodromy M:
M= MSy, ...Sq,

INVARIANTS |...
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Starting from a base point on S' (a non singular
direction) and indexing the singular directions
counterclockwise, we get the

= MSy, ... S4,.
Therefore it is natural to define an element ;. of the wild
fundamental group by

= [lOg, - .- Odp,,
and to identify it with a generator of 71(S"). Then 71(S")
is identified to a subgroup of the wild fundamental group
7T17w(0, Q).

Be careful, there are subtle constraints on the generators
i, oq of m1 4 (0, Q). Itis possible to build “free generators
(in alien derivations style): Martinet-Ramis.

There are also constraints on the representations, they
disappear in Martinet-Ramis construction.

INVARIANTS |...
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Deformations leaving the Stokes data and
monodromy “constant”

We want to move an irregular point with Stokes data and
monodromy in such a way that Stokes data and
monodromy remain “constant” in a reasonable sense.

We start from an irregular point (0, Q) and we “move it a
ittle bit’: (a, Qa), with Qa := 249 + . + 412 such that
Ar(a) € treg (we allow only deformations such that the

order of the pole of Q; dos not change).

We work with matrices: G € GL,(C), T diagonal. Starting
from a system of Stokes data at (0, Q), we can associate
to it a set of effective singular directions: the singular
directions d such that Sy # I. When we move, it can
happen that an effective direction “splits” in two or more
effective directions (two different roots can support the
same direction...).

INVARIANTS |...

J.P. Ramis
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Deformations leaving the Stokes and PATANTS L
J.P. Ramis
monodromy data “constant”

We work with matrices: G C GLj(C), T diagonal. Starting
from a system of Stokes data at (0, Q), we can associate
to it a set of effective singular directions: the singular
directions d such that Sy # I. When we move, it can
happen that an effective direction “splits” in two or more
effective directions, therefore the good definition is fo
keep the local products of Stokes matrices constant
(Ueno-Miwa-Jimbo, Boalch).

In terms of data associated to a family of germs at 0 of T S s
irregular connection, this corresponds to fix the action of s

S, oSg, d', d" being two fixed regular directions, Sy
d < d < d” “sufficiently near” d.
Supposing moreover that the formal monodromy remains

constant, we define a local version of iso-irregular
deformation.



Wild character varieties: the local case INVARIANTS ..

J.P. Ramis

We start from an irregular point (0, Q). The group H C G
(normalizing Q) acts by adjoint action on the Stokes data
and the monodromy (formal or actual), by definition the
set of classes is the wild character variety associated to
(0, Q), equivalently it is the set of equivalence classes of
representations of the wild fundamental group associated
to (0, Q).

Wild character
varieties, braiding
of Stokes data and
iso-irregular
deformations



Wild fundamental groupoid: the global case

We start from an irregular curve (X, (a1, Q1), - .., (@m, Qm))-

We suppose that all the G; are equal: G; = G and, for
simplicity, that G is an algebraic subgroup of GL,(C), T
being diagonal.

We define an associated wild fundamental groupoid,
“adding” some irregular data to the fundamental group
m(X\{a1,...,am},*), x € X\ {a1,...,am}.

As explained before, it is possible to define a wild
fundamental group but in order to have a “good RH
correspondence” it is necessary to define a groupoid
(Jimbo-Miwa, Boalch, Witten, van der Put-Saito).

INVARIANTS |...
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In X we replace each a; by its real blow up 9; (9; ~ S'), PATANTS L

we get a “partial compactification” X of X \ {ai,...,am}: S Ramis
X=X\{a,...,an}u |J o

i=1,....m

For each /, we choose a; € 0; (a direction at a;). We
consider the space X with m+ 1 (resp. m) base points:
*€ X\{ai,...,am}, at,...,am (resp. ai,...,am). We
will define “the” wild fundamental groupoid

7T1,W((X7 (a17 01)7 sy (3ma Qm))?*) é1 gty ém)
(resp. m1.w((X, (@1, Q1),...,(8m, Qm)); a1, ..., am)) of the

Wild character

irregular curve. varieties, braiding

The idea is to *add” irregular datato the classical funda-  feneaier

mental groupoid, with m + 1 base points: qeformations
7T1(X;*,é1,...,ém) ,

more precisely at each point a; we “add” the wild
fundamental group 71 w(a;, Q;):



INVARIANTS |...

