BPS Black Holes, the Hesse Potential and the Topological String

Gabriel Lopes Cardoso

with Bernard de Wit and Swapna Mahapatra

April 7, 2010

INSTITUTO SUPERIOR TÉCNICO Universidade Técnica de Lisboa

Gabriel Lopes Cardoso (IST)

BPS Black Holes, the Hesse Potential and the

Lyon, April 7, 2010 1 / 14

A (1) > A (2) > A

Motivation: study the relation of four-dimensional BPS black holes in N = 2 theories with topological string theory.

- BPS black holes: charged, supported by complex scalar fields Y¹
- Free energy = Hesse potential. "Hamiltonian" version of effective N = 2 Lagrangian, duality invariant.
- Question: relation of Hesse potential \mathcal{H} to topological string theory?

$$e^{\mathcal{H}} = |Z_{\rm top}|^2 \quad ? \tag{1}$$

Microstates of BPS black holes captured by topological string theory? (OSV conjecture)

• To study (1) construct new variables for the Hesse potential.

Type II on a Calabi-Yau threefold

N = 2 theory: type II string theory on a Calabi-Yau threefold CY_3 . IIB:

- No-where vanishing holomorphic three-form ω .
- ω varies over the space of complex structure deformations \mathcal{M} .
- Locally, homogeneous coordinates X^{I} on \mathcal{M} $(I = 0, ..., h^{2,1})$,

periods
$$X' = \int_{\mathcal{A}'} \omega$$
, $F_l^{(0)} = \int_{\mathcal{B}_l} \omega$, $F_l^{(0)} = \partial F^{(0)}(X) / \partial X'$,

where (A', B_J) symplectic basis of $H_3(CY_3, \mathbb{Z})$.

- Different choices of symplectic basis differ by Sp(2 + 2h^{2,1}, ℤ) transformations (symplectic transformations).
- Period vector $(X^{l}, F_{l}^{(0)})$ undergoes symplectic transformations.
- Sometimes, change of basis can be undone by picking a different ω. Discrete symmetry group Γ ⊂ Sp(2 + 2h^{2,1}, ℤ).
- Period matrix $N_{lJ}^{(0)} = \operatorname{Im} F_{lJ}^{(0)}$, $F_{lJ}^{(0)} = \partial F_l^{(0)} / \partial X^J$.
- Special coordinates $t^i = X^i/X^0$, X^0 $(i = 1, ..., h^{2,1})$.

Topological String Theory (TST)

Perturbative string theory: CFT on 2d worldsheet Σ .

- TST: arises by twisting the internal 2D CFT.
 - Cohomological theory: correlation functions independent of worldsheet metric.
 - Perturbatively defined in terms of an asymptotic expansion in the topological string coupling g_s (complex), with partition function

$$Z_{
m top} = \exp \sum_{g=0}^{\infty} g_s^{2g-2} F^{(g)}(t) ~,~ g_s^{-1} = X^0 ~,$$

topological free energies $F^{(g)}$ computed as correlators on orientable Riemann surface Σ_g of genus g.

- Expect non-perturbative corrections of order e^{-1/g_s} to $\ln Z_{top}$.
- Naively, the twisting yields holomorphic $F^{(g)}(t)$. However: Obstruction, holomorphic anomaly. BCOV 1993

Topological String Theory (TST)

• Hence:

$$\begin{split} Z_{\text{top}} &= & \exp\left[g_s^{-2}\,F^{(0)}(t) + \sum_{g=1}^{\infty}g_s^{2g-2}\,F^{(g)}(t,\bar{t})\right]\,,\\ F^{(g)}(t,\bar{t}) &= & F^{(g)}(t) + R^{(g)}[N^{(0)IJ},F^{(r$$

- Dependence on $1/g_s = X^0$ remains holomorphic.
- Wave function approach: Witten 1993, Aganagic+Bouchard+Klemm 2006
 - ► R^(g) computable via a Feynman graph expansion with
 - ★ $N^{(0)IJ}$ as propagator;
 - * vertices constructed out of $F^{(r < g)}(t)$

▶ define
$$F^{(g)}(X, \bar{X}) = g_s^{2g-2} F^{(g)}(t, \bar{t})$$
 , $g \ge 1$.

Topological Partition Function

Under symplectic transformations $Sp(2 + 2h^{2,1}, \mathbb{Z})$: for $g \ge 1$, • $\tilde{F}^{(g)}(\tilde{X}, \tilde{\tilde{X}}) = F^{(g)}(X, \bar{X})$, functions • $\Gamma \subset Sp(2 + 2h^{2,1}, \mathbb{Z})$: $F^{(g)}(\tilde{X}, \tilde{\tilde{X}}) = F^{(g)}(X, \bar{X})$, invariant. • $1/g_s = X^0$ transforms under Γ , $F^{(g)}(t, \bar{t})$ modular forms.

