Quantization, geometry and background (in)dependence in high-spin gauge theory

Per Sundell (Université de Mons)

ENS Lyon

April 7, 2010

Per Sundell (Université de Mons) ()

- 1 Classical unfolded dynamics and Cartan geometry
- 2 Vasiliev's equations and higher-spin geometry
- 3 Semi-classical high-spin action principle
- 4 Quantum gauge principle

Warning: Revisionist attempt to collect various ideas connecting "high-spin gauge theory" to "quasi-topological field theory" — some details are based on work in collaboration with N. Boulanger, C. lazeolla and E. Sezgin, other parts stolen from literature.

イロト 不得下 イヨト イヨト

Generalized curvatures

Unfolded dynamics concerns the formulation of dynamical systems (with finitely or infinitely many degrees of freedom) as external differential systems generated by generalized curvature constraints

$${\sf R}^lpha \ := \ {\sf d} X^lpha + {\sf Q}^lpha(X) \ pprox \ {\sf 0} \ ,$$

- fields X^{α} : locally defined differential forms on base manifold S.
- structure functions Q^{α} : sums of exterior products of X's (that can be non-polynomial in zero-forms) obeying the compatibility condition

$$Q^lpha \partial_lpha Q^eta ~\equiv~ 0 ~~ \Rightarrow ~~ dR^lpha + R^eta \partial_eta Q^lpha ~\equiv~ 0$$
 .

which is assumed to hold independently of the topology of $\mathcal{S}.$

Classical *Q*-manifolds

The basic dynamical variable is a sigma-model map f of vanishing intrinsic degree:

$$f \hspace{.1 in} : \hspace{.1 in} \mathcal{M} := \mathcal{T}[1] \mathcal{S} \hspace{.1 in}
ightarrow \hspace{.1 in} \mathcal{N} \hspace{.1 in}, \qquad f^* \hspace{.1 in} : \hspace{.1 in} \Omega^{[n|p]}(\mathcal{N}) \hspace{.1 in}
ightarrow \hspace{.1 in} \Omega^{[p]} \mathcal{S}) \hspace{.1 in},$$

where \mathcal{M} and \mathcal{N} are graded commutative Q-manifolds, *i.e.* \mathbb{N} -graded differentiable manifolds with nilpotent vector fields of degree 1, *viz.*

- $\mathcal{M} := \mathcal{T}[1]\mathcal{S}$ with local coordinates (σ^M, θ^M) of degrees (0, 1) and Q-structure $d = \theta^M \frac{\partial}{\partial \sigma^M}$.
- $\mathcal N$ with local coordinates $\{X^lpha\}$ of degrees $|X^lpha|=p_lpha\in\mathbb N$, and

$$Q := Q^{lpha}\partial_{lpha} , \quad \mathcal{L}_{Q}Q = [Q,Q]_{\mathcal{S}.\mathcal{B}.} = 2(Q^{lpha}\partial_{lpha}Q^{eta})\partial_{eta} \equiv 0 .$$

The equations of motion now read

$$df^* + f^*Q \approx 0$$
.

One also assigns $\{X^{\alpha}\}$ dual graded abelian modules $\mathfrak{R} = \bigoplus_{p=0}^{\infty} \mathfrak{R}_{[p]}$.

Cartan gauge transformations

• The constraint surface $\{R^{\alpha}\approx \mathbf{0}\}$ is left invariant under

$$egin{aligned} &\delta_\epsilon(f^*X^lpha) \ &:= \ d\epsilon^lpha - \epsilon^eta f^*(\partial_eta Q^lpha) \ &\Rightarrow \ \delta R^lpha \ &\equiv \ (-1)^eta \epsilon^eta R^\gamma f^*(\partial^2_{\gammaeta} Q^lpha) \ , \end{aligned}$$

with unconstrained, locally defined gauge parameters ϵ^{α} dual to $f^*_{[-1]}\mathfrak{R}$ where $f^*_{[-1]}$ is a non-dynamical sigma-model map of intrinsic degree -1 (\rightsquigarrow dynamical ghosts in BRST-BV-AKSZ action).