J.P. Ramis
The idea is to “add” irregular data to the classical funda-
mental group, with m + 1 base points:
7T1(X;*,é1,...,ém) f

more precisely at each point a; we “add” the wild
fundamental group 71 w(a;, Q;):
we glue 71 w(a;, Q;) with (X;%,31,...,38m) “in van
Kampen style”:

™ ()"(' *, é'l Yo ém) *1(8),3)) 7r1,W(aia OI) Wild character

varieties, braiding
of Stokes data and
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deformations



14 EDWARD WITTEN

FIGURE 2. A Riemann surface C, here taken to be of genus go = 1,
with an irregular singularity at a point p. A basepoint is taken at
g. Show are the Stokes rays near p and the important paths in
defining the generalized monodromy data.

Figure: Wild fundamental groupoid: g=1, m=1
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INVARIANTS |...

Wild character varieties: the global case

J.P. Ramis

Let G be a complex reductive linear algebraic group.
Let (X, (a1, Q1),...,(am, Qm)) be an irregular curve, with
Gi=G,foralli=1,...,m.
The space of “group homomorphisms”:
Homgr(71'1’w((X, (31, 01 )7 ey (am, Qm)), *, é1, ey ém)7 G)
is a smooth affine variety, it has an action of G™*1, the
quotient (in an algebraic sense) is a wild character .
Variety of Stokes data and

) iso-irregular

deformations



Wild character varieties and deformations

We interpret the wild character variety associated to an
irregular curve as a fiber above a “point” corresponding to
this irregular curve, then we get a fiber space above the
moduli of irregular curves (X is fixed and we move the
regular and irregular singularities respecting the “non crossing”
restrictions). Iso-irregular deformation defines a
connection on this bundle, that is a way to identify cano-
nically the fibres above a small “simply-connected” open
subset of the basis. Hence the “fundamental group of the
basis” acts on the fibres, that is on each wild character
variety.

It remains to understand the “fundamental group of the
basis”, that is the global wild braid group, and its action.

INVARIANTS |...
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Wild braids: the g|oba| case INVARIANTS |...

J.P. Ramis

Let G be a complex reductive linear algebraic group.

Let (X, (a1, Q1),...,(am, Qm)) be an irregular curve, with
G =G, foralli=1,...,m.
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Let G be a complex reductive linear algebraic group.

Let (X, (a1, Q1),...,(am, Qm)) be an irregular curve, with
G =G, foralli=1,...,m.
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@ of a classical pure braid group Pp_1;
@ of m copies of the wild braid group associated to G;
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Wild braids: the global case

J.P. Ramis
Let G be a complex reductive linear algebraic group.
Let (X, (a1, Q1),...,(am, Qm)) be an irregular curve, with
G =G, foralli=1,...,m.
There are some actions on the corresponding wild
character variety
@ of a classical pure braid group Pp_1;
@ of m copies of the wild braid group associated to G;
It remains to “put the things together”. | conjecture Wild character
that there is a: of Stoket data and
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Let G be a complex reductive linear algebraic group.
Let (X, (a1, Q1),...,(am, Qm)) be an irregular curve, with
G =G, foralli=1,...,m.
There are some actions on the corresponding wild
character variety
@ of a classical pure braid group Pp_1;
@ of m copies of the wild braid group associated to G;
It remains to “put the things together”. | conjecture Wild character
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Wild braids: the g|oba| case INVARIANTS |...