Thus, under symplectic transformations $Sp(2+2h^{2,1},\mathbb{Z})$,

$$Z_{\rm top} = \exp \sum_{g=1}^{\infty} F^{(g)}(X, \bar{X}) ,$$

transforms as a function.

Now, let's turn to the N = 2 LEEA and the "Hamiltonian" version based on the Hesse potential \mathcal{H} (real):

- \mathcal{H} also transforms as a function under symplectic transformations,
- suggesting the relation

$$e^{\mathcal{H}} = |Z_{top}|^2$$
 . Subtle.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

LEEA

►

- N = 2 Wilsonian action:
 - N = 2 vector multiplets, complex scalar fields Y^{l} (different from X^{l})
 - ▶ higher-curvature interactions \propto Weyl²: (Υ , C^2) Weyl background

$$F(Y,\Upsilon) = F^{(0)}(Y) + \sum_{g=1}^{\infty} \, \Upsilon^g \, F^{(g)}(Y) \; .$$

• Effective action: requires non-holomorphic modifications to make duality symmetries manifest,

G.L.Cardoso, B. de Wit, J. Käppeli, T.Mohaupt, hep-th/0412287

$$F = F^{(0)}(Y) + 2i\,\Omega(Y, \bar{Y}, \Upsilon, \bar{\Upsilon}) \;,$$

- Ω is real, homogeneous function of degree 2.
- Black hole context, $\Upsilon = \overline{\Upsilon} = -64$ at horizon,

$$\Omega = \sum_{g=1}^{\infty} \Upsilon^g \, \Omega^{(g)}(Y, \bar{Y})$$

 $\Omega^{(g)}$ homogeneous of degree 2 – 2g.

A B > 4
 B > 4
 B

Hesse Potential

"Hamiltonian" version based on the Hesse potential $\mathcal{H}(\phi, \chi)$, where

$$\phi' = \mathbf{Y}' + \bar{\mathbf{Y}}^{\bar{\mathbf{I}}} \quad , \quad \chi_I = F_I + \bar{F}_{\bar{\mathbf{I}}} \qquad , \quad F_I = \partial F / \partial \mathbf{Y}'$$

In the context of BPS black holes: electro/magneto-static potentials associated to the electric/magnetic charges (q_I, p^I) .

Behavior under symplectic transformations:

- Wilsonian/LEEA action based on a complex parametrization $(Y', F_l(Y, \bar{Y}, \Upsilon))$. Under symplectic transformations, $Y' \longrightarrow \tilde{Y}' = \tilde{Y}'(Y, \bar{Y}, \Upsilon)$, $\Upsilon \longrightarrow \Upsilon$. Entanglement with $\Upsilon \implies Y' \neq X'$! $\Omega(Y, \bar{Y}, \Upsilon)$ not a function under symplectic transformations.
- "Hamiltonian" version H(φ, χ) based on a real parametrization.
 (φ^l, χ_l) transform as the charges (p^l, q_l). Thus, they are not subjected to Υ-corrections under symplectic transformations.

Therefore
$$\phi' = X' + \bar{X}^{\bar{I}}$$

Proposal:

Construct map between Y_{sugra} and X_{top} by linking them to the Hesse variables (ϕ, χ):

• reexpress the Hesse variables (ϕ, χ) in terms of new variables X,

- The new variables X transform precisely as the topological string variables. Natural to identify $X = X_{top}$.
- $X' = Y' + \Delta Y'(Y, \overline{Y}, \Upsilon)$, iteratively in Υ , complicated expressions.

They are non-holomorphic in view of the reality property of the map.

New Variables for the Hesse Potential

In the supergravity variables, the Hesse potential is given by

$$\mathcal{H} = -i\left(ar{Y}^{I}F_{I} - Y^{I}ar{F}_{ar{I}}
ight) - 2i\left(\Upsilon F_{\Upsilon} - ar{\Upsilon}ar{F}_{ar{\Upsilon}}
ight),$$

where $F = F^{(0)}(Y) + 2i \Omega(Y, \overline{Y}, \Upsilon)$, $F_{\Upsilon} = \partial F / \partial \Upsilon$, with $\Omega = \Upsilon \Omega^{(1)}(Y, \overline{Y}) + \Upsilon^2 \Omega^{(2)}(Y, \overline{Y}) + \dots$

To compare with the topological string, need to express \mathcal{H} in terms of the new variables X^{l} . Compute ΔY^{l} iteratively $(X^{l} = Y^{l} + \Delta Y^{l})$.