• Soft, open, $\mathbb N\text{-}\mathsf{graded}$ algebra $\mathfrak a:=(\mathfrak R[-1],\mathfrak R),$ viz.

$$[\delta_{\epsilon_1}, \delta_{\epsilon_2}](f^*X^{\alpha}) \equiv \delta_{\epsilon_{12}}(f^*X^{\alpha}) + (-1)^{\gamma} \epsilon_1^{\beta} \epsilon_2^{\gamma} R^{\delta} f^*(\partial_{\delta\gamma\beta}^3 Q^{\alpha}) ,$$

where $\epsilon^{lpha}_{12}=(-1)^{eta+1}\epsilon^{eta}_{1}\epsilon^{\gamma}_{2}f^{*}(\partial^{2}_{\gammaeta}Q^{lpha})$.

• Globally defined formulation with "unbroken" Cartan gauge structuroid

$$\mathfrak{a} \ \hookrightarrow \ \mathcal{P} \ \to \mathcal{M}$$

Per Sundell (Université de Mons) ()

Classical unfolded dynamics and Cartan geometry

Twisted-adjoint representation

• Subalgebra $\mathfrak{a}_{[0]} := ((\mathfrak{R}[-1])_{[0]}, \mathfrak{R})$: Lie algebra represented softly and linearly on fields of fixed degrees

$$\delta_{\epsilon} X^{lpha} = \delta_{p_{lpha},1} d\epsilon^{lpha}_{[0]} +
ho(\epsilon_{[0]})^{lpha}_{eta} X^{eta} + O(X^2)$$

Linearized representation matrices ρ define ordinary Lie algebra g. • Twisted-adjoint module

$$\mathfrak{T} := ((\mathfrak{R}[-1])_{[0]}, \mathfrak{R}_{[0]})$$
 .

In quantum field theory, \mathfrak{T} consists of the Weyl tensors and all their on-shell derivatives, forming a unitarizable representation of the space-time isometry algebra, \mathfrak{g} .

Globally defined local symmetries

On-shell Q- and d-morphisms connected to the identity:

• infinitesimal target-space diffeos preserving Q :

 $\delta X^{\alpha} = -[Q, B]^{\alpha}$ for globally defined vector field $B = B^{\alpha}\partial_{\alpha}$ on \mathcal{N} of degree |B| = -1 (since $\mathcal{L}_{[Q,B]}Q = [[Q, B], Q] \equiv 0$) corresponding to

$$\epsilon^{\alpha} = f^* B^{\alpha}(X)$$

• infinitesimal base-manifold diffeos preserving d :

 $\delta(f^*X^{\alpha}) = \mathcal{L}_v f^*X^{\alpha} = [d, i_v]f^*X^{\alpha}$ for globally defined vector field von Σ corresponding to

$$\epsilon^{lpha} pprox i_{\nu} f^* X^{lpha}$$

On-shell, these symmetries are broken spontaneously by $\langle X^{\alpha} \rangle$ but not by observables, *i.e.* observables must break symmetries "softly".

Degrees of freedom and phases

Weyl zero-form $\Phi \in f^*\mathfrak{R}_{[0]}$ deform otherwise "topological systems" into "dynamical systems" in various phases characterized by different types of gauge-invariant classical observables/degrees of freedom:

- Unbroken phase:
 - ► Generalized Casimir invariants *I_N*[Φ] ↔ semi-classical amplitudes in correspondence/twistor spaces.
 - Decorated Wilson loops Tr[P{∏_i I_{Ni}[Φ]|_{Pi} exp ∮_L A}] for possibly composite connections A that are on-shell flat, dA + ½[A, A] ≈ 0.
- Softly broken Cartan geometries with soldering one-form E:
 - ► Charges $\oint_{S}(H' + K')$ for globally defined, equivariantly on-shell closed, possibly composite, *p*-form curvatures $H'[\Phi, E]$, $dH' + f'(H) \approx 0$ (*c.f.* Sullivan algebras)
 - Minimal areas for composite spin-s metrics G_{M1...Ms}[Φ, E] and brane partition functions.