J.P. Ramis
Let G be a complex reductive linear algebraic group.

Let (X, (a1, Q1),...,(am, Qm)) be an irregular curve, with
G =G, foralli=1,...,m.

There are some actions on the corresponding wild
character variety :

@ of a classical pure braid group Pp_1;
@ of m copies of the wild braid group associated to G;

It remains to “put the things together”. | conjecture Wild character
that there is a: e
. g . iso-i I
“braiding of braids”, i

a G-braid is “hidden” in an “infinitesimal neighbor-
hood” of each classical strand (of Pp,_1).



Figure: Braiding of braids

INVARIANTS |...

J.P. Ramis

Wild character
varieties, braiding
of Stokes data and
iso-irregular
deformations



Braiding of braids and wild mapping class
groups

The global wild braid group is described as a (pure) brai-
ding of (generalized) braids group.

Using “natural generators” of braids of braids groups, it is
“easy” to compute the action of these groups on “natural
generators” of the wild fundamental groups (the action of
“wild mapping class groups”). Then we can see that the
corresponding actions on the wild character varieties are
polynomial (they are computed using matrix multiplications).

INVARIANTS |...
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Braiding of braiding of... braiding of braids NVARIANTS |

J.P. Ramis
For more degenerate cases of irregular points, there are
multi-levelled Stokes phenomena (several slopes), |

conjecture that in such cases we get a multi-scale
braiding, in Russian dolls style (cf. Boalch).

Wild character
varieties, braiding
of Stokes data and
iso-irregular
deformations

Figure: Russian dolls: a multiscale metaphor...
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Generalized isomonodromic systems

Following Y. Sibuya J.P. Ramis

Let U be an open set in C and V a polydisc in C". We
consider an holomorphic parametrized differential
system:

(A): L =A(z,t)Yon U x V((z,t) e Ux V).
We will say that the system (A) is isomonodromic if there
exists a covering (U;),c; of U by simply connected open
sets and fundamental systems of solutions Y; on U; x V
such that the connection matrices Cy := Yj‘1 Y are

independant of t € V.

The system (A) is isomonodromic if and only if there il
exists n holomorphic invertible matrices By ..., B, on o Siokes gata and
U x V such that the Pfaffian system: deformations

oY oY

— =Az,t)Y, — =Byz,t)Y, h=1,....n

oz =AY, Ge=Biz1)

is completely integrable.



The system (A) : % = A(z,t)Y is isomonodromic if and
only if there exists n holomorphic invertible matrices

B;...,Byon U x V such that the Pfaffian system:
oY oY
E—A(Z,t)Y, %—Bh(z,t)Y, h—17,n

is completely integrable, that is if we have (x):

0By, 0A B
ﬁ_aith_[A7Bh]’ h—1,,n
0B, 0By

— — — =[Bx,B hk=1,...
8tk ath [k7 h]’ ) ) 7n

Equivalently, if Q := Adz + > p_; By dty, d2 —QAQ =0.

Using summation in sectors at each irregular singular

point, we can define a notion of iso-irreqular deformation.

Using wild RH it can be translated in terms of natural
connections on wild character varieties. Then:

RH,,: transcendental dynamics of (x) — algebraic dynamics

INVARIANTS |...

J.P. Ramis
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APPLICATION TO THE DYNAMICS
OF THE PAINLEVE EQUATIONS

(Conjectures...)

Application to the
dynamics of the
Painlevé equations



The rules of the game

following van der Put and Saito

We consider local families of rational linear systems of
rank two on P'(C), with structure group SLy(C) (i. e.
trace-free matrices):

ﬂ
dz

(regular or irregular singularities, ramified or not),

t € U c C™Mis a parameter. We denote S the singular set
and |S| € N* its cardinal. We denote r(a) the Katz rank
(slope of the Newton polygon) at a singular point a,
r(@eNorr(a)e } +N.

