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Abstract: We study AdS3 supersymmetric vacua in N = 4 and N = 8, three di-

mensional gauged supergravities, with scalar manifolds ( SO(4,4)
SO(4)×SO(4)

)2 and SO(8,8)
SO(8)×SO(8)

,

non-semisimple Chern-Simons gaugings SO(4) nR6 and (SO(4) nR6)2, respectively.

These are in turn equivalent to SO(4) and SO(4)×SO(4) Yang-Mills theories coupled

to supergravity. For the N = 4 case, we study renormalization group flows between

UV and IR AdS3 vacua with the same amount of supersymmetry: in one case, with

(3,1) supersymmetry, we can find an analytic solution whereas in another, with (2,0)

supersymmetry, we give a numerical solution. In both cases, the flows turn out to be

v.e.v. flows, i.e. they are driven by the expectation value of a relevant operator in the

dual SCFT2. These provide examples of v.e.v. flows between two AdS3 vacua within

a gauged supergravity framework.
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1. Introduction

Three dimensional gauged supergravities turn out to possess a very rich structure, and

one reason to be interested in them, apart from their intrinsic geometrical elegance,

is that they offer a convenient arena to discuss various aspects of AdS3/CFT2 corre-

spondence, much in the same way the study of various backgrounds of five-dimensional

gauged supergravity has been useful in uncovering interesting phenomena in the dual

four dimensional Yang-Mills theory[1, 2, 3].

The construction of three dimensional, N -extended, gauged supergravities has been

worked out systematically for any N ≤ 16 in [4] extending previous results on N = 8, 16

obtained in [5, 6, 7]. When gauging isometries of the scalar manifold of the original,

ungauged supergravity theory, one introduces gauge fields which have Chern-Simons

kinetic terms and therefore do not represent propagating degrees of freedom. On the

other hand, when reducing a higher dimensional supergravity theory down to three

dimensions, which is the instance we are interested in, one generically obtains gauge-

fields with Yang-Mills like kinetic terms. The apparent puzzle was solved in [4] and [8]

and has to do with the duality between gauge fields and scalars in three dimensional

space-time: more precisely, it has been shown there that, if the gauge group is not

semisimple, but contains nilpotent shift symmetries, i.e. it is of the form G nRdimG,

then one can integrate out half of the 2 dimG Chern-Simons gauge fields to produce a

Yang-Mills action for the remaining ones. At the same time, dimG scalars can be set to

zero by using the shift symmetries. In other words, one trades scalars with vectors and,

of course, the number of physical degrees of freedom is unchanged. This mechanism

has been employed, for example, in [9] for N = 8, where it has been shown that a

gauging by SO(4)nR6 indeed reproduces, at the N = 8 point in the scalar manifold,

the Kaluza-Klein spectrum of the six-dimensional (2,0) supergravity on AdS3×S3[10].

The latter is the background one obtains by taking the near horizon geometry of a

D1-D5 system of type IIB theory on K3 or T 4, corresponding to a CFT2 with (4,4)

supersymmetry.

In this paper, we analyze two examples of gauged supergravities with non-semisimple

gauging, with N = 4 and N = 8 supersymmetry, whose scalar manifolds take the forms

of ( SO(4,4)
SO(4)×SO(4)

)2 and SO(8,8)
SO(8)×SO(8)

, respectively. As for the gauging, we will consider

gauge groups SO(4)nR6 and (SO(4)nR6)2, respectively. These turn out to be sub-

groups of the isometry groups which can be gauged consistently with supersymmetry,

as will be shown.

We will study supersymmetric AdS3 vacua in both of these theories, with various

amount of preserved supersymmetries. In the N = 4 case, we will be able to study

the flow between different vacua with different cosmological constants but the same
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amount of supersymmetry. Quite remarkably, we will be able to find an analytic flow

solution between vacua with (3,1) supersymmetry involving two active scalar fields.

For the case of flow between (2,0) vacua which involves three active scalars, we will

discuss a numerical flow solution. The flows turn out to be v.e.v. flows driven by

vacuum expectation values of some operators in the UV. Examples of v.e.v. flows

are known in four dimensional super-conformal field theories, in particular in N = 2

SCFT, where they have been studied using Seiberg-Witten solution in connection with

the Argyres-Douglas fixed points[11, 12, 13]. To the best of our knowledge, these are

the first examples of v.e.v. flows between two AdS vacua in a gauged supergravity

context.

From the higher dimensional perspective, the case with N = 8 supersymmetry (or

better its maximally symmetric vacuum) is related to the brane configuration in type

IIB theory whose near horizon geometry is AdS3 × S3 × S3 × S1 [14], dual to a CFT2

with “large” (4, 4) superconformal algebra[15, 16]. For the N = 4 case, which has a

(4,0) vacuum, the ten dimensional interpretation is far less clear. It could be related

to some warped or orbifolded versions of the previous case. It would be interesting to

establish this.

The paper is organized as follows. In section 2, we review the features of three

dimensional gauged supergravity in the case where the target manifold is a symmetric

space. In section 3, we specialize at the N = 4 theory and describe the vacua we found.

In section 4, we discuss the analytic flow solutions between (3,1) vacua, and numerical

flow solution between (2,0) vacua. In section 5, we move to the N = 8 case and de-

scribe the vacua we obtained. The algebraic manipulations and the numerical solution

of the BPS differential equations have been performed with the help of Mathematica.

In section 6, we make some conclusions.

2. Three Dimensional Gauged Supergravity

In this section, we review the basic features of 3 dimensional, N-extended, gauged su-

pergravity, following the N-covariant formulation given in reference [4]. We will restrict

our discussion to the case where the scalar manifold is a symmetric space G/H, al-

though for N < 5 there are more general possibilities. Before gauging, the propagating

bosonic sector of the theory is described by a non-linear sigma model whose target

manifold is G/H, where H is a maximal compact subgroup of G. Thus there are scalar

fields φi(x), i = 1, . . . , dim G/H, which are coordinates of G/H. The subgroup H of

G contains the R-symmetry group SO(N). Gauging proceeds by introducing Chern-

Simons gauge fields AM
µ in the adjoint representation of a subgroup G′ of the isometry

group G, whose embedding in G is specified by a gauge invariant, symmetric embed-
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ding tensor ΘMN , with indices running over the Lie algebra of the gauged subgroup.

Supersymmetry severely restricts the allowed gauged subgroup, and correspondingly

the tensor Θ, as we will see in the following. For the reasons explained in the intro-

duction, we will be interested in non-semisimple gaugings, where the gauged subgroup

is a semi-direct product of a semisimple factor G0 and an abelian factor T = RdimG0 ,

G′ = G0 n T , with the latter transforming in the adjoint representation of G0.

Let us now introduce the basic data which allow us to construct the gauged super-

gravity theory in the symmetric space case: recall that by G/H we mean the manifold

of right cosets, where H elements h(x) act by right multiplication on the G-valued

matrix L(φi(x)). The generators of G decompose into {tM} = {XIJ , Xα, Y A}. XIJ

generate SO(N), and Xα generate a group H ′ commuting with SO(N). Y A are the

non-compact generators of G. The isometry group is defined by the left action of G

elements on the coset G/H. The geometry of G/H is encoded in the Lie algebra valued

one-forms L−1∂iL and in L−1tML, through the following expansions over Lie algebra

generators:

L−1∂iL =
1

2
QIJ

i XIJ + Qα
i Xα + eA

i Y A,

L−1tML =
1

2
VMIJXIJ + VMαXα + VMAY A. (2.1)

The eA
i are vielbeins which determine the invariant metric gij = eA

i eB
j δAB of G/H. The

Q’s are composite H-connections, and the V ’s give the Killing vectors, VMi = gijeA
j VMA.

Pulling back on space-time and covariantizing with respect to the gauge action of G′

from the right, we define:

L−1DµL =
1

2
QIJ

µ XIJ + Qα
µXα + eA

µ Y A. (2.2)

Here DµL = (∂µ + ΘMNAM
µ tN )L is a space-time covariant derivative and it is un-

derstood that the gauge coupling constant is contained in Θ. Thus the full gauge

symmetry of the theory is L(x) → g′(x)L(x)h(x), where g′ ∈ G′. The eA
µ ’s give the

covariant kinetic term for scalars,

Lkin =
1

4

√
ggµνeA

µ eB
ν δAB. (2.3)

The Lagrangian for gauge fields is of Chern-Simons type:

LCS =
1

4
εµνρAM

µ ΘMN (∂νA
N
ρ +

1

3
fNPQ ΘPLAL

ν AQ
ρ ), (2.4)

where fNPQ are the structure constants of G′.
As it has been shown in [4] and in more detail in [8], in the non-semisimple case

– 3 –



where G′ = G0nT , the Chern-Simons action for G′ gauge fields is equivalent to a Yang-

Mills plus Chern-Simons action for gauge fields transforming under the semisimple part

G0. The point is that gauge invariance implies that the indices of ΘMN cannot be both

along the G0 direction and this allows to integrate the gauge fields carrying G0 indices,

producing a Yang-Mills action for gauge fields carrying T indices, which transform in

the usual way under G0. At the same time, one can use the shift gauge symmetry to

remove dim G0 scalars from the action.