Naively

d.o.f. in unbroken phase << # d.o.f. broken phase \Rightarrow \Rightarrow \Rightarrow

Locally defined gauge functions and integration constants

Expand Q (assume no constant forms in positive degrees and Stückelberg masses):

$$Q^{lpha}(X) = \sum_{n\geq 2} Q^{lpha}_{eta_1\dotseta_n} X^{eta_1} \cdots X^{eta_n}$$

Expand $X^{\alpha} = \sum_{n=1}^{\infty} X^{\alpha}_{(n)}$ around general linearized solution given by gauge functions and integration constants:

$$\begin{aligned} |X^{\alpha}| > 0 : X^{\alpha}_{(1)} \approx d\lambda^{\alpha} , \\ |X^{\alpha}| = 0 : X^{\alpha}_{(1)} \approx C^{\alpha} , \quad dC^{\alpha} = 0 . \end{aligned}$$

Cartan integrability implies:

$$egin{aligned} Q^lpha_{(n)} &pprox & -d(\Xi^lpha_{(n)}(\mathcal{C},\lambda,d\lambda)) & (\Xi^lpha_{(n)} ext{ local}) \ & X^lpha &pprox & \sum_{n=1}^\infty \Xi^lpha_{(n)}(\mathcal{C},\lambda,d\lambda) \;, \end{aligned}$$

where higher-order homogeneous solutions have been redefined away.

Gluing compatibility

 δ_ϵ acts nonlinearly on gauge functions and linearly on integration constants

$$\delta_{\epsilon}\lambda^{\alpha} = \epsilon^{\alpha} + \text{h.o.t.}, \qquad \delta_{\epsilon}C^{\alpha} = \rho(\epsilon_{[0]})^{\alpha}_{\beta}C^{\beta} + \text{h.o.t.}$$

Gluing compatibility: there exists a soft $\mathbb N\text{-}\mathsf{graded}$ principal bundle

$$\mathfrak{a}' \ \hookrightarrow \ \mathcal{P}' \ \to \mathcal{M} \ ,$$

where $\mathfrak{a}' \subseteq \mathfrak{a}$ is the unbroken gauge algebra, containing transition functions t_{IJ}^{α} on the overlaps $\mathcal{M}_{IJ} = \mathcal{M}_I \cap \mathcal{M}_J$ of charts in \mathcal{M} such that

$$\begin{split} \lambda_I^{\alpha} - \lambda_J^{\alpha} &= t_{IJ}^{\alpha} + \text{h.o.t.} , \\ C_I^{\alpha} &= \rho(t_{[0]IJ})^{\alpha}_{\beta} C_J^{\beta} + \text{h.o.t} \end{split}$$

Generalized Casimir invariants (amplitudes)

Invariant functions on the twisted-adjoint representation, viz.

$$\mathcal{I}_{N}[\Phi] = \sum_{n \geq N} \mathcal{I}_{N}^{(n)}(\Phi, \dots, \Phi) , \quad \Phi \in \mathfrak{R}_{[0]} := \{X^{\alpha} : |X^{\alpha}| = 0\} ,$$

 $d{\cal I}_N\approx 0 \ , \quad {\cal I}_N\approx {\cal I}_N[C] \quad (\text{in "physical gauge"}) \ ,$

where thus $\mathcal{I}_N^{(n)}$ are *n*-linear invariant functions of the linearized twisted-adjoint representation.

One may think of $\mathcal{I}_N[C]$ as generalized Casimir invariants for the *C*-deformed "topological modules" (C, λ) .

One may also think of \mathcal{I}_N as generators of amplitudes – this interpretation becomes more clear (or at least less obscure) in high-spin theories with cosmological constant where the twisted-adjoint representations are irreducible and self-dual (as modules).

Cartan geometries and soldering one-forms

The unbroken phase, with Cartan gauge structure $\mathfrak{a} \hookrightarrow \mathcal{P} \to \mathcal{M}$, can be broken softly, *i.e.* without generating masses, to Cartan geometries:

- the broken gauge symmetries reside in $\mathfrak{a}_{[0]} \hookrightarrow \mathcal{P}_{[0]} \to \mathcal{M}$, and are referred to as local translations, ξ .
- the vector fields v on S can be identified with the local translations via the broken gauge field E, referred to as the soldering one-form, viz. $v = \sum_{I} v_{I}$ and $\xi_{I} = i_{\xi} v_{I}$ (using partition of unity).
- the softly broken phase has order parameters given by observables $\mathcal{O}[\Phi, E]$ obeying

$$\delta_{t^{lpha}} \mathcal{O} \; \equiv \; \mathsf{0} \quad ext{for} \; t^{lpha} \in \mathfrak{a}' \; ,$$

where $\mathfrak{a}' \, \hookrightarrow \, \mathcal{P}' \, \to \, \mathcal{M}$ is the unbroken gauge structure of the Cartan geometry, and

$$\mathcal{L}_{\xi}\mathcal{O}~pprox~0$$
 ,

i.e. the observables are gauge-invariant "off-shell" and intrinsically defined on \mathcal{M} on-shell.

