
Quantization, geometry and background (in)dependence
in high-spin gauge theory

Per Sundell (Université de Mons)
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Warning: Revisionist attempt to collect various ideas connecting “high-spin gauge

theory” to “quasi-topological field theory” — some details are based on work in

collaboration with N. Boulanger, C. Iazeolla and E. Sezgin, other parts stolen

from literature.
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Classical unfolded dynamics and Cartan geometry

Generalized curvatures

Unfolded dynamics concerns the formulation of dynamical systems (with
finitely or infinitely many degrees of freedom) as external differential
systems generated by generalized curvature constraints

Rα := dXα + Qα(X ) ≈ 0 ,

fields Xα : locally defined differential forms on base manifold S.

structure functions Qα : sums of exterior products of X ’s (that can
be non-polynomial in zero-forms) obeying the compatibility condition

Qα∂αQβ ≡ 0 ⇒ dRα + Rβ∂βQ
α ≡ 0 ,

which is assumed to hold independently of the topology of S.
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Classical unfolded dynamics and Cartan geometry

Classical Q-manifolds

The basic dynamical variable is a sigma-model map f of vanishing intrinsic
degree:

f : M := T [1]S → N , f ∗ : Ω[n|p](N ) → Ω[p]S) ,

where M and N are graded commutative Q-manifolds, i.e. N-graded
differentiable manifolds with nilpotent vector fields of degree 1, viz.

M := T [1]S with local coordinates (σM , θM) of degrees (0, 1) and
Q-structure d = θM ∂

∂σM .

N with local coordinates {Xα} of degrees |Xα| = pα ∈ N, and

Q := Qα∂α , LQQ = [Q,Q]S .B. = 2(Qα∂αQβ)∂β ≡ 0 .

The equations of motion now read

df ∗ + f ∗Q ≈ 0 .

One also assigns {Xα} dual graded abelian modules R =
⊕∞

p=0 R[p].
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Classical unfolded dynamics and Cartan geometry

Cartan gauge transformations

The constraint surface {Rα ≈ 0} is left invariant under

δε(f
∗Xα) := dεα − εβf ∗(∂βQα)

⇒ δRα ≡ (−1)βεβRγf ∗(∂2
γβQ

α) ,

with unconstrained, locally defined gauge parameters εα dual to
f ∗[−1]R where f ∗[−1] is a non-dynamical sigma-model map of intrinsic

degree −1 ( dynamical ghosts in BRST-BV-AKSZ action).

Soft, open, N-graded algebra a := (R[−1],R), viz.

[δε1 , δε2 ](f ∗Xα) ≡ δε12(f ∗Xα) + (−1)γεβ1 ε
γ
2Rδf ∗(∂3

δγβQ
α) ,

where εα12 = (−1)β+1εβ1 ε
γ
2 f ∗(∂2

γβQ
α) .

Globally defined formulation with “unbroken” Cartan gauge
structuroid

a ↪→ P →M .
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Classical unfolded dynamics and Cartan geometry

Twisted-adjoint representation

Subalgebra a[0] := ((R[−1])[0],R) : Lie algebra represented softly and
linearly on fields of fixed degrees

δεX
α = δpα,1dε

α
[0] + ρ(ε[0])

α
βX β + O(X 2)

Linearized representation matrices ρ define ordinary Lie algebra g.

Twisted-adjoint module

T := ((R[−1])[0],R[0]) .

In quantum field theory, T consists of the Weyl tensors and all their
on-shell derivatives, forming a unitarizable representation of the
space-time isometry algebra, g.
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Classical unfolded dynamics and Cartan geometry

Globally defined local symmetries

On-shell Q- and d-morphisms connected to the identity:

infinitesimal target-space diffeos preserving Q :

δXα = −[Q,B]α for globally defined vector field B = Bα∂α on N of
degree |B| = −1 (since L[Q,B]Q = [[Q,B],Q] ≡ 0) corresponding to

εα = f ∗Bα(X )

infinitesimal base-manifold diffeos preserving d :

δ(f ∗Xα) = Lv f ∗Xα = [d , iv ]f ∗Xα for globally defined vector field v
on Σ corresponding to