A class of tensors that will play important role in our analysis are the two-form

SO(N) generators, f IJ
ij , which originate from the existence of N − 1 hermitean almost

complex structures fPi
j , P = 1, . . . , N − 1, on the scalar manifold. The existence of

the latter is implied by the existence of N supersymmetries. They are vector valued

one-forms obeying a Clifford algebra relation and therefore are essentially γ-matrices

of SO(N). With their commutators one constructs SO(N) generators f IJ
ij , which in

our case can be expressed as:

f IJ
ij = −ΓIJ

ABeA
i eB

j , (2.5)

with ΓIJ
AB properly normalized generators in the spinor representation of SO(N). Let

us now specialize at the N = 4 and N = 8 cases. In the latter case, one proves that the

allowed symmetric spaces are of the form SO(8,k)
SO(8)×SO(k)

, and in fact we will restrict our

analysis to k = 8. For N = 4, the scalar manifold can actually be locally the product

of two quaternionic manifolds, and even restricting to the symmetric space cases, this

allows a finite number of different possibilities, but we will restrict the analysis to the

quaternionic symmetric space SO(4,4)
SO(4)×SO(4)

.

With the data introduced above, namely the embedding tensor Θ and the V ’s, we

define the T-tensors:

T IJ,KL ≡ VMIJΘMNVNKL, T IJi ≡ VMIJΘMNVN i,

T ij ≡ VMiΘMNVN j, T i
α ≡ VMαΘMNVN i,

Tαβ ≡ VMαΘMNVMβ , T IJ
α ≡ VMIJΘMNVNα. (2.6)

The fundamental consistency constraint on the gauging, implied by supersymmetry,

can be expressed through the following identity:

T IJ,KL = T [IJ,KL] − 4

N − 2
δI[KTL]M,MJ − 2

(N − 1)(N − 2)
δI[KδL]JTMN,MN , (2.7)

or equivalently,

P¢T IJ,KL = 0 (2.8)
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which means that the representation ¢ of SO(N) is projected out. The scalar potential

of the theory can be expressed in terms of the tensors:

AIJ
1 = − 4

N − 2
T IM,JM +

2

(N − 1)(N − 2)
δIJTMN,MN ,

AIJ
2j =

2

N
T IJ

j +
4

N(N − 2)
f

M(Im
j T J)M

m +
2

N(N − 1)(N − 2)
δIJfKL m

j TKL
m. (2.9)

Supersymmetry implies a quadratic identity involving A1 and A2 :

2AIK
1 AKJ

1 −NAIKi
2 AJK

2i =
δIJ

N
(2AKL

1 AKL
1 −NAKLi

2 AKL
2i ), (2.10)

which offers a non-trivial check on the consistency of the construction. The scalar

potential is given by:

V = − 4

N

√
g(AIJ

1 AIJ
1 − 1

2
NgijAIJ

2i AIJ
2j ). (2.11)

Since Θ’s are linear in the gauge couplings, V depends quadratically on them. The

other piece of information we will need is given by the supersymmetry variations of the

matter fermions χ and the gravitinos ψI
µ. For the former, in order to use the SO(N)

covariant notations, we extend the fermion fields χi to an overcomplete set χiI defined

by,[4],

χiI = (χi, fPi
j χj). (2.12)

The Lagrangian and supersymmetry transformation rules can be expressed in a form

that no longer depends explicitly on the almost complex structures. The fields χiI have

to satisfy the projection constraint

χiI = PIi
Jjχ

jJ ≡ 1

N
(δIJδi

j − f IJi
j )χjJ . (2.13)

Omitting terms which are of higher order in the fermionic fields, the supersymmetry

transformations which are relevant for us are given by:

δψI
µ = Dµε

I + AIJ
1 γµε

J ,

δχiI =
1

2
(δIJ1− f IJ)i

jD/φjεJ −NAJIi
2 εJ , (2.14)

where

Dµε
I = (∂µ +

1

2
ωa

µγa)ε
I + ∂µφ

iQIJ
i εJ + ΘMNAM

µ VN IJεJ ,

Dµφ
i = ∂µφ

i + AM
µ VN iΘMN , (2.15)
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and ωa
µ is the 3-dimensional spin connection constructed with the dreibein ea

µ. As

shown in [4], assuming a maximally symmetric space-time (in particular AdS3), the su-

persymmetric critical points of the potential are given by the two equivalent conditions

on spinors εI :

AJI
2i εJ = 0

and AIK
1 AKJ

1 εJ = −V0

4
εI =

1

N
(AIJ

1 AIJ
1 − 1

2
NgijAIJ

2i AIJ
2i )εI , (2.16)

where V0 is the potential at the critical point. The equivalence of the two statements

follows from the quadratic identity (2.10) involving A1 and A2. This result says that the

preserved supersymmetries correspond to the eigenvalues of AIJ
1 which equal ±

√
−V0

4
,

since in our normalization −V0 = R−2, where R is the radius of AdS3. More in detail,

let us choose AdS3 coordinates r, x0, x1, and metric ds2 = dr2+e2r/R(−dx2
0+dx2

1). From

the previous remarks, it follows that for each eigenvector vI
± of AIJ

1 , with eigenvalue

±
√

−V0

4
, if we form the spinor εI

± = ε± ⊗ vI
±, then the BPS condition for the gravitino

variation (2.14) becomes identical to the Killing spinor equation for ε± on AdS3 i.e.

Dµε± = ± 1
2R

γµε±. Using the explicit expression for the spin connection for the above

metric, one can see that one solution to this equation is an x0, x1-independent spinor

obeying γrε± = ±ε±, where γr is the flat gamma matrix. This corresponds to a left

(right) Poincare’ supersymmetry in the boundary CFT. The other solution gives rise to

the superconformal charge in the boundary CFT, has a non-trivial x0, x1 dependence

and is constructed with a constant spinor obeying the opposite γr projection condition.

Therefore, it is convenient to classify the critical points by presenting their pre-

served supersymmetries in the form of (N+, N−) corresponding to the N+ and N−

positive and negative eigenvalues of AIJ
1 whose modulus equals

√
−V0

4
. These coincide

with the number of left-(right-) moving Poincare’ supersymmetries of the dual SCFT2.

Of course the total number of supersymmetries is doubled by the inclusion of the su-

perconformal ones.

To summarize, the procedure of finding supersymmetric vacua is the following.

From (2.16), we look for the Killing spinors εI which are annihilated by some of the

AJI
2i . At the same time, εI must also be the eigenvector of AIJ

1 . Clearly, maximal

supersymmetric vacua are annihilated by all of the components of AJI
2i , and εI is an

eigenvector of AIJ
1 for all directions I. The εI characterizing partially supersymmetric

vacua will be an eigenvector of AIJ
1 for certain directions labeled by some values of

I, and will be annihilated only by the AJI
2i in the corresponding directions. We also

find many supersymmetric vacua with V0 = 0, and there might be non-supersymmetric

AdS3 vacua as well. However, in this work, we will not discuss them.
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3. Vacua of the N = 4 Theory

The target space in our case is the product of two quaternionic manifolds, that we take

to be SO(4, 4)/SO(4)× SO(4). A convenient (redundant) parametrization of cosets is

given by the following SO(4,4) group element

Li =
1

2

(
Xi + et

i Yi + et
i

−Xi − et
i et

i − Yi

)
, (3.1)

where i = 1, 2 refers to the two spaces. ei is a 4×4 matrix in GL(4,R), Xi = Ei +Bie
t
i,

Yi = −Ei + Bie
t
i. Bi is an antisymmetric 4 × 4 matrix, and Ei = e−1

i . The inverse of

Li is

L−1
i =

1

2

(
X t

i + ei X t
i − ei

−Y t
i − ei ei − Y t

i

)
. (3.2)

One can eliminate 6 of the 22 parameters in L by using the right action of the diagonal

SO(4) action, for example by bringing ei into an upper triangular form. The following

Lie algebra elements,

tA =

(
a 0

0 a

)
tB =

(
b b

−b −b

)
(3.3)

where all entries are 4×4 antisymmetric blocks, together with an identical copy for the

second space, will be gauged. In other words, the semisimple part of the gauge group

will be the diagonal SO(4)D in the (SO(4))4 of the product ( SO(4,4)
SO(4)×SO(4)

)2, correspond-

ing to generators tA. On the other hand, the nilpotent generators, tB, generate diagonal

shift symmetries B1,2 → B1,2 + 2b. Also, it is clear that the B-generators transform in

the adjoint representation with respect to the diagonal SO(4). For a and b, we can take

a basis of antisymmetric matrices given by J IJ = εIJ − εJI , with (εIJ)KL = δIKδJL.