Per Sundell (Université de Mons) ()

Vasiliev's equations and higher-spin geometry

Non-commutative correspondence space

- Soft bundles \rightsquigarrow non-commutative correspondence spaces
- "4D" gauge theories: twisted product of a non-commutative phase-space and non-commutative twistor spaces, locally

$$T^*(M_X) \times T^*_Y \times T^*_Z$$

with two-form ($lpha, \dot{lpha}=1,2; M=1,2,\dots$)

$$\Omega = dX^M dP_M + dy^{lpha} dy_{lpha} + dar y^{\dot lpha} dar y_{\dot lpha} - dz^{lpha} dz_{lpha} - dar z^{\dot lpha} dar z_{\dot lpha} \; .$$

Closed and twisted-central element

$$J = b dz^2 (-1)^{N_y + N_z}_{\star} + h.c.$$

i.e. $d^4Y \star dJ = 0$ (treating dY as fermionic zero-modes) and $d^4Y \star [f, J]_{\pi} \equiv 0 \quad \forall f(Y; X, P, Z; dX, dP, dZ)$ with $[f, g]_{\pi} := f \star g - g \star \pi(f)$ and $\pi : y, dy, z, dz \to -(y, dy, z, dz)$.

Simplest example: Vasiliev's equations

• One-form A and zero-form Φ obeying

$$d^4Y\star(F+\Phi\star J)~pprox~0~,~d^4Y\star D\Phi~pprox~0~,$$

$$F := dA + A \star A$$
, $D\Phi := d\Phi + [A, \Phi]_{\pi}$

• Minimal bosonic models with spin s = 0, 2, 4, ...:

$$au(A,B) = (-A,\pi(B)) , \qquad (A,B)^{\dagger} = (-A,\pi(B))$$

where $\tau : y, dy, z, dz \rightarrow i(y, dy, -z, -dz)$ is a graded anti-automorphism.

 Linear-in-Φ coupling ⇐ manifest Lorentz invariance plus fixed parity of the scalar field.

Vasiliev's equations and higher-spin geometry

Manifest Lorentz invariance

Embed canonical Lorentz connection $(\omega^{lphaeta}, ar{\omega}^{\dot{lpha}\dot{eta}})$

$$W := dX^M A_M + dP_M A^M := V + \frac{1}{4i} \omega^{\alpha\beta} M_{\alpha\beta} - \mathrm{h.c.}$$

where $M_{\alpha\beta} := y_{\alpha} \star y_{\beta} - z_{\alpha} \star z_{\beta} + S_{(\alpha} \star S_{\beta)}$ with $S_{\alpha} := z_{\alpha} - 2iA_{\alpha}$. Manifestly Lorentz-covariant constraints

$$\begin{aligned} \nabla V + V \star V + \frac{1}{4i} R^{\alpha\beta} M_{\alpha\beta} - \text{h.c.} &\approx 0 , \\ \nabla \Phi + [V, \Phi]_{\pi} &\approx 0 , \quad \nabla S_{\alpha} + [V, S_{\alpha}]_{\star} &\approx 0 , \\ [S_{\alpha}, S_{\beta}]_{\star} &\approx -2i\epsilon_{\alpha\beta}(1 - \Phi \star \kappa) , \quad [S_{\alpha}, S_{\dot{\alpha}}]_{\star} &\approx 0 , \\ S_{\alpha} \star \Phi + \Phi \star \pi(S_{\alpha}) &= 0 \end{aligned}$$

Field redefinition \rightsquigarrow shift-symmetry \rightsquigarrow can impose

$$\frac{\partial^2}{\partial y^{\alpha} \partial y^{\beta}} V|_{Y=Z=0} = 0.$$

Minimal Type A/B models

Parity assignments (P exchanges dotted and undotted spinors): Type A model : b = 1 and P(A, Φ) = (A, Φ) → scalar 0₊ Type B model : b = i and P(A, Φ) = (A, -Φ) → pseudo-scalar 0₋
Conjectured AdS/CFT correspondence: Type A / B models in asymptotic AdS₄ backgrounds with coupling ħ ↔ O(N) model / Gross-Neveu model with N = ħ⁻² scalars / fermions.