εα ≈ iv f ∗Xα

On-shell, these symmetries are broken spontaneously by 〈Xα〉 but not by
observables, i.e. observables must break symmetries “softly”.
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Classical unfolded dynamics and Cartan geometry

Degrees of freedom and phases

Weyl zero-form Φ ∈ f ∗R[0] deform otherwise “topological systems” into
“dynamical systems” in various phases characterized by different types of
gauge-invariant classical observables/degrees of freedom:

Unbroken phase:
I Generalized Casimir invariants IN [Φ] ↔ semi-classical amplitudes in

correspondence/twistor spaces.
I Decorated Wilson loops Tr [P{

∏
i INi [Φ]|pi exp

∮
L
A}] for possibly

composite connections A that are on-shell flat, dA + 1
2 [A,A] ≈ 0.

Softly broken Cartan geometries with soldering one-form E :
I Charges

∮
S

(H I + K I ) for globally defined, equivariantly on-shell closed,

possibly composite, p-form curvatures H I [Φ,E ], dH I + f I (H) ≈ 0 (c.f.
Sullivan algebras)

I Minimal areas for composite spin-s metrics GM1...Ms [Φ,E ] and brane
partition functions.

Naively

# d.o.f. in unbroken phase << # d.o.f. broken phase
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Classical unfolded dynamics and Cartan geometry

Locally defined gauge functions and integration constants

Expand Q (assume no constant forms in positive degrees and Stückelberg
masses):

Qα(X ) =
∑
n≥2

Qα
β1...βn

X β1 · · ·X βn .

Expand Xα =
∑∞

n=1 Xα
(n) around general linearized solution given by

gauge functions and integration constants:

|Xα| > 0 : Xα
(1) ≈ dλα ,

|Xα| = 0 : Xα
(1) ≈ Cα , dCα = 0 .

Cartan integrability implies:

Qα
(n) ≈ − d(Ξα(n)(C , λ, dλ)) (Ξα(n) local)

Xα ≈
∞∑

n=1

Ξα(n)(C , λ, dλ) ,

where higher-order homogeneous solutions have been redefined away.
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Classical unfolded dynamics and Cartan geometry

Gluing compatibility

δε acts nonlinearly on gauge functions and linearly on integration constants

δελ
α = εα + h.o.t. , δεC

α = ρ(ε[0])
α
βCβ + h.o.t.

Gluing compatibility: there exists a soft N-graded principal bundle

a′ ↪→ P ′ →M ,

where a′ ⊆ a is the unbroken gauge algebra, containing transition
functions tαIJ on the overlaps MIJ =MI ∩MJ of charts in M such that

λαI − λαJ = tαIJ + h.o.t. ,

Cα
I = ρ(t[0]IJ)αβCβ

J + h.o.t.
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Classical unfolded dynamics and Cartan geometry

Generalized Casimir invariants (amplitudes)

Invariant functions on the twisted-adjoint representation, viz.

IN [Φ] =
∑
n≥N

I(n)
N (Φ, . . . ,Φ) , Φ ∈ R[0] := {Xα : |Xα| = 0} ,

dIN ≈ 0 , IN ≈ IN [C ] (in “physical gauge”) ,

where thus I(n)
N are n-linear invariant functions of the linearized

twisted-adjoint representation.

One may think of IN [C ] as generalized Casimir invariants for the
C -deformed “topological modules” (C , λ).

One may also think of IN as generators of amplitudes – this interpretation
becomes more clear (or at least less obscure) in high-spin theories with
cosmological constant where the twisted-adjoint representations are
irreducible and self-dual (as modules).
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Classical unfolded dynamics and Cartan geometry

Cartan geometries and soldering one-forms

The unbroken phase, with Cartan gauge structure a ↪→ P →M, can be
broken softly, i.e. without generating masses, to Cartan geometries:

the broken gauge symmetries reside in a[0] ↪→ P[0] → M, and are
referred to as local translations, ξ.

the vector fields v on S can be identified with the local translations
via the broken gauge field E , referred to as the soldering one-form,
viz. v =

∑
I vI and ξI = iξvI (using partition of unity).

the softly broken phase has order parameters given by observables
O[Φ,E ] obeying