Similarly, we can use the following basis for the 16 non-compact generators of SO(4, 4):

Y ab =

(
0 εab

(εt)ab 0

)
. (3.4)

Since in the present case both the R symmetry group and the gauge group are SO(4),

it is convenient to split the corresponding Lie algebras generators into self-dual and

anti-self-dual components J+ and J− respectively:

J IJ
+ = J IJ +

1

2
εIJKLJKL and J IJ

− = J IJ − 1

2
εIJKLJKL (3.5)

which are SU(2)+ and SU(2)− generators in the SO(4) = SU(2)+⊕SU(2)− Lie algebra

decomposition. We will adopt this decomposition both for A- and B-type generators.
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Correspondingly, the two-forms tensors f IJ introduced in the previous section have,

say, self-dual components on the first quaternionic space and anti-self-dual components

on the second. In our formalism and in a flat basis, they can be expressed as:

f IJ
± ab,cd

= Tr((εt)abJ IJ
± εcd). (3.6)

At this stage, we can proceed to construct the supergravity theory with the gauging

of SO(4)nR6 and in particular, verify its consistency, along the lines reviewed in the

previous section. As explained there, the main ingredients are given by the tensors

A1 and A2, which determine the scalar potential and the supersymmetry variations

of the fermionic fields. They are constructed through the T -tensors, which in turn

are obtained by uplifting the embedding tensor ΘMN into G by using VMP , with P
running over the generators of G corresponding to the R-symmetries P = IJ , and the

non-compact coset directions P = ab in the first and second space. We give in the

Appendix A expressions for the relevant components of V .

Gauge invariance restricts the Θ tensors to have components, ΘAB and ΘBB, which

are proportional to the SO(4) Killing form, schematically δAB and δBB, respectively.

The proportionality constants are gauge couplings, and, of course, we should specify

here to which of the four SU(2)’s the A, B indices belong. Therefore, a priori we

expect four couplings g1s, g1a, g2s, and g2a. The a and s labels indicate the self-dual and

anti-self-dual SU(2), respectively, and 1 refers to the AB couplings whereas 2 refers to

the BB ones.

With this notation and with the meaning of V indices explained in the Appendix

A, the T -tensors turn out to be:

TLJ,MK = g1s(VLJ,PQ
+a VMK,PQ

+b + VLJ,PQ
+b VMK,PQ

+a ) + g1a(VLJ,PQ
−a VMK,PQ

−b

+VLJ,PQ
−b VMK,PQ

−a ) + g2sVLJ,PQ
+b VMK,PQ

+b + g2aVLJ,PQ
−b VMK,PQ

−b ,

T1
LJ
ab = g1s(VLJ,PQ

+a V+1b
PQ
ab + VLJ,PQ

+b V+1a
PQ
ab ) + g1a(VLJ,PQ

−a V−1b
PQ
ab

+VLJ,PQ
−b V−1a

PQ
ab ) + g2sVLJ,PQ

+b V+1b
PQ
ab + g2aVLJ,PQ

−b V−1b
PQ
ab ,

T2
LJ
ab = g1s(VLJ,PQ

+a V+2b
PQ
ab + VLJ,PQ

+b V+2a
PQ
ab ) + g1a(VLJ,PQ

−a V−2b
PQ
ab

+VLJ,PQ
−b V−2a

PQ
ab ) + g2sVLJ,PQ

+b V+2b
PQ
ab + g2aVLJ,PQ

−b V−2b
PQ
ab . (3.7)

It turns out that the consistency requirement on T IJ,KL, discussed in the previous

section, requires g2a = −g2s. Moreover, we find it is convenient for the subsequent

analysis to redefine the couplings from g1s, g1a to gn, gp as follows:

g1s = gp + gn and g1a = gp − gn. (3.8)
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Now, we study various vacua of this theory. We begin by choosing an ansatz for

the coset L. We have two spaces. We set B1 = B2 = 0 and choose diagonal ei’s:

e1 =




a1 0 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a4


 and e2 =




b1 0 0 0

0 b2 0 0

0 0 b3 0

0 0 0 b4


 . (3.9)

Notice that the shift gauge symmetry would allow us to set one of the two B’s to zero

and the left SO(4) gauge symmetry can be used to diagonalize one of the two e’s, so the

ansatz above is indeed a truncation of the full twenty-dimensional moduli space. We

have checked the consistency of this truncation explicitly. That is, we have verified that

the remaining fields appear at least quadratically in the action, and therefore setting

them to zero solves their equations of motion. We then proceed to analyze the BPS

conditions δψI
µ = 0 and δχiI = 0 using (2.14), within this eight-dimensional subspace.

We give below the vacuum expectation values of e1, e2, the AIJ
1 eigenvalue (A1)

satisfying |A1|2 = −V0/4 and the corresponding preserved supersymmetries (N+, N−)

for the AdS3 vacuum solutions that are relevant to the flow solutions we will show in

the next section. Other vacua are shown in Appendix B.

3.1 (3,1) vacua

• I.

e1 =

√
−2(gn + gp)

g2s

I4×4

e2 =

√
−2(gn + gp)

g2s

(−1, 1, 1, 1)

A1 =
32(gn + gp)

2

g2s

and V0 =
−4096(gn + gp)

4

g2
2s

. (3.10)

• II.

e1 =

√
2(gp − gn)

g2s

(1,−1,−1,−1)

e2 = −
√

2(gp − gn)

g2s

I4×4

A1 =
−32(gn − gp)

2

g2s

and V0 =
−4096(gn − gp)

4

g2
2s

. (3.11)
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• III.

e1 =

√
gn(g2

p − g2
n)

g2sg2
n

(gn

gp

,−1,−1,−1
)

e2 = −
√

gn(g2
p − g2

n)

g2sg2
n

(gn

gp

, 1, 1, 1
)

A1 =
−8(g2

n − g2
p)

2

g2sgngp

and V0 =
−256(g2

n − g2
p)

4

g2
2sg

2
ng2

p

. (3.12)

3.2 (2,0) vacua

• IV.

e1 = (−a1, a1, a2, a2) e2 = (b1, b1, b2, b2) (3.13)

a1 = 2

√
g2

p − g2
n

g2s(gp − gn +
√

5g2
n + 2gpgn + g2

p)

a2 = 2

√
g2

p − g2
n

g2s(gn − gp +
√

5g2
p + 2gpgn + g2

n)

b1 = 2

√
g2

p − g2
n

g2s(3gn + gp +
√

5g2
n + 2gpgn + g2

p)

b2 = 2

√
g2

p − g2
n

g2s(
√

g2
n + 2gngp + 5g2

p + gn + 3gp)
(3.14)

A1 =
−32(gn − gp)

2

g2s

and V0 = −4096(gn − gp)
4

g2
2s

. (3.15)

• V.

e1 = (a1, a2, a3, a3) e2 = (b1, b1, b2, b2)

(3.16)
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a1 = − 1 + t

1− t +
√

1 + t2

√
2gp(1− t +

√
1 + t2)

g2st(1 + t)
√

1 + t2
×

√
(t− 1)

{
t3 − t2 + t− 1 + (t− t2 − 1)

√
1 + t2

}

a2 =

√
2tgp(t− 1)2(1 + t)

√
1 + t2

g2s(1− t +
√

1 + t2)
×

1√
(t− 1− t2)(t− 1)

√
1 + t2 − t2 + (1− t + t2)2

a3 =

√
2gp(1− t2)

g2s(t− 1 +
√

1 + t2)

b1 =

√
2gp(1− t2)

g2s(1 + t +
√

1 + t2)

b2 =

√
2gp(1− t2)

g2s(1 + t +
√

1 + t2)

A1 =
−8(g2

n − g2
p)

2

g2sgngp

and V0 = −256(g2
n − g2

p)
4

(g2sgngp)2
, (3.17)

where we have introduced t = gn

gp
.