- few \hbar -corrections to bulk fields
- ► dynamical symmetry breaking ~→ anomalous dimensions for spin s = 0, 4, 6, ...

Question: Are the Type A/B models UV completions of (effective) quantum gravity?

Gauge function method

Contract T^{*}M_X → M_X ("trivial sector" of phase-space functions)
 → Maurer-Cartan system on M_X
 → possibly multi-valued gauge function:

$$egin{array}{rcl} A_M &pprox & g^{-1}\star\partial_M g \ , & \Phi &pprox & g^{-1}\star\Phi'\star\pi(g) \ , \ & A_lpha &pprox & g^{-1}\star(\partial_lpha+A'_lpha)\star g \end{array}$$

where "initial data" obey $\partial_M \Phi' \approx \partial_M A'_{\underline{\alpha}} \approx 0$ and twistor-space equations

$$F' + \Phi' \star J \approx 0 \ , \quad D' \Phi' \approx 0 \ .$$

• Equivalent deformed oscillator with "anyon-statistics parameter" $\Phi^\prime :$

$$[S'_{\alpha},S'_{\beta}]_{\star} \approx -2i\epsilon_{lphaeta}(1-\Phi'\star\kappa) , \quad S'_{lpha}\star\Phi'+\Phi'\star\pi(S'_{lpha}) = 0 ,$$

→ exact solution-generating methods, e.g. Type D moduli space.

• Contract T_Z^* in physical gauge $Z^{\underline{\alpha}}S'_{\underline{\alpha}} = 0$ (again trivial sector) \rightsquigarrow unique perturbative expansion in $C(Y) := \Phi'|_{Z=0}$ Vasiliev's equations and higher-spin geometry

Observables in unbroken phase

Decorated Wilson loops

$$Tr_{\kappa\bar{\kappa}}\left[P\left\{\prod_{i}X_{2N_{i}}|_{p_{i}}\exp\oint_{L}W\right\}\right]$$

where $Tr_{\Gamma}[\cdot] \equiv Tr[\Gamma \star (\cdot)]$, Tr is chiral trace and adjoint impurities

$$X_{2N} := X^{\star N}$$
, $X := \Phi \star \pi(\Phi)$.

Trivial L and removal of point-split \rightsquigarrow generalized Casimir invariants

$$\mathcal{I}_{2N} := Tr_{\kappa\bar{\kappa}}[X^{\star N}]$$

Contract $T^*M_X \times T^*_Z$ perturbatively yields

$$\mathcal{I}_{2N} = STr[(C \star \pi(C))^{\star N}] + \sum_{n \geq 2N+1} \mathcal{I}_{2N}^{(n)}(C)$$

where $\mathcal{I}_{2N}^{(n)}$ are *n*-linear invariant functions on the linearized twisted-adjoint representation given by closed-contour homotopy integrals in $T_{Z^*}^*$,

Per Sundell (Université de Mons) ()

Quantizing high-spin gauge theory

April 7, 2010 18 / 30

High-spin Cartan geometry

Define $P_{\pm} = \frac{1}{2}(1 \pm \pi)$ and split V into $E := P_{-}V$, $\Omega := P_{+}V \rightsquigarrow$ $\nabla E + [\Omega, E]_{\star} + \frac{1}{4i}R^{\alpha\beta}P_{-}M_{\alpha\beta} - \text{h.c.} \approx 0$, $\nabla \Omega + \Omega \star \Omega + E \star E + \frac{1}{4i}R^{\alpha\beta}P_{+}M_{\alpha\beta} - \text{h.c.} \approx 0$, $\nabla \Phi + [\Omega, \Phi]_{\star} + \{E, \Phi\}_{\star} \approx 0$,

that can be examined using geometric methods:

• Real and imaginary parts of on-shell Chern classes

$$H_{[2N]} := Tr_\kappa[E^{\star 2N}] + R^{lphaeta}$$
-corrections , $dH_{[2N]} pprox 0$.