At order Υ^2 obtain, in the new variables X^{I} ,

$$\mathcal{H}(X,\bar{X},\Upsilon) = -i\left(\bar{X}^{I}F_{I}^{(0)}(X) - X^{I}\bar{F}_{I}^{(0)}(\bar{X})\right) + 4\Upsilon\Omega^{(1)} + 4\Upsilon^{2}\left[\Omega^{(2)} - iN^{(0)IJ}\left(\Omega_{I}^{(1)} - \Omega_{\bar{I}}^{(1)}\right)\left(\Omega_{J}^{(1)} - \Omega_{\bar{J}}^{(1)}\right)\right]$$

Packaged in terms of symplectic functions, at any order g.

A Generating Function?

Thus, in the new variables X^{l} ,

$$\mathcal{H}(X,\bar{X},\Upsilon) = -i\left(\bar{X}^{I}F_{I}^{(0)}(X) - X^{I}\bar{F}_{I}^{(0)}(\bar{X})\right)$$
$$+4\sum_{g=1}^{\infty}\Upsilon^{g}\left(\Omega^{(g)} + \dots\right),$$

where

- $(\Omega^{(g)} + ...)$ symplectic packages at any order g.
- Non-holomorphic extension of the results of

de Wit, hep-th/9602060.

Holomorphic set-up: tower of symplectic functions that are modifications of $F_{\Upsilon...\Upsilon}$,

$$\mathcal{D}^{g-1} F_{\Upsilon}(Y, \Upsilon)$$
, $\mathcal{D} = \frac{\partial}{\partial \Upsilon} + i F_{\Upsilon I} N^{IJ} \frac{\partial}{\partial Y^{I}}$.

Relation with Topological String Theory

Expressing the Hesse potential in terms of special coordinates $t^i = X^i/X^0$, X^0 $(i = 1, ..., h^{2,1})$, dependence on

 $1/X^0 = g_s$, $1/\bar{X}^0 = \bar{g}_s$ and mixed powers, such as $1/|X^0|^2$.

This is, in general, not of the topological string type,

$$|Z_{\text{top}}|^2 = \exp \sum_{g=1}^{\infty} \left[g_s^{2g-2} F^{(g)}(t, \bar{t}) + \text{c.c.} \right]$$

However, there is no complete knowledge of LEEA Ω for any CY_3 compactification. Thus, various possibilities:

• at this stage, it is consistent to assume

Determines $\Omega^{(g)}(X, \bar{X})$ in terms of topological string data.

Models with S-, T- Duality Symmetries

In general,

$$\left(\mathrm{e}^{\mathcal{H}}\right)_{\mid_{\Omega}} = |Z_{\mathrm{top}}|^2 \,\mathrm{e}^{\mathcal{P}}$$

with P a symplectic function that

- depends on mixed powers of X^0 , such as $1/|X^0|^2$;
- determined in terms of the topological string, such as $N^{(0)IJ}F_{I}^{(1)}F_{\overline{I}}^{(1)}$.

In models with S-, T- duality symmetries ($\Gamma \subset Sp(2 + 2h^{2,1}, \mathbb{Z})$), partial knowledge about Ω . Examples: FHSV-model, STU-model.

For instance, S-duality restricts $\Omega(Y, \overline{Y}, \Upsilon)$ in LEEA:

$$\left(\frac{\partial\Omega}{\partial\mathcal{S}}\right)_{\rm S}' - \Delta_{\rm S}^2 \frac{\partial\Omega}{\partial\mathcal{S}} = \frac{\partial(\Delta_{\rm S}^2)}{\partial\mathcal{S}} \left[-\frac{1}{2} Y^0 \frac{\partial\Omega}{\partial Y^0} - \frac{ic}{4\Delta_{\rm S} (Y^0)^2} \frac{\partial\Omega}{\partial T^a} \eta^{ab} \frac{\partial\Omega}{\partial T^b} \right]$$

Solve iteratively, $\Omega = \Upsilon \Omega^{(1)}(Y, \overline{Y}) + \Upsilon^2 \Omega^{(2)}(Y, \overline{Y}) + \dots$, up to duality invariant terms. Adjusting this ambiguity, get agreement with $F^{(1)}_{*}(X, \overline{X}), F^{(2)}_{*}(X, \overline{X})$.

Gabriel Lopes Cardoso (IST) BPS Black Holes, the

BPS Black Holes, the Hesse Potential and the

Outlook

Concluding:

$$\mathbf{e}^{\mathcal{H}}\big)_{\mid_{\Omega}} = |\mathbf{Z}_{\mathrm{top}}|^2 \, \mathbf{e}^{\mathbf{P}} \; ,$$

with *P* a symplectic function that depends on mixed powers of $X^0 = 1/g_s$.

Need to understand:

- the generating function for symplectic packages which build up \mathcal{H} ,
- non-perturbative corrections e^{-1/g_s} to Ω in models with S-, Tduality symmetries. (LEEA: e^{Y^0} effects).

Thanks!

14/14