Out of all vacua, there are only three possibilities in connecting two vacua. That means

we will have only three RG flows in the dual field theories. All these three flows are

the flows between I and III, II and III, and between IV and V. The last flow is the

only possible flow among V and other (2,0) points. This is because we cannot find any

values of gn, gp and g2s so that both e1 and e2 of the two end points of the flow are real

apart from the IV and V pair. There are three possibilities in order to make IV and V

real at the same time. These are given by

t < −1, gp < 0, g2s < 0

or t < 1, gp > 0, g2s > 0

or t > 1, gp > 0, g2s < 0. (3.18)

For definiteness, we choose the last range and further choose t = 2, gp = 1 and g2s = −1

in our numerical solution. For all the critical points given above, we have checked that

there exist at least one possible set of gp, gn and g2s such that all the square roots in

any critical points are real, although any two different critical points may not be made

real with the same values of gp, gn and g2s.
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There might be more possibilities apart from these three flows. However, we could

not find any interpolating solutions both analytically and numerically apart from those

three mentioned above. Remarkably, we find only the flows between critical points

which have the same supersymmetries. In the next section, we will give these solutions

explicitly.

4. Supersymmetric Flow Solutions

In this section, we study flows between some pairs of AdS vacua found in the previous

section. We assume the standard form for the 3D metric:

ds2 = e2A(r)(−dt2 + dx2) + dr2. (4.1)

This becomes the AdS3 metric for A(r) = r/R, where R is the AdS3 radius. This is

related to the vacuum energy V0 as R2 = −1/V0, since in our normalization Einstein’s

equations read Rµν = −2V0gµν . Also, we recall that the eigenvalue A1 introduced

in the previous section satisfies 4A2
1 = −V0. We will look for solutions of the BPS

equations interpolating between AdS vacua from the UV region (r → +∞) to the IR

region (r → −∞), where the scalar fields reach the vev’s determined in the previous

section. The central charge of the CFT’s at an AdS3 vacuum is proportional to R, and

therefore proportional to 1/A′(r). In fact, the latter quantity can be used to define, up

to a positive proportionality constant, a C-function, C(r), on the full flow interpolating

between the UV and IR fixed points and can be proved to be monotonic, A′′(r) ≤ 0

[1]. This nicely agrees with the c-theorem in conformal field theories. The result in [1]

depends on the validity of the weaker energy condition, which is met in all the flows

involving only scalars and the metric. This is the case for our flows as we will see below.

Notice that, since A(r) is related to A1 through a first order differential equation given

by the gravitino variation (2.14), this also implies that A1 should not change sign along

the flow because this would imply an unphysical infinity for C(r) at some value of r.

Examples of RG flows in 3D gauged supergravity have been studied in [17, 18].

4.1 The Flow Between (3, 1) Vacua

In this subsection, we study a supersymmetric flow between two of the AdS3 vacua with

the same, (3, 1), amount of supersymmetries but with different cosmological constants,

found in the previous section.
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We start by giving an ansatz for the scalars with non-trivial r-dependence,

e1 =




b(r) 0 0 0

0 a(r) 0 0

0 0 a(r) 0

0 0 0 a(r)


 , e2 =




−b(r) 0 0 0

0 a(r) 0 0

0 0 a(r) 0

0 0 0 a(r)


 . (4.2)

Since now we are going to allow the scalars to have r dependence, we need to worry

about possible contributions of the intrinsic connection QIJ
µ and the gauge fields AM

µ to

the BPS equations (2.14). In addition, of course, the Yang-Mills equations of motion

may be non-trivial. Indeed, r-dependent scalars may a priori source the gauge fields in

case they give rise to a non-trivial gauge current JMµ . From the kinetic term (2.3), we

have

Lkin =
1

2

√
g[Tr(L−1∂µLL−1∂µL) + 2ΘMNAMµTr(L−1tN∂µL)

+ΘMNΘKLAMµAK
µ Tr(L−1tN tLL)]. (4.3)

From (4.3), we see that the gauge fields couple to the scalar fields via a current

JNµ =
√

gTr(L−1tN∂µL). (4.4)

For diagonal e1 and e2, the current is zero, so we can consistently satisfy the equation

of motion for the gauge fields by setting AM
µ = 0. As promised, our flows involve only

scalars and the metric. So, the holographically proved c-theorem mentioned before is

guaranteed in our flow ansatz. Furthermore, all of the composite connections Q’s are

also zero in this diagonal ansatz. The BPS equations can be obtained by using (2.14).

The δχiI = 0 conditions give

db

dr
= 24gnab2 + 16gpb

3 − 8a3(gn − g2sb
2) (4.5)

da

dr
= 16gpa

3 + 8gna2b +
8a4(gn + g2sb

2)

b
. (4.6)

This ansatz preserves (3,1) supersymmetry, so we have (3,1) supersymmetry throughout

the flow. We proceed by taking one of the scalars as an independent variable. Changing

the variables to b(r) = z and a(r) = a(z), we can write (4.5) and (4.6) as a single

equation
da

dz
=

a2(gnz2 + 2gpza + (gn + g2sz
2)a2)

2gpz4 + 3gnz3a + (g2sz3 − gnz)a3
. (4.7)

We solve this by writing a(z) = zf(z). Then, (4.7) becomes

z
df

dz
= − 2f(gp + gnf)(f 2 − 1)

(gn − g2sz2)f 3 − 2gp − 3gnf
. (4.8)
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This equation can be solved for z as a function of f . We find

z = ±
√

gn(f 2 − 1)

g2sf 2 + (g2
nf

3 + gngpf 2)c1

. (4.9)

We then obtain

b = ±
√

gn(f 2 − 1)

g2sf 2 + (g2
nf 3 + gngpf 2)c1

, (4.10)

a = fb, (4.11)

and (4.5) and (4.6) lead to the same equation for f

df

dr
=

16gn(gp + gnf)(f 2 − 1)2

f(g2s + (gngp + g2
nf)c1)

. (4.12)

We can solve for r in term of f and find

r = c2 +
1

64gn

[
2(−fg2sgn + g2sgp + gn(g2

p − g2
n)c1)

(f 2 − 1)(g2
n − g2

p)
− g2sgn ln(1− f)

(gn + gp)2

+
g2sgn ln(1 + f)

(gn − gp)2
− 4g2sg

2
ngp ln(fgn + gp)

(g2
n − g2

p)
2

]
. (4.13)

The constant c2 is irrelevant and can be set to zero by shifting the coordinate r. So,

from now on, we will use c2 = 0 and choose a definite sign, + sign, for z.

We now move to the gravitino variation δψI
µ. The BPS condition gives an equation

for the warp factor A(r):

dA

dr
= − 1

f 2(g2s + (gngp − g2
nf)c1)2

[8gn(f 2 − 1)(3f 2(c1gn(g2
n + g2

p) + g2sgp)

−2gnf
3(2c1gngp + g2s)− 2gnf(2c1gngp + g2s) + c1g

3
nf

4

+gp(c1gngp + g2s))]. (4.14)

Changing the variable from r to f , we find

dA

df
=

1

2(fgn + gp)

[
gp + f(3fgp + gn(3 + f 2))

f(f 2 − 1)
− g2sgn

g2s + gn(fgn + gp)c1

]
. (4.15)

This can be solved and give

A = c3 +
1

2
ln f − ln(1− f 2) +

1

2
ln(gp + fgn) +

1

2
ln(g2s + gn(gp + gnf)c1). (4.16)
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The constant c3 can be set to zero by rescaling coordinates x0 and x1. We require that

A1 must not change sign along the flow, so these are the only two possible flows namely

the flow between I and III critical points and between II and III points. We choose the

value of c1 in such a way that the solution goes to one critical point at one end and to

the other critical point at the other end. In order to identify the UV point with r = ∞
and the IR point with r = −∞, we choose g2s < 0 in the followings.