We ask that the dimension of the fibers of RH (or RH,, is
one (working up the action of the Mobius group or a
subgroup). Then |S| > 4 is excluded and there are only
the following possibilities:

=A(z,)Y
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We ask that the dimension of the fibers of RH (or RH,, is
one (working up the action of the Mobius group or a
subgroup). Then |S| > 4 is excluded and there are only
the following possibilities:
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We ask that the dimension of the fibers of RH (or RH,, is
one (working up the action of the Mobius group or a
subgroup). Then |S| > 4 is excluded and there are only
the following possibilities:

Q@ |S| =4, then S ={0,1,, t}, only regular singular
points;
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We ask that the dimension of the fibers of RH (or RH,, is
one (working up the action of the Mobius group or a
subgroup). Then |S| > 4 is excluded and there are only
the following possibilities:

J.P. Ramis

Q@ |S| =4, then S ={0,1,, t}, only regular singular
points;

@ |S| =3, then S = {0,1, 0}, only one irregular point
oo with r(o0) € {1,% ;

Application to the
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We ask that the dimension of the fibers of RH (or RH,, is
one (working up the action of the Mobius group or a
subgroup). Then |S| > 4 is excluded and there are only
the following possibilities:

J.P. Ramis

Q@ |S| =4, then S ={0,1,, t}, only regular singular
points;

@ |S| =3, then S = {0,1, 0}, only one irregular point
oo with r(o0) € {1,% ;

©Q |S| =2, then S = {0, 0o}, one regular point and one
irregular point or two irregular points;
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INVARIANTS I...
We ask that the dimension of the fibers of RH (or RH,, is J.P. Ramis
one (working up the action of the Mobius group or a
subgroup). Then |S| > 4 is excluded and there are only
the following possibilities:

Q@ |S| =4, then S ={0,1,, t}, only regular singular
points;

@ |S| =3, then S = {0,1, 0}, only one irregular point
oo with r(o0) € {1,% ;

©Q |S| =2, then S = {0, 0o}, one regular point and one
irregular point or two irregular points;

Q |S| =1, then S = {co}, one irregular point.

Application to the
dynamics of the
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We ask that the dimension of the fibers of RH (or RH,, is
one (working up the action of the Mobius group or a
subgroup). Then |S| > 4 is excluded and there are only
the following possibilities:

Q@ |S| =4, then S ={0,1,, t}, only regular singular
points;

@ |S| =3, then S = {0,1, 0}, only one irregular point
oo with r(oo) € {1,% ;

Q |S| =2, then S = {0,000}, one regular point and one
irregular point or two irregular points;

@ |S| =1, then S = {c}, one irregular point.
There are relations with Heun equations (ordinary,

confluent, biconfluent, doubly-confluent and
triconfluent).

INVARIANTS |...
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The ten families of “Painlevé systems”

Dynkin | Painlevé equation || 7(0) | #(1) | r(c0) | r(t) | dimP
Dy PVI 0 0 0 0 4
Ds PV 0 0 1 - 3
Ds | PVae=PII(D6) | 0 | 0 | 1/2 | - 2
D PIII(D6) T -1 |- 2
Dy PITI(D7) 2] - | 1 | - 1
Ds PIII(DS) 2] - |12 -] o
Fe PIV 01 - 2 | - 2
E; PII 0 - 3/2 | - 1
B, PII R 3 | - 1
Fs PI - 52| - 0

Figure: Following van der Put and Saito, r(.) is the Katz rank

TABLE 1. Classification of Families

at the singular points. There are ramified cases

INVARIANTS |...
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Table of the systems and of the (wild) characteristic INVARIANTS ..
varieties J.P. Ramis

(0,0,0,0). PVL 4y Aoy AL Al tr(AL) = 0.

=1 T it
T1Tox3 + 7‘% + T% + ’1‘2; — $1%1 — S99 — S3x3 + sS4 = 0, with
si = ajas + ajar, (4,7,k) = a cyclic permutation of (1,2, 3),
s4 = ajazazas + a3 + a3 + a3 + a? — 4 with a1, az,a3,a4 € C.