• High-spin metrics of ranks $s = 2, 4, 6, \ldots$:

$$G_{M_1...M_s} = Tr_{\kappa\bar{\kappa}}[E_{(M_1} \star \cdots \star E_{M_s})],$$

that define norms, geodesics and minimal areas.

Question: Calibrations $(H_{2N}, G_{2N}) \xrightarrow{?}$ Brane actions/partition functions \mathcal{I}_{2N}

Per Sundell (Université de Mons) ()

Generalized Poisson sigma model

- Classical unfolded system $df^* + f^*Q \approx 0$ with $f : \mathcal{M} = T[1]S \rightarrow \mathcal{N}$.
- Embed $\mathcal{M} \hookrightarrow \mathcal{B} = \mathcal{T}[1]\mathcal{D}$ and $\mathcal{N} \hookrightarrow \mathcal{T}^*[D]\mathcal{N}$ with $D = \dim(\mathcal{D}) 1$.
- Extend $f: \mathcal{B} \to T^*[D]\mathcal{N}$ and consider action $S_{\mathrm{tot}} = S_{\mathrm{bulk}} + S_{\mathrm{marg}}$.
- Bulk action $S_{\text{bulk}} = \int_{\mathcal{B}} f^* (R^{\alpha} P_{\alpha} + \Pi_2^{\alpha\beta} P_{\beta} P_{\alpha} + \Pi_3^{\alpha\beta\gamma} P_{\gamma} P_{\beta} P_{\alpha} + \cdots)$ $\equiv \int_{\mathcal{B}} f^* (dX^{\alpha} P_{\alpha} + H(X, P))$
- Gauge invariance requires $\{H, H\}^{[-D]} = \partial_{\alpha} H \partial^{\alpha} H \equiv 0$, i.e.

$$\mathcal{L}_Q Q \ \equiv \ 0 \ , \quad \mathcal{L}_Q \Pi_2 \ \equiv \ 0 \ , \quad \{\Pi_2, \Pi_2\}_{\mathcal{S}.B.} + \mathcal{L}_Q \Pi_3 \ \equiv \ 0 \ ,$$

which implies $Q^{\alpha} = \prod_{2}^{\alpha\beta} \partial_{\beta} h$ (Hamiltonian *Q*-structure).

• Semi-classically marginal deformation $S_{
m marg} = \int_{\mathcal{M}} f^* M[X, dX]$

$$\delta_{
m gauge} M ~\equiv~ 0 \;, \quad \delta M ~pprox ~ 0 \;,$$

so that $\int_{\mathcal{M}} M \approx$ generator of semi-classical amplitudes ("tree diagrams").

Semi-classical high-spin action principle

Duality extended Vasiliev system

Extend (A, Φ, J) by forms in higher degrees:

 $(\widehat{A}, \widehat{B}, \widehat{U}, \widehat{V}; \widehat{J}) \in \widehat{\mathcal{U}}[X, P, Y, Z; dX, dP, dY, dZ; k, \overline{k}],$

$$k \star (y, dy, z, dz) = -(y, dy, z, dz) \star k$$
, $k \star k = 1$,

and degree assignments ($D \in 2\mathbb{N}$):

$$\widehat{A} = A_{[1]} + A_{[3]} + \dots + A_{[D-1]}$$

$$\widehat{V} = V_{[D-1]} + V_{[D-3]} + \dots + V_{[1]}$$

$$\widehat{U} = U_{[2]} + U_{[4]} + \dots + U_{[D]}$$

$$\widehat{B} = B_{[D-2]} + B_{[D-4]} + \dots + B_{[0]}$$

and $\widehat{J} = J_{[2]} + J_{[4]}$ is real, closed, central and $i_M \widehat{J} = i^M \widehat{J} = 0$ ($J_{[4]}$ brings in four new parameters).