In the flow between I and III critical points, we chose c1 = − g2s

gn(gn+gp)
, gngp < 0

and obtain

b =

√
−(gn + gp)(1 + f)

g2sf 2

a =

√
−(gn + gp)(1 + f)

g2s

r =
1

64

[
− 2g2s

(1 + f)(g2
n − g2

p)
− g2s ln(1− f)

(gn + gp)2

+
g2s ln(1 + f)

(gn − gp)2
− 4g2sgngp ln(fgn + gp)

(g2
n − g2

p)
2

]

A =
1

2
ln f − 1

2
ln(1− f)− ln(1 + f) +

1

2
ln(gp + fgn) (4.17)

where we have absorbed all the constants in c3 for the last equation. We see that

A →∞ at f = 1 and A → −∞ at f = − gp

gn
. In the dual CFT, the I point corresponds

to the UV fixed point while the III point corresponds to the IR point. The ratio of the

central charges is given by

cUV

cIR

= −(gn − gp)
2

4gngp

. (4.18)

It is easy to show that this is always greater than 1 as it should.
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The flow between II and III are given by c1 = g2s

gn(gn−gp)
, and gngp > 0. We find that

b =

√
(gn − gp)(f − 1)

g2sf 2

a =

√
(gn − gp)(f − 1)

g2s

r =
1

64

[
2g2s

(1− f)(g2
n − g2

p)
− g2s ln(1− f)

(gn + gp)2

+
g2s ln(1 + f)

(gn − gp)2
− 4g2sgngp ln(fgn + gp)

(g2
n − g2

p)
2

]

A =
1

2
ln f − ln(1− f)− 1

2
ln(1 + f) +

1

2
ln(gp + fgn). (4.19)

In this case, we see that A → ∞ at f = −1 and A → −∞ at f = − gp

gn
. In the dual

CFT, the II point corresponds to the UV fixed point while the III point corresponds

to the IR point. The ratio of the central charges is given by

cUV

cIR

=
(gn + gp)

2

4gngp

. (4.20)

Again,this agrees with the c-theorem.

We next compute the scalar mass spectrum for the eight scalars. We parametrize

the eight scalars as follow:

a1(r) = a10e
s1(r) a2(r) = a20e

s2(r)

a3(r) = a30e
s3(r) a4(r) = a40e

s4(r)

b1(r) = a50e
s5(r) b2(r) = a60e

s6(r)

b3(r) = a70e
s7(r) b4(r) = a80e

s8(r) (4.21)

where all the si, i = 1, . . . 8 are canonically normalized scalars. From the scalar mass

matrix M2, we can find the conformal dimensions (∆) of the operators in the dual CFT

by using the relation

∆(∆− 2) = m2R2. (4.22)

We find the following mass matrices.
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• f = 1:

M2 =
2048(gn + gp)

4

g2
2s




0 1 1 1 0 1 1 1

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 0

0 1 1 1 0 1 1 1

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 0




. (4.23)

The eigenvalues of M2R2 are (3, -1, -1, -1, 0, 0, 0, 0) corresponding to ∆ =

(3, 1, 2). All the eight eigenvectors are given by

v1 = (1, 1, 1, 1, 1, 1, 1, 1) v2 = (−1, 0, 0, 1,−1, 0, 0, 1)

v3 = (−1, 0, 1, 0,−1, 0, 1, 0) v4 = (−1, 1, 0, 0,−1, 1, 0, 0)

v5 = (0, 0, 0,−1, 0, 0, 0, 1) v6 = (0, 0,−1, 0, 0, 0, 1, 0)

v7 = (0,−1, 0, 0, 0, 1, 0, 0) v8 = (−1, 0, 0, 0, 1, 0, 0, 0). (4.24)

Our flow corresponds to the combination v2 + v3 + v4 which has eigenvalue -1,

∆ = 1. This is consistent with the fact that the flow is driven by a relevant

operator.

• f = −1:

M2 =
2048(gn − gp)

4

g2
2s




0 1 1 1 0 1 1 1

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 0

0 1 1 1 0 1 1 1

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 0




. (4.25)

The eigenvalues of M2R2 are (3, -1, -1, -1, 0, 0, 0, 0) corresponding to ∆ =

(3, 1, 2). All the eight eigenvectors are given by

u1 = (1, 1, 1, 1, 1, 1, 1, 1) u2 = (−1, 0, 0, 1,−1, 0, 0, 1)

u3 = (−1, 0, 1, 0,−1, 0, 1, 0) u4 = (−1, 1, 0, 0,−1, 1, 0, 0)

u5 = (0, 0, 0,−1, 0, 0, 0, 1) u6 = (0, 0,−1, 0, 0, 0, 1, 0)

u7 = (0,−1, 0, 0, 0, 1, 0, 0) u8 = (−1, 0, 0, 0, 1, 0, 0, 0). (4.26)
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As in the previous case, the flow ansatz is the combination u2 + u3 + u4 which

has eigenvalue -1, ∆ = 1 and corresponds to a relevant operator.

• f = − gp

gn
:

M2 =
256(g2

n − g2
p)

4

(g2sgngp)2




3
2

0 0 0 3
2

0 0 0

0 3
2

0 0 0 −1
2

1 1

0 0 3
2

0 0 1 −1
2

1

0 0 0 3
2

0 1 1 −1
2

3
2

0 0 0 3
2

0 0 0

0 −1
2

1 1 0 3
2

0 0

0 1 −1
2

1 0 0 3
2

0

0 1 1 −1
2

0 0 0 3
2




. (4.27)

The eigenvalues of M2R2 are (3, 3, 3, 3, 0, 0, 0, 0) corresponding to ∆ = (3, 2).

All the eight eigenvectors are given by

w1 = (0,
2

3
,
2

3
,−1

3
, 0, 0, 0, 1) w2 = (0,

2

3
,−1

3
,
2

3
, 0, 0, 1, 0)

w3 = (0,−1

3
,
2

3
,
2

3
, 0, 1, 0, 0) w4 = (1, 0, 0, 0, 1, 0, 0, 0)

w5 = (0,−2

3
,−2

3
,
1

3
, 0, 0, 0, 1) w6 = (0,−2

3
,
1

3
,−2

3
, 0, 0, 1, 0)

w7 = (0,
1

3
,−2

3
,−2

3
, 0, 1, 0, 0) w8 = (−1, 0, 0, 0, 1, 0, 0, 0). (4.28)

Our flow corresponds to the combination w1 +w2 +w3−3w4 which has eigenvalue

3, ∆ = 3. This is consistent with the fact that at the IR, the operator must be

irrelevant.

We also compute the mass spectrum for the full scalar manifold. Using gauge trans-

formation, we are left with twenty scalars. At the UV points f = ±1, six of the extra

twelve scalars have M2R2 = −1
4
, and the other six are massless. At the IR point

f = − gp

gn
, out of the extra twelve scalars, there are six massless scalars and six scalars

with M2R2 = 3
4
.

The behavior of the scalars at large r is given by the linearized equations

da

dr
=

8a0

b0

[2a(r)(2a2
0(b

2
0g2s + gn) + 3a0b0gp + b2

0gn) + b(r)(a2
0(b

2
0g2s − gn) + b2

0gn)

+a2
0b

2
0g2s + a2

0gn + 2a0b0gp + b2
0gn]

db

dr
=

8

b0

[3a(r)(a3
0(b

2
0g2s − gn) + a0b

2
0gn) + 2b2

0b(r)(a
3
0g2s + 3a0gn + 3b0gp)

+a3
0b

2
0g2s − a3

0gn + 3a0b
2
0gn + 2b3

0gp] (4.29)
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where a0 and b0 are the values of a(r) and b(r) at the critical point. For the UV

(r →∞) point, f = 1 and f = −1, we find

a(r) ∼ e−r/R, b(r) ∼ e−r/R. (4.30)

For the IR point (r → −∞), we find

a(r) ∼ er/R, b(r) ∼ er/R. (4.31)

The general behavior of a scalar field near the UV fixed point is given by [19], [20]

φ(x, r) = e−(2−∆)r(1 + . . .)φ̂(x) + e−∆r(1 + . . .)φ̌(x), (4.32)

where φ̂(x) and φ̌(x) correspond to the source and the vacuum expectation value of the

operator of dimension ∆, respectively [20], [21]. In (4.32), 1 < ∆ ≤ 2. For ∆ = 1 or

∆ = d
2

in d dimensional field theory, the behavior of the scalar is given by [20]

φ(r, x) = e−r/R
( r

R
φ̂(x) + φ̌(x)

)
+ . . . . (4.33)

We see that in our flow, the first term in (4.33) is absent, so there is no source. The

flow is therefore of the so-called v.e.v. type, corresponding to the deformation of the

UV theory by an expectation value of an operator of dimension one. Near the IR point,

the scalar behaves as e(∆−2)r/R [22]. We then find that, in the IR, the corresponding

operator is irrelevant with dimension 3.