δtαO ≡ 0 for tα ∈ a′ ,

where a′ ↪→ P ′ → M is the unbroken gauge structure of the
Cartan geometry, and

LξO ≈ 0 ,

i.e. the observables are gauge-invariant “off-shell” and intrinsically
defined on M on-shell.
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Vasiliev’s equations and higher-spin geometry

Non-commutative correspondence space

Soft bundles  non-commutative correspondence spaces
“4D” gauge theories: twisted product of a non-commutative
phase-space and non-commutative twistor spaces, locally

T ∗(MX )× T ∗Y × T ∗Z

with two-form (α, α̇ = 1, 2; M = 1, 2, . . . )

Ω = dXMdPM + dyαdyα + dȳ α̇dȳα̇ − dzαdzα − dz̄ α̇dz̄α̇ .

Closed and twisted-central element

J = b dz2(−1)
Ny +Nz
? + h.c.

i.e. d4Y ? dJ = 0 (treating dY as fermionic zero-modes) and

d4Y ? [f , J]π ≡ 0 ∀ f (Y ; X ,P,Z ; dX , dP, dZ )

with [f , g ]π := f ? g − g ? π(f ) and

π : y , dy , z , dz → −(y , dy , z , dz) .
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Vasiliev’s equations and higher-spin geometry

Simplest example: Vasiliev’s equations

One-form A and zero-form Φ obeying

d4Y ? (F + Φ ? J) ≈ 0 , d4Y ? DΦ ≈ 0 ,

F := dA + A ? A , DΦ := dΦ + [A,Φ]π

Minimal bosonic models with spin s = 0, 2, 4, . . . :

τ(A,B) = (−A, π(B)) , (A,B)† = (−A, π(B))

where τ : y , dy , z , dz → i(y , dy ,−z ,−dz) is a graded
anti-automorphism.

Linear-in-Φ coupling ⇐ manifest Lorentz invariance plus fixed parity
of the scalar field.
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Vasiliev’s equations and higher-spin geometry

Manifest Lorentz invariance

Embed canonical Lorentz connection (ωαβ, ω̄α̇β̇)

W := dXMAM + dPMAM := V +
1

4i
ωαβMαβ − h.c.

where Mαβ := yα ? yβ − zα ? zβ + S(α ? Sβ) with Sα := zα − 2iAα.

Manifestly Lorentz-covariant constraints

∇V + V ? V +
1

4i
RαβMαβ − h.c. ≈ 0 ,

∇Φ + [V ,Φ]π ≈ 0 , ∇Sα + [V , Sα]? ≈ 0 ,

[Sα,Sβ]? ≈ − 2iεαβ(1− Φ ? κ) , [Sα, Sα̇]? ≈ 0 ,

Sα ? Φ + Φ ? π(Sα) = 0

Field redefinition  shift-symmetry  can impose

∂2

∂yα∂yβ
V |Y =Z=0 = 0 .
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Vasiliev’s equations and higher-spin geometry

Minimal Type A/B models

Parity assignments (P exchanges dotted and undotted spinors):

Type A model : b = 1 and P(A,Φ) = (A,Φ)  scalar 0+

Type B model : b = i and P(A,Φ) = (A,−Φ)  pseudo-scalar 0−

Conjectured AdS/CFT correspondence:

Type A / B models in asymptotic AdS4 backgrounds with coupling ~
↔

O(N) model / Gross-Neveu model with N = ~−2 scalars / fermions.

I few ~-corrections to bulk fields

I dynamical symmetry breaking  anomalous dimensions for
spin s = 0, 4, 6, ...

Question: Are the Type A/B models UV completions of (effective)
quantum gravity?
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Vasiliev’s equations and higher-spin geometry

Gauge function method

Contract T ∗MX → MX (“trivial sector” of phase-space functions)
 Maurer-Cartan system on MX

 possibly multi-valued gauge function:

AM ≈ g−1 ? ∂Mg , Φ ≈ g−1 ? Φ′ ? π(g) ,

Aα ≈ g−1 ? (∂α + A′α) ? g

where “initial data” obey ∂MΦ′ ≈ ∂MA′α ≈ 0 and twistor-space
equations

F ′ + Φ′ ? J ≈ 0 , D ′Φ′ ≈ 0 .