Semi-classical Type A/B bulk action

$$S_{\text{bulk}} = \int_{\mathcal{B}} \widehat{T} r_{d^4 Y dk d\bar{k}} \left[\widehat{U} \star \widehat{D} \widehat{B} + \widehat{V} \star (\widehat{F} + \widehat{B} \star \widehat{J}) + \widehat{V} \star f(\widehat{U}) \right] ,$$

where $f(U) := f_1 U + f_2 U^{*2} + \cdots$ and the linear dependence on \widehat{B} is required by gauge invariance.

Type A/B projection: insert $P_{\pm}:=rac{1}{2}(1+kar{k})$ into the trace and impose

$$B_{[0]} = P_+ k \star \Phi$$
, $A_{[1]} = P_+ \star A$,
 $J_{[2]} = P_+ k \star J$

plus consequences in higher degrees $\Rightarrow D \in 4\mathbb{N}$ and $f(-\widehat{U}) = -f(\widehat{U})$ and only two parameters remain in $J_{[4]} = P_+(b_1 + b_2\kappa\bar{\kappa})dZ^4$.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = ののの

Classically marginal deformations

• Broken phase: split W into $\widetilde{E} = P_-W$ and $\widetilde{\Omega} = P_+W$ \rightsquigarrow candidate full Fradkin-Vasiliev-like action ($\widetilde{R} := d\widetilde{\Omega} + \widetilde{\Omega} \star \widetilde{\Omega}$):

$$S_{\rm FV} := \operatorname{Im} \int_{\mathcal{M}} \widetilde{T} r_{d^4 Y J_{[4]} dk d \bar{k} \kappa} \left[c_1 \widetilde{R} \star \widetilde{R} + c_2 (\widetilde{R} + \frac{1}{2} \widetilde{E} \star \widetilde{E}) \star \widetilde{E} \star \widetilde{E} \right]$$

Question: Lorentz-covariant perturbative expansion on-shell (with fixed parameters) $\stackrel{?}{\leftrightarrow}$ CFT correlators

Unbroken phase: T

 T r_{d⁴Ydkdk} [c'₁F ★ F + c'₂(F + ½B ★ J) ★ B] |_{p∈T*Mx}

 Question: Perturbative expansion on-shell (with fixed parameters)

 correlation functions of topological open "singleton" string

Quantum gauge principle

Generalized AKSZ sigma models

Starting from generalized Poisson sigma model $S_{\rm bulk}$, the minimal BRST-BV classical master action is given by

$$S_{\min} = \int_{\mathcal{B}} \mathbf{f}^* (dX^{\alpha} P_{\alpha} + H)|^{[0]}$$

where $\mathbf{f} : \mathcal{B} \to \mathcal{T}^*[D]\mathcal{N}$ has non-vanishing first-quantized and second-quantized ghost numbers gh_1 and gh_2 , respectively, but vanishing intrinsic total degree $gh_1 + gh + 2$, where gh_1 is identified as the form degree on \mathcal{B} :

$$\mathbf{X}^{lpha} = \sum_{\substack{gh_1 \in \mathbb{N} \ gh_2 \in \mathbb{Z}}} (\mathbf{X}^{lpha})^{[gh_2]}_{[gh_1]}.$$

Extra assumptions on auxiliary volume form $\rightsquigarrow \Delta_{BV}S_{\min} = 0$.

Question: Precise generalization to systems with non-commutative base manifold, and central+closed elements?

Per Sundell (Université de Mons) () Quantizing I

April 7, 2010 24 / 30

Gauge fixing

Add canonical (albeit in general non-minimal) gauge fixing sector (ghost momenta with $gh_2 < 0$ and Lagrange multipliers, and then additional layers of ghosts, ghost momenta and multipliers):

$$\begin{split} S_{\text{g.f.}} &= S_{\text{kin}} + S_{\text{int}} ,\\ S_{\text{kin}} &= \int_{\mathcal{B}} (d\mathbf{X}^{\alpha} \mathbf{P}_{\alpha} + \cdots)^{[0]} ,\\ S_{\text{int}} &= \int_{\mathcal{B}} (Q^{\alpha}(\mathbf{X}) \mathbf{P}_{\alpha} + \Pi_{2}^{\alpha\beta}(\mathbf{X}) \mathbf{P}_{\beta} \mathbf{P}_{\alpha} + \cdots)^{[0]} , \end{split}$$

exhibiting tensorial supersymmetry in the sense that

$$\int D({
m fields}) e^{rac{i}{\hbar_2} S_{
m kin}} = 1 + {
m auxiliary}$$
-curvature corrections .