(0,0,1). PV. LAy A /2 (0,0, all tr(A,) = 0.

212273 + 27 + 23 — (51 + 5283)71 — (S2 + 5183)T2 — S333 + 83 + s15253 + 1 = 0 with
51,82 € C, s3 € C*.

(0,0,1/2). PVgeq. 4oy Aoy Ay (08 ATl ir(A) = 0.

12923 + T3 + 23 + 5071 + s122 + 1 = 0 with sg,s; € C.
(1,-,1). PIII(DG). 2L 4 Agr 4+ A+ (j_z)z, all tr(A,) = 0.

212273 + 27 + 23 + (1 4+ afB)z + (a + B)za + B = 0 with o, 8 € C*.

Application to the
dynamics of the
Painlevé equations

Figure: Following van der Put and Saito



INVARIANTS |...

(1/2,-,1). PIII(D7). skt Aoz A+ (25)z, all tr(AL) = 0.

—t
2

J.P. Ramis
712923 + T3 + T3 + @z + 22 = 0 with o € C*.

(1/2,-,1/2). PII(DS). dh (00 (5 + (0= Gonton
212023 + 27 — 23 —1=0.

(0,-,2). PIV. 2+ Ao+ Az + (g )2

T1T9T3 + T3 — (83 + S152)T1 — S3T0 — S323 + 53 + 5155 = 0 with 51 € C, so € C*.

(0,-,3/2). PIIFN. 2+ Ao+ (12 + (0 0)22

T1T2w3 + 11 — T2 + 23 + 5 =0, with s € C.

(--,3). PIL &t Ao+ Az (5 )% all tr(AL) =0.

T1T2x3 — X1 — axe — 23+ a+ 1 =0 with a € C*.

(--45/2). PL L)+ D+ o)

T1T2T3 + 11 + T 1=0.
12223 1+ @2+ Application to the

dynamics of the
Painlevé equations

Table of the equations of the monodromy spaces for the 10 families.



The CaSG Of P/I/ (D6) INVARIANTS I...
(following van der Put-Saito) iR [REE

Two irregular singularities: 0, oo, with Katz rank 1

(r(0) = r(c0) = 1), no regular singularity.

We have a family of differential systems:

zZ + Aoz + Ay + Az, up to a scaling z — Az, we can

suppose that:

Q = (4z71,-%z7") and Q. = (}z,—%z).

Choosing adapted basis for the spaces of formal
solutions at 0 and oo, say (e, ez) for Soly and (fi, f2) for
Sol, , we get:

N Q 0 1 0 1 a
W= (5 21) Se= (5 7)) Soai=(g F) sy

Painlevé equations
~ (B0 (1 0 (1 b
MX T <O 3 ‘|>7 800,2 T <b1 1) ) 800,1 T <O 1 > .



INVARIANTS |...

We have:
J.P. Ramis
Y B o ads
Mo MOSO’2SO’1 N <a1a1 0571(1 + a4 32)>
- B Bb2
M., = M 00,2900,1 — _ _ .
So0.2500.1 <5 by B71(1+ bybe)
The matrice of the link L : Soly — Sol, in the choosen
. {1 Lo M M2
basis is (fs €4> € Sh(C). We set My = <m3 m4>'
Using M., L = LMy, we eliminate the data at co. Then the
coordinate ring for the variety of representations is the
localization of:
C[m1 Y £ (7O AT ,£4]/(m1 Mg—Mmomz—1, 0104 —Flof3—1 ) Application to the

dynamics of the
Painlevé equations

given by:
0#£a=myand 0 # 3 = l1lamy + lalgmsg — £103Mo — Lolzmy.



We quotient by the action of C* x C* on the basis INVARIANTS I...