4.2 The Flow Between (2, 0) Vacua

Now, we consider the flow between IV and V critical points.

We begin by giving the ansatz for e1 and e2,

e1 =

√
2(gp − gn)

g2s




x(r) 0 0 0

0 q(r) 0 0

0 0 z(r) 0

0 0 0 z(r)




e2 =

√
2(gp − gn)

g2s




y(r) 0 0 0

0 y(r) 0 0

0 0 w(r) 0

0 0 0 w(r)


 . (4.34)

Consistency condition for the BPS equations requires

x = − (gn + gp)y
2

q(gn + gp − 2gny2)
(4.35)

w =

√
gn + gp

gn + gp + 2gpz2
z. (4.36)
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The δχiI equations give

dz

dr
=

1

g2s(gn + gp)q2y2(gn + gp − 2gny2)
{8(gn + gp)z

3(2q2y2(2(g3
n − gng2

p)y
4

+(2g3
p + 6gng

2
p − 4g3

n)y2 + (gn − 2gp)(gn + gp)
2) + gnq

4(gn + gp − 2gny2)2

+gn(gn + gp)
2y4)} (4.37)

dy

dr
=

8y(gn + gp − 2gny2)

g2s(gn + gp)

{
− 2(gn + gp)y

2

gn + gp

(
(gn − gp)

2z2 − 2g2
n + 3gngp − g2

p

+
(gn − gp)

2(gn + gp)z
2

gn + gp + 2gpz2

)
+

gp(gp − gn)(gn + gp)
2y4

q2(gn + gp − 2gny2)2
+ gp(gp − gn)q2

}
(4.38)

dq

dr
= −8(gn − gp)q(gn + gp − 2gny2)

g2s(gn + gp)y2

{
(gn + gp)

2y4

q2(gn + gp − 2gny2)

(
gnz2 − gpy

2

+
gn(gn + gp)z

2

gn + gp + 2gpz2

)
+ q2

(
2(gn + gp)

2y4(gp − 2gn + (gn − gp)z
2)

q2(gn + gp − 2gny2)2

+
(gn + gp)z

2

gn + gp + 2gpz2

(2(gn − gp)(gn + gp)
2y4

q2(gn + gp − 2gny2)
− gn

)− gnz2 + gpy
2

)

+
2gp(gn + gp)q

2y2

gn + gp − 2gny2

}
. (4.39)

This flow ansatz preserves (2,0) supersymmetry along the entire flow. We now change

the variables to z1, h, and p

y =

√
gn + gp

2gn(1 + z1)
(4.40)

z =

√
gn + gp

2gph
(4.41)

q =

√
− (gn + gp)

√
p2 − 4

gnz1(p2 − 4 + p
√

p2 − 4)
(4.42)

and rescale r to r
8(g2

n−g2
p)

g2sgngp
. The final forms of (4.37), (4.38), and (4.39) are

dz1

dr
=

(g2
n − g2

p − h(g2
pp− 2gn(gn − 2gp) + gph(4gn − 2gp + gpp)))

h(h + 1)
(4.43)

dh

dr
=

g2
n − g2

p + z1(g
2
np(1 + z1)− 2(gp(gp − 2gn) + gn(gn − 2gp)z1))

z1(1 + z1)
(4.44)

dp

dr
= −(p2 − 4)

[
g2

n

(
1

h
+

1

1 + h

)
− g2

p

z1

− g2
p

1 + z1

]
. (4.45)
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We proceed by taking p as an independent variable and obtain

dz1

dp
=

(g2
p − g2

n + (g2
pp + 4gngp − 2g2

n)h + gp(4gn + gp(p− 2))h2)z1(1 + z1)

(p2 − 4)(g2
n(1 + 2h)z1(1 + z1)− g2

ph(1 + h)(1 + 2z1))
(4.46)

dh

dp
=

h(1 + h)(g2
p − g2

n + 2gp(gp − 2gn)z1 + 2gn(gn − 2gp)z
2
1 − g2

npz1(1 + z1))

(p2 − 4)(g2
n(1 + 2h)z1(1 + z1)− g2

ph(1 + h)(1 + 2z1))

. (4.47)

Recall that gn = tgp, we find that the two critical points are given by

• IV:

p = −2, h =
1

4
(t− 1 +

√
5 + 2t + t2),

and z1 =
1− t +

√
1 + 2t + 5t2

4t
, (4.48)

and

• V:

p = 2− 2

t
− 2t, h =

1

2
(t− 1 +

√
1 + t2),

and z1 =
1− t +

√
1 + t2

2t
. (4.49)

We now give the numerical solution. Choosing t = 2, we find the numerical values for

the critical points

IV : p = −2.000, h = 1.151, z1 = 0.500

V : p = −3.000, h = 1.618, z1 = 0.309. (4.50)

The numerical solutions for the flow are given in Fig.1 and Fig.2.

The gravitino variation gives an equation for A(p), with t = 2,

dA

dp
= −8g2

p[(p
2 − 2)

√
p2 − 4 + p3 − 4p]√

p2 − 4(p
√

p2 − 4 + p2 − 4)2
×

[(p + 6)h(p)2(2z1(p) + 1) + ph(p)(1− 2z1(p)(4z1(p) + 3))

−2z1(p)(2pz1(p) + 2p + 3)− 3]/[−4(2h(p) + 1)z1(p)2

+2((h(p)− 3)h(p)− 2)z1(p) + h(p)(h(p) + 1)]. (4.51)
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Figure 1: h(p) solution.

-2.8 -2.6 -2.4 -2.2
p

0.40

0.45

0.50

z1HpL

Figure 2: z1(p) solution.

Choosing g2s = −1 and gp = 1, we find the numerical solution for A as shown in

Fig.3.

In this flow, the point IV is the UV fixed point, and V is the IR. The ratio of the

central charges is
cUV

cIR

=
(gn + gp)

2

4gngp

. (4.52)

This ratio is greater than 1 in consistent with the c-theorem. We also compute the scalar

mass matrices at both critical points, but the form of the matrices is too complicated

to be written here. We give only the numerical values of the eigenvalues in our choice

of gp = 1, gn = 2 and g2s = −1.

• IV: Eigenvalues of M2R2 are (3.70,−1.00,−1.00,−0.97, 0.36, 0.36, 0.00, 0.00)
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Figure 3: A(p) solution.

with eigenvectors

U1 = (−0.47,−0.47,−0.44,−0.44,−0.16,−0.16,−0.24,−0.24)

U2 = (0.33,−0.33, 0.44,−0.44, 0.00, 0.00, 0.44,−0.44)

U3 = (0.63,−0.63,−0.23, 0.23, 0.00, 0.00,−0.23, 0.23)

U4 = (0.47, 0.47,−0.44,−0.44, 0.16, 0.16,−0.24,−0.24)

U5 = (0.00, 0.00,−0.49, 0.49,−0.14, 0.14, 0.49,−0.49)

U6 = (0.00, 0.00,−0.10, 0.10, 0.69,−0.69, 0.10,−0.10)

U7 = (0.22, 0.22,−0.06,−0.06,−0.66,−0.66, 0.11, 0.11)

U8 = (−0.04,−0.04,−0.33,−0.33, 0.12, 0.12, 0.61, 0.61). (4.53)

Our flow ansatz corresponds to U4 with ∆ = 1.168 which is dual to a relevant

operator. Note also that, our ansatz does not correspond to the one which sat-

urates the bound M2R2 = −1. This means the dual operator is not the most

relevant one.

• V: Eigenvalues of M2R2 are (4.17, 3.33, 3.33, 3.33, 0.84, 0.84, 0.84, 0.00)

– 23 –



with eigenvectors

V1 = (−0.211,−0.894,−0.211,−0.211,−0.130,−0.130,−0.130,−0.130)

V2 = (0.201,−0.031, 0.063,−0.159,−0.609, 0.001, 0.090, 0.742)

V3 = (0.390,−0.398, 0.523, 0.432, 0.400, 0.011,−0.103, 0.241)

V4 = (−0.293, 0.159, 0.015,−0.258, 0.359,−0.004,−0.801, 0.227)

V5 = (0.255, 0.002,−0.712, 0.572,−0.039, 0.086,−0.300, 0.046)

V6 = (−0.146, 0.011, 0.387, 0.287,−0.526, 0.391,−0.384,−0.411)

V7 = (0.757, 0.004,−0.047,−0.499, 0.007, 0.156,−0.207,−0.328)

V8 = (0.130, 0.130, 0.130, 0.130,−0.211,−0.893,−0.211,−0.211). (4.54)

Our flow ansatz corresponds to V1 with ∆ = 3.275 which is dual to an irrelevant

operator.