Per Sundell (Université de Mons) ()

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Topological sum

Expand around $\langle E \rangle = \overline{E}$ and adapt auxiliary vielbein to $\overline{E} \rightarrow$ additional 1-loop corrections from $\rho(\overline{E})$.

 $\Lambda_{\rm CC} = 0 = \textit{Mass}^2 \rightsquigarrow$ all vacuum bubbles cancel.

Question: What happens for critical masses if $\Lambda_{\rm CC} \neq 0?$

Topological sum: If all one-loop corrections combine into curvature invariants then it makes sense to examine for which topologies the partition function is actually well-defined and to sum over these

 \rightsquigarrow notion of "third quantization".

de Rham-like BRST operator and non-commutativity

The prototype bulk action

$$S_{\text{bulk}} \sim \int_{\mathcal{B}} f^* (dX_{[p]} \cdot P_{[D-p]} + d\widetilde{X}_{[D-p-1]} \cdot \widetilde{P}_{[p+1]} + P_{[D-p]} \cdot \widetilde{P}_{[p+1]} + \cdots) ,$$

induces de Rham-like BRST operator acting on non-commutative zero-modes:

$$\begin{split} \delta P &= d\epsilon + \cdots, \quad \delta \widetilde{P} = d\widetilde{\epsilon} + \cdots, \\ \delta X &= -(-1)^{D(p+1)}\widetilde{\epsilon}, \quad \delta \widetilde{X} = -\epsilon + \cdots. \\ \rightsquigarrow \quad Q_{BRST} \sim C^{[D-p]}_{[0]} \cdot \frac{\partial}{\partial \widetilde{X}^{[D-p-1]}_{[0]}} + \widetilde{C}^{[p+1]}_{[0]} \cdot \frac{\partial}{\partial X^{[p]}_{[0]}} \end{split}$$

Per Sundell (Université de Mons) ()

Quantum gauge principle

Russian doll structure: Quantum Gauge Principle

Unify Einstein-Weyl's Gauge Principle and Quantum Mechanics

 $\rightarrow \text{Quantum Gauge Principle}$

Fundamental interactions in Nature form hierarchic structure (n = ..., 1, 2, 3, ...)

SigmaModel_n[CartanGeom_n, BRST-BVGeom_n; LoopExp_n; TopSum_n]

$$\mathcal{Z}_{n}[\alpha'_{n},\hbar_{n},g_{n}] = \sum_{\text{Topologies}_{n}} (g_{n})^{\text{Index}_{n}} \int_{\text{Maps}_{n}:\text{Base}_{n} \to \text{Target}_{n}} e^{\frac{i}{\hbar_{n}}S[\text{Map}_{n};\alpha'_{n};\hbar_{n}]}$$

SigmaModel_n = Master theory of SigmaModel_{n-1} CartanGeom_n = BRST-BVGeom_{n-1} ($\alpha'_n = \hbar_{n-1}$) LoopExp_n = TopSum_{n-1} ($\hbar_n = g_{n-1}$) Base_n : zero-modes of (n - 1)th unfolded system Target_n : composite operators of the (n - 1)th unfolded system

High-spin implementation

- Limit $\hbar_1 = 1$, $\hbar_2 = \hbar_3 = 0$
- \rightsquigarrow classical unfolded system on noncommutative $\mathbb{Z}\text{-}graded$ manifold \supset $\mathbb{N}\text{-}graded$ correspondence space
- Natural arena for High-Spin Gauge Theory !
- \rightsquigarrow Starting point for examining QGP :
 - 1st-quantized TopOpenString on the correspondence space for massless fields in four space-time dimensions
 - 2nd-quantized Vasiliev Systems in correspondence space
 - 3rd-quantized moduli space (geometric quantization of high-spin invariant observables)

Conclusions

- Existence of an action principle for Vasiliev's equations
- Germ of geometric framework for quantization as well as exact solution finding

Merci beaucoup!

Per Sundell (Université de Mons) ()