(algebraically): JP. Ramis
e, 69, fi , fo — ey R A1 €, ,uf1 s ,u*1 fo.

The corresponding ring of invariants is a localization of a

quotient of C[my, My, {104, Mal1l3, M3laly]. Itis the wild

character variety.

Setting y1 := l14s, Yo := Molils, y3 := my, we get, for

fixed «, 8, a cubic surface:

Yo(B—ayr +y2+ (1 — 1)y3) +yi(ys — 1)(1 — ays) =0,
and, after some simple transformations the cubic surface:

Sup = {X1XeXa+XF+X5+(1+ap) X1 +(a+B)Xe+a3 = 0}.

The wild braid groups at 0 and oo are isomorphic to

71(C*) =~ Z, they acts polynomially on the wild character LI
Variety Sa,ﬁ- Painlevé equations
As B; is trivial, following a conjecture above (braiding of braids)

the wild group must be isomorphic to Z x Z.



INVARIANTS |...

J.P. Ramis

INTEGRABILITY AND NON-LINEAR GALOIS THEORY

Non-linear Galois
theory



Non-linear differential Galois theory

At the end of XIX-th century and at the beginning of XX-th
century, J. Drach and afterwards E. Vessiot tried to create
a non-linear differential Galois theory (which seduced P.
Painlevé who used it to “prove that the solutions of P, are
“new transcendental functions” ). Unfortunately their
definitions were quite imprecise and there were important
gaps in some of their proofs.

Recently H. Umemura (1996) and B. Malgrange (2001)
returned to the problem. Their approaches are a priori
quite different (they are equivalent in some sense in the
algebraic case). Malgrange approach is similar to one of
the approaches proposed by Vessiot.

We must replace the notion of group by the notion of
groupoid (small category whose all the arrows are
isomorphisms).

INVARIANTS |...

J.P. Ramis
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Non-linear differential Galois theory INVARIANTS .

J.P. Ramis

B. Malgrange:

La théorie de Galois différentielle est ce que I'algébre voit
de la dynamique.

Differential Galois theory is what algebra sees from the
dynamics.

More formally, the differential Galois groupoid is the
Zariski closure of the dynamics.

It remains to precise this definition...

Non-linear Galois
theory



Ajoutons que la méthode de Jules DracH, qui est algé- INVARIANTS I...
brigue et conduit directement aux invariants différen-
tiels des /ypes de sous-groupes du groupe ponctuel géné- J.P. Ramis
ral, en pariant des équalions différemtielles, est, au fond,
indépendant de la theorie des groupes de Lie et permet
méme de retrouver cette théorie,

Ernest Vessior a discuté et précisé les principes de la théo-
rie précédente, et donné une auntre théorie rationnelle d'inté-
gration qui repose sur la considération du plus petit groupe de
transformations en #, 9, ..., ¥a, laissant le systéme S invariant,
et contenant la transformation infinitésimale

of L N
&‘F:: 13 (*-V.:---.}'n)o—m|

dont les équations de définition soient rationnelles. Ce groupe
spécifigue est isomorphe au groupe de rationalité : celui-ci
exprime la maniére dont les transformations du groupe spé-
cifique échangent les courbes intégrales [J de 5.

C'est la théorie de I'intégration logique qui a permis
a Paul PanLEVE d'affirmer que les équations qui por
tent son nom définissent des transcendantes irréduc-
tibles aux transcendantes précédemment introduites
dans l'analyse mathématique. On le constate en mon-
trant que les équations dont il s’agit ont pour groupe de
rationalité le groupe (simple) formé des transformations
ponctuelles du plan qui laissent les aires invariantes,

Ernest VEssior,
Directeur honoraire de 'Ecole normale supérieure,

Figure: E. Vessiot. Groupe de Galois différentiel: groupe de Non-linear Galois
rationalité et groupe spécifique, irréductibilité de Pl Uity



G&lOiS—Malgrange groupoid INVARIANTS I...