The behavior near r → ∞ can be obtained as in the previous case. With gp = 1,

gn = 2, and g2s = −1, we find that

p(r) ∼ e−2r/R, z1(r), h(r) ∼ e−1.168r/R. (4.55)

At the IR point, we find

z1(r), h(r), p(r) ∼ e1.275r/R. (4.56)

From the dominant term near the UV fixed point, we see that the flow solution describes

the deformation of the UV theory by a vacuum expectation value of an operator of

dimension 1.168. We find that this flow is also a v.e.v. flow. The corresponding

operator in the IR theory is an irrelevant operator of dimension 3.275.

5. Vacua of the N = 8 Theory

In this section, we study a gauging of an N = 8 theory. We restrict our discussion to

the target space SO(8,8)
SO(8)×SO(8)

. We parametrize the coset elements L as in the N = 4

case, but now obviously e is an element of GL(8,R) and B is an antisymmetric 8× 8

matrix. The resulting L depends on 92 parameters, but, again using the right action

of a diagonal SO(8), one can bring e to an upper triangular form, thereby reducing the

number of parameters to 64. As for the non compact generators, the Y ab introduced

before carry over in the obvious way to the present case, with a, b = 1, . . . , 8.
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We are going to gauge the subgroup (SO(4) n R6)2. Accordingly, we introduce

gauge group generators:

tA =




a1 0 0 0

0 a2 0 0

0 0 a1 0

0 0 0 a2


 , tB =




b1 0 b1 0

0 b2 0 b2

−b1 0 −b1 0

0 −b2 0 −b2


 . (5.1)

Here all entries are 4×4 matrices, a1 (a2) are generators of the first (second) SO(4), b1

and b2 are antisymmetric and correspond to independent shifts of B. More precisely, the

upper and lower 4× 4 diagonal blocks of B will be shifted by 2b1 and 2b2, respectively,

and therefore could be set to zero. Generators carrying index 1 commute with those

carrying index 2, and one checks the structure of the gauge group stated above. The

f -tensors are constructed as follows: we choose a basis of symmetric, real SO(8) γ-

matrices with 8× 8 off-diagonal blocks ΓI , so that:

f IJ
ab,cd = −1

2
Tr(εba[ΓI , ΓJ ]εcd). (5.2)

As for the embedding tensor Θ, the structure discussed in the N = 4 case extends

naturally to the present case, and now we expect a priori 8 couplings corresponding to

the 8 SU(2)’s (including the B generators). We then proceed first by computing the

V ’s which are given in the Appendix A and then the T tensors which are given by:

TLJ,MK = g1s(VLJ,PQ
+a VMK,PQ

+b + VLJ,PQ
+b VMK,PQ

+a ) + g1a(VLJ,PQ
−a VMK,PQ

−b

+VLJ,PQ
−b VMK,PQ

−a ) + g2s(VLJ,P ′Q′
+a VMK,P ′Q′

+b + VLJ,P ′Q′
+b VMK,P ′Q′

+a )

+g2a(VLJ,P ′Q′
−a VMK,P ′Q′

−b + VLJ,P ′Q′
−b VMK,P ′Q′

−a ) + h1sVLJ,PQ
+b VMK,PQ

+b

+h1aVLJ,PQ
−b VMK,PQ

−b + h2sVLJ,P ′Q′
+b VMK,P ′Q′

+b + h2aVLJ,P ′Q′
−b VMK,P ′Q′

−b ,

TLJ
ab = g1s(VLJ,PQ

+a V+b
PQ
ab + VLJ,PQ

+b V+a
PQ
ab ) + g1a(VLJ,PQ

−a V−b
PQ
ab

+VLJ,PQ
−b V−a

PQ
ab ) + g2s(VLJ,P ′Q′

+a V+b
P ′Q′
ab + VLJ,P ′Q′

+b V+a
P ′Q′
ab )

+g2a(VLJ,P ′Q′
−a V−b

P ′Q′
ab + VLJ,P ′Q′

−b V−a
P ′Q′
ab ) + h1sVLJ,PQ

+b V+b
PQ
ab

+h1aVLJ,PQ
−b V−b

PQ
ab + h2sVLJ,P ′Q′

+b V+b
P ′Q′
ab + h2aVLJ,P ′Q′

−b V−b
P ′Q′
ab , (5.3)

where P, Q, . . . = 1, . . . , 4 and P ′, Q′, . . . = 5, . . . , 8. Here L, J,M,K are SO(8) R-

symmetry indices, and a, b = 1, . . . , 8 label the 64 non-compact generators in SO(8, 8).

P, Q = 1, . . . , 4 and P ′, Q′ = 5, . . . , 8 label the first and second SO(4), respectively. We

have included also the 8 coupling constants, but actually, consistency imposes relations

among them:

g1a = −g1s, g2a = −g2s

h1a = −h1s, and h2a = −h2s. (5.4)
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Notice that if we set the type-2 couplings to zero i.e. g2s = g2a = h2s = h2a = 0, we

decouple the second SO(4) and therefore we recover a truncation of the single SO(4)

gauging studied in [9] as the supergravity dual of the D1-D5 system in IIB theory on K3

or T 4. It can be obtained by reducing (2,0) six-dimensional supergravity on AdS3×S3.

A simple class of supersymmetric AdS vacua can be obtained as follows. We

parameterize e and B as:

e =




a1 0 0 0 e15 e16 e17 e18

0 a2 0 0 e25 e26 e27 e28

0 0 a3 0 e35 e36 e37 e38

0 0 0 a4 e45 e46 e47 e48

0 0 0 0 a5 0 0 0

0 0 0 0 0 a6 0 0

0 0 0 0 0 0 a7 0

0 0 0 0 0 0 0 a8




(5.5)

B =




0 0 0 0 b15 b16 b17 b18

0 0 0 0 b25 b26 b27 b28

0 0 0 0 b35 b36 b37 b38

0 0 0 0 b45 b46 b47 b48

−b15 −b25 −b35 −b45 0 0 0 0

−b16 −b26 −b36 −b46 0 0 0 0

−b17 −b27 −b37 −b47 0 0 0 0

−b18 −b28 −b38 −b48 0 0 0 0




. (5.6)

We have used the shift symmetry to set to zero the diagonal 4 × 4 blocks of B and

the SO(4) × SO(4) left action to diagonalize the diagonal blocks of e. For diagonal

e = (a1, a2, a3, a4, a5, a6, a7, a8) and B = 0, we cannot find any interesting solutions

apart from the trivial one with (4,4) supersymmetry. All the truncations below have

been checked to be consistent, in the sense that there are no tadpoles for the remaining

scalars.
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We find a class of solutions by setting:

a2 = a3 = a4 = a1

a6 = a7 = a8 = a5

b15 =
1

4
(c15 − c26 − c37 + c48) b16 =

1

4
(−c16 − c25 − c38 − c47)

b17 =
1

4
(c18 + c27 − c36 − c45) b18 =

1

4
(c17 − c28 + c35 − c46)

b25 =
1

4
(−c16 − c25 + c38 + c47) b26 =

1

4
(−c15 + c26 − c37 + c48)

b27 =
1

4
(c17 − c28 − c35 + c46) b28 =

1

4
(−c18 − c27 − c36 − c45)

b35 =
1

4
(c18 − c27 + c36 − c45) b36 =

1

4
(−c17 − c28 + c35 + c46)

b37 =
1

4
(−c15 − c26 − c37 − c48) b38 =

1

4
(−c16 + c25 + c38 − c47)

b45 =
1

4
(−c17 − c28 − c35 − c46) b46 =

1

4
(−c18 + c27 + c36 − c45)

b47 =
1

4
(−c16 + c25 − c38 + c47) b48 =

1

4
(c15 + c26 − c37 − c48), (5.7)

and all other parameters are zero. We can choose

c16 = c17 = c18 = c25 = c27 = c28 = 0

c35 = c36 = c38 = c45 = c46 = c47 = 0. (5.8)

Supersymmetric vacua require

g1s = −a2
1h1s g2s = −a2

5h2s h2s =
a4

1

a4
5

h1s. (5.9)

• (1,1) critical point

This point is given by c15 = 0,

A1 = (−16g2
1s

h1s

,
16g2

1s

h1s

,−8g2
1s

h1s

√
4 + a2

1a
2
5c

2
26,

8g2
1s

h1s

√
4 + a2

1a
2
5c

2
26,

−8g2
1s

h1s

√
4 + a2

1a
2
5c

2
37,

8g2
1s

h1s

√
4 + a2

1a
2
5c

2
37,−

8g2
1s

h1s

√
4 + a2

1a
2
5c

2
48,

8g2
1s

h1s

√
4 + a2

1a
2
5c

2
48) (5.10)

and V0 = −1024g4
1s

h2
1s

.
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• (2,2) critical point

This point is given by c15 = 0 and c26 = 0.