J.P. Ramis

For sake of simplicity M is a smooth complex affine
algebraic variety.

Let G(M) be the groupoid of formal diffeomorphisms

(M, a) — (M, b). roughly speaking a D-groupoid is a
sub-variety of G(M) defined by PDEs (differential ideal)
whose projections on the jet spaces of finite order form an
algebraic groupoid on M\ Z (Z being an hypersurface).
The Galois-Malgrange groupoid of an autonomous
system x = X(x) is, by définition (Malgrange), the
smallest D-groupoid “containing” the flow of X.

This makes sense (Malgrange). |l y a version for foliations
and a discrete: the smallest D-groupoid “containing” an
automorphism? or, more generally, a subgroup of
automorphisms.

Non-linear Galois
theory

2Similarly a dominant morphism



G&lOiS—Malgrange groupoid INVARIANTS I...

J.P. Ramis

A D-groupoide admits a Lie algebra.

The Galois-Malgrange groupoid of an autonomous
system x = X(x) is the smallest D-groupoid whose Lie
algebra contains X.

In the algebraic case, one can define a D-groupoid by the
conservation of some differential invariants (Drach ?, P.
Gabriel, J.F. Pommaret).

Non-linear Galois
theory



Intégrability and non-linear differential Galois '“VJA:':“T_S'-"
theory E

There is a non-linear variant of Morales-Ramis theorem.

Theorem (Ramis 2002)

If an Hamiltonian system is integrable in Liouville sense
by meromorphic first integrals, then the Lie algebra of its
Galois-Malgrange groupoid & is abelian.

This result follows easily from a symplectic lemma.

In the algebraic case one can deduce from the above
result Morales-Ramis-Simo theorem (and a fortiori
Morales-Ramis theorem) using Artin theorem: Casale
2009.

Non-linear Galois
theory
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Integrability: a change of point of view

J.P. Ramis

In the spirit of Drach and Vessiot, it is possible to define
some notions of integrability using the Galois-Malgrange
groupoid &.

Some possible definitions ?

More and more restrictive definitions of integrability.

Non-linear Galois
theory
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J.P. Ramis
@ A dynamical system (continuous or discrete) on a
complex analytic manifold M is said integrable if its

Galois-Malgrange groupoid is strictly smaller than
&(M).

Non-linear Galois
theory
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J.P. Ramis

@ A dynamical system (continuous or discrete) on a
complex analytic manifold M is said integrable if its
Galois-Malgrange groupoid is strictly smaller than

&(M).
@ A Hamiltonian dynamical system (continuous or
discrete) on a complex analytic manifold

(M,w) is said integrable if its Galois-Malgrange
groupoid is strictly smaller than the
in &(M).

Non-linear Galois
theory



INVARIANTS |...

J.P. Ramis
@ A dynamical system (continuous or discrete) on a

complex analytic manifold M is said integrable if its
Galois-Malgrange groupoid is strictly smaller than

&(M).
@ A Hamiltonian dynamical system (continuous or
discrete) on a complex analytic manifold

(M,w) is said integrable if its Galois-Malgrange
groupoid is strictly smaller than the
in &(M).
© A dynamical system (continuous or discrete) on a
complex analytic manifold M is said integrable if its
Lie Galois-Malgrange algebra & is solvable.

Non-linear Galois
theory



@ A dynamical system (continuous or discrete) on a
complex analytic manifold M is said integrable if its
Galois-Malgrange groupoid is strictly smaller than
&(M).

@ A Hamiltonian dynamical system (continuous or
discrete) on a complex analytic manifold
(M,w) is said integrable if its Galois-Malgrange
groupoid is strictly smaller than the

in &(M).

© A dynamical system (continuous or discrete) on a
complex analytic manifold M is said integrable if its
Lie Galois-Malgrange algebra & is solvable.

© A dynamical system (continuous or discrete) on a
complex analytic manifold M is said integrable if its
Lie Galois-Malgrange algebra & is abelian.

INVARIANTS |...

J.P. Ramis
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J.P. Ramis

More precisely there is a whole hierarchy of notions of
integrability according to the list of D-subgroupoids of
G(M). ltis an old idea of Drach and Vessiot.

Integrability in the sense 3 is strongly related to the notion
of integrability by quadratures (Casale, Malgrange).

Non-linear Galois
theory



Non-integrability of Painlevé équations NVARIANTS
J.P. Ramis

To a Painlevé equation y” = Ty = f(t, y), we associate

the vector field

0 0 0
X = E)t+y8y+ (ty) ay’

on the extended phase space (t, y, y’) € C3. We consider
the 2-form v := ix dt Ady A dy'.

The Galois groupoid of a Painlevé équation is a
sub-groupoid of the invariance groupoid G, of the form -,
whose solutions are {I'|l"~ = ~}.

In the case of P,, the Galois groupoid is G, (Casale). ltis

the same for Py, except for the Picard-Painlevé case

(Loray-Cantat). We conjecture that it is also the same for

all the Painlevé équations for generic values of the _ _
parameters. thoory e



A pI"Ob|em INVARIANTS I...

J.P. Ramis

The Riemann-Hilbert map is analytic but not algebraic,
therefore the algebra is not the same on the two sides
and, even if the two dynamics are conjugated, “what
algebra sees from the dynamics” (therefore the Malgran-
ge-Galois groupoid) could be different.

We conjecture that they “coincide” in the generic case (it
is true for Py, according to Loray-Cantat).

Non-linear Galois
theory
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J.P. Ramis

@ Fill the gaps in what | sketched before (easy ?).
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Open problems

J.P. Ramis

@ Fill the gaps in what | sketched before (easy ?).

@ Find the “good algebraic universal structure” for
irregular deformations in the spirit of “algebraic alien
derivations”.

Open problems
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Open problems

J.P. Ramis

@ Fill the gaps in what | sketched before (easy ?).

@ Find the “good algebraic universal structure” for
irregular deformations in the spirit of “algebraic alien
derivations”.

© Understand the relations with some works on the
“non linear Stokes phenomena” for Painleve
equations (lts, Kitaev, Garoufalidis...). Resurgence ?

Open problems
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Open problems

J.P. Ramis

@ Fill the gaps in what | sketched before (easy ?).

@ Find the “good algebraic universal structure” for
irregular deformations in the spirit of “algebraic alien
derivations”.

© Understand the relations with some works on the
“non linear Stokes phenomena” for Painleve
equations (lts, Kitaev, Garoufalidis...). Resurgence ?

© Understand the “confluence” of character varieties
towards irregular character varieties (Cayley cubic
surfaces ?). Understand the dynamics of Painlevé
equations by “confluence” of the dynamics of Py,.

PIV

AN

PVI = PV PIl = PI

Pl
Open problems
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0000

@ Understand the (certainly strong) relations with the
gauge theoretic approach to the geometric
Langlands program introduced by Witten in relation
with many topics in mathematical physics (conformal
fields theory, electric-magnetic duality...).

© Search for possible analogies with the Langlands
program in number theory via some analogies
between wild phenomena in complex foliations and
wild phenomena in number theory: two-scaled
infinitesimals (A. Weil, Deligne, Katz, André, Ramis...).
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0000

@ Understand the (certainly strong) relations with the
gauge theoretic approach to the geometric
Langlands program introduced by Witten in relation
with many topics in mathematical physics (conformal
fields theory, electric-magnetic duality...).

© Search for possible analogies with the Langlands
program in number theory via some analogies
between wild phenomena in complex foliations and
wild phenomena in number theory: two-scaled
infinitesimals (A. Weil, Deligne, Katz, André, Ramis...).

@ Develop similar discrete theories: g-analog theories
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THANK YOU FOR YOUR ATTENTION
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