• (3,3) critical point

This point is given by c15 = 0,c26 = 0 and c37 = 0.

• (4,4) critical point

This point is given by c15 = 0, c26 = 0, c37 = 0 and c48 = 0.

All of them have the same cosmological constant. A1 for the last three points is given

by setting some of the appropriate values of c’s to zero in (5.10).

We also find other solutions with non zero parameters

a2 = a3 = a4 = a1 a6 = a7 = a8 = a5

e15 = e26 = e37 = e48 = e

b16 = −b25 b38 = −b47 (5.11)

subject to these relations a2
5 + e2 = − g2s

h2s
, a2

1 = − g1s

h1s
and

g2
1s

h1s
=

g2
2s

h2s
. Note that in this

case, we also turn on some off-diagonal elements of e. The solutions are given by:

• (2,2) critical point

This solution has A1 =
16g2

1s

h1s
giving the same cosmological constant as in the

previous case.

• (3,2) critical point

This can be obtained from the previous case by setting b25 = b47 or b25 = −b47.

So, there is no possible flow solution between all these critical points.

6. Conclusions

In this paper, we have studied three dimensional gauged supergravities and their AdS3

supersymmetric vacua. We have discussed the N = 4 and N = 8 theories with SO(4)n
R6 and (SO(4)nR6)2 gaugings, respectively. Several supersymmetric AdS3 vacua with

different amount of supersymmetry have been found.

In the N = 4 theory, we have found analytic solutions interpolating between two

(3,1) vacua. These solutions describe Renormalization Group flows between two fixed

points of the dual boundary field theory. We have checked that the flows agree with

the c-theorem, in particular the central charges of UV fixed points are strictly greater

than those of the IR ones. We have also found a numerical solution describing the
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flow between (2,0) vacua with similar qualitative features. In both cases, we found

v.e.v. flows, i.e. flows driven by vacuum expectation values of relevant operators with

dimensions ∆ = 1 and ∆ = 1.168, respectively, as opposed to the most common case

where the flow is driven by a perturbing relevant operator.

In the N = 8 theory, we have found several vacua. However, they all have the same

cosmological constant/central charge and the flow issue does not arise.

The gaugings considered here are of non semi-simple Chern-Simons type, giving rise

to semi-simple Yang-Mills theories. In the N = 8 case, the (4, 4) point is related to the

KK reduction of type IIB theory on AdS3×S3×S3×S1, and it would be interesting to

identify the marginal deformations which take the theory to other less supersymmetric

vacua, i.e. to generalize the discussion of [16], where the marginal deformation from

(4, 4) to (3, 3) vacua has been worked out in detail, to the (k, k) vacua with k < 3.

The N = 4 case seems to be related, via a Z2 projection, to the N = 8 theory, and

it would be interesting to see how this is acting on the corresponding type IIB theory

background. This would presumably help us in understanding the nature of the dual

SCFT2.
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A. Essential formulae

In this appendix, we give the expressions for the V ’s. Indices referring to each target

space coordinates, i, j, k, . . ., will be traded by a pair of indices of the type a, b, c, . . .

from 1 to 4. Antisymmetric pairs of capital letters I, J,K, . . . label SO(4) adjoint

indices.

VLJ,MK
±a = −1

4
Tr[(et

1J
LJ
+ X t

1 + X1J
LJ
+ e1)J

MK
± + (et

2J
LJ
− X t

2 + X2J
LJ
− e2)J

MK
± ],

V±1,2a
MK
ab = Tr[(et

1,2εabX
t
1,2 + Y1,2εabe1,2)J

MK
± ],

VLJ,MK
±b = −1

4
Tr[(et

1J
LJ
+ et

1 + et
2J

LJ
− et

2)J
MK
± ],

V±1,2b
MK
ab = Tr(et

1,2εabe1,2J
MK
± ).

(A.1)

The string of indices ±1, 2a (±1, 2b) indicates A (B)-type gauging in the first (second)

space with (anti-)self-dual SU(2).
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For completeness, we give below the analogous expressions for the N = 8 case:

V±a
LJ,MK =

1

4
√

2
Tr[ΓJL(eJMK

± X + X tJMK
± et)],

V±b
LJ,MK =

1

2
√

2
Tr[JJL

± eΓMKet],

V±a
MK
ab =

1√
2
Tr[εab(X

tJMK
± et + eJMK

± Y )],

V± b
MK
ab =

2√
2
Tr[εabeJ

MK
± et]. (A.2)

Here ΓJL = −[ΓJ , ΓL]/2 and all indices run from 1 to 8 and JMK
± are the (anti-)self-

dual SU(2) generators in SO(4)× SO(4) ⊂ SO(8), corresponding to the first (second)

SO(4) for M,K = 1, . . . , 4 (M, K = 5, . . . , 8), respectively.

B. The other vacua of the N = 4 theory

In this appendix, we give all vacua we have found in N = 4 theory apart from those

involved in the flows.

B.1 (4,0) vacua

• VI.

e1 =

√
−2(gn + gp)

g2s

I4×4, e2 =

√
2(gp − gn)

g2s

I4×4,

A1 =
32gngp

g2s

, and V0 = −4096g2
ng2

p

g2
2s

. (B.1)

B.2 (3,0) vacuum

• VII.

e1 = a
(
1,− gm + gp

gn + gp + g2sa2
, 1, 1

)
, e2 =

√
(g2

p − g2
n)

g2
p − g2

n + g2sgpa
aI4×4,

a =

√
g3

n − g2
ngp − gng2

p + g3
p +

√
g6

n − g4
ng2

p − g2
ng4

p + g6
p

gngpg2s

A1 = −8(g2
n − g2

p)
2

g2sgngp

, and V0 =
−256(g2

n − g2
p)

4

(g2
2sgngp)2

(B.2)
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• VIII.

e1 = a
(
1,− gm + gp

gn + gp + g2sa2
, 1, 1

)
, e2 =

√
(g2

p − g2
n)

g2
p − g2

n + g2sgpa
aI4×4,

a =

√
g3

n − g2
ngp − gng2

p + g3
p −

√
g6

n − g4
ng

2
p − g2

ng
4
p + g6

p

gngpg2s

A1 = −8(g2
n − g2

p)
2

g2sgngp

, and V0 =
−256(g2

n − g2
p)

4

(g2
2sgngp)2

(B.3)

B.3 (2,0) vacua

• IX.

e1 = −(a1, a1, b1, b2) e2 = (b1, b1, b2, b2) (B.4)

a1 = 2

√
g2

n − g2
p

g2s(gn − gp +
√

5g2
n + 2gngp + g2

p)

a2 = 2

√
g2

n − g2
p

g2s(gp − gn +
√

5g2
p + 2gngp + g2

n)

b1 = 2

√
g2

p − g2
n

g2s(3gn + gp −
√

5g2
n + 2gpgn + g2

p)

b2 = 2

√
g2

n − g2
p

g2s(
√

g2
n + 2gngp + 5g2

p − gn − 3gp)
(B.5)

A1 =
−32(gn − gp)

2

g2s

and V0 = −4096(gn − gp)
4

g2
2s

. (B.6)

• X.

e1 = (−a1, a1, a2, a2) e2 = (b1, b1, b2, b2) (B.7)

a1 = 2

√
g2

p − g2
n

g2s(gp − gn +
√

5g2
n + 2gpgn + g2

p)

a2 = 2

√
g2

p − g2
n

g2s(gn − gp −
√

5g2
p + 2gpgn + g2

n)

b1 = 2

√
g2

p − g2
n

g2s(3gn + gp +
√

5g2
n + 2gpgn + g2

p)

b2 = 2

√
g2

n − g2
p

g2s(
√

g2
n + 2gngp + 5g2
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• XI.

e1 = (−a1, a1, a2, a2) e2 = (b1, b1, b2, b2) (B.10)
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• XII.

e1 = (−a1, a1, a2, a2) e2 = (b1, b1, b2, b2) (B.13)
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