Equivalent deformed oscillator with “anyon-statistics parameter” Φ′:

[S ′α, S
′
β]? ≈ − 2iεαβ(1− Φ′ ? κ) , S ′α ? Φ′ + Φ′ ? π(S ′α) = 0 ,

 exact solution-generating methods, e.g. Type D moduli space.

Contract T ∗Z in physical gauge ZαS ′α = 0 (again trivial sector)
 unique perturbative expansion in C (Y ) := Φ′|Z=0
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Vasiliev’s equations and higher-spin geometry

Observables in unbroken phase

Decorated Wilson loops

Trκκ̄

[
P

{∏
i

X2Ni
|pi exp

∮
L
W

}]
where TrΓ[·] ≡ Tr [Γ ? (·)], Tr is chiral trace and adjoint impurities

X2N := X ?N , X := Φ ? π(Φ) .

Trivial L and removal of point-split  generalized Casimir invariants

I2N := Trκκ̄[X ?N ] .

Contract T ∗MX × T ∗Z perturbatively yields

I2N = STr [(C ? π(C ))?N ] +
∑

n≥2N+1

I(n)
2N (C )

where I(n)
2N are n-linear invariant functions on the linearized twisted-adjoint

representation given by closed-contour homotopy integrals in T ∗Z .
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Vasiliev’s equations and higher-spin geometry

High-spin Cartan geometry

Define P± = 1
2 (1± π) and split V into E := P−V , Ω := P+V  

∇E + [Ω,E ]? +
1

4i
RαβP−Mαβ − h.c. ≈ 0 ,

∇Ω + Ω ? Ω + E ? E +
1

4i
RαβP+Mαβ − h.c. ≈ 0 ,

∇Φ + [Ω,Φ]? + {E ,Φ}? ≈ 0 ,

that can be examined using geometric methods:

Real and imaginary parts of on-shell Chern classes

H[2N] := Trκ[E ?2N ] + Rαβ-corrections , dH[2N] ≈ 0 .

High-spin metrics of ranks s = 2, 4, 6, . . . :

GM1...Ms = Trκκ̄[E(M1
? · · · ? EMs)] ,

that define norms, geodesics and minimal areas.

Question: Calibrations (H2N ,G2N)
?
 Brane actions/partition functions
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Semi-classical high-spin action principle

Generalized Poisson sigma model

Classical unfolded system df ∗ + f ∗Q ≈ 0 with f :M = T [1]S → N .

Embed M ↪→ B = T [1]D and N ↪→ T ∗[D]N with D = dim(D)− 1.

Extend f : B → T ∗[D]N and consider action Stot = Sbulk + Smarg.

Bulk action Sbulk =
∫
B f ∗(RαPα + Παβ

2 PβPα + Παβγ
3 PγPβPα + · · · )

≡
∫
B f ∗(dXαPα + H(X ,P))

Gauge invariance requires {H,H}[−D] = ∂αH∂αH ≡ 0 ,i.e.

LQQ ≡ 0 , LQΠ2 ≡ 0 , {Π2,Π2}S .B. + LQΠ3 ≡ 0 ,

which implies Qα = Παβ2 ∂βh (Hamiltonian Q-structure).

Semi-classically marginal deformation Smarg =
∫
M f ∗M[X , dX ]

δgaugeM ≡ 0 , δM ≈ 0 ,

so that
∫
MM ≈ generator of semi-classical amplitudes (“tree

diagrams”).
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Semi-classical high-spin action principle

Duality extended Vasiliev system

Extend (A,Φ, J) by forms in higher degrees:

(Â, B̂, Û, V̂ ; Ĵ) ∈ Û [X ,P,Y ,Z ; dX , dP, dY , dZ ; k , k̄] ,

k ? (y , dy , z , dz) = −(y , dy , z , dz) ? k , k ? k = 1 ,

and degree assignments (D ∈ 2N):

Â = A[1] + A[3] + · · ·+ A[D−1]

V̂ = V[D−1] + V[D−3] + · · ·+ V[1]

Û = U[2] + U[4] + · · ·+ U[D]

B̂ = B[D−2] + B[D−4] + · · ·+ B[0]

and Ĵ = J[2] + J[4] is real, closed, central and iM Ĵ = iM Ĵ = 0 (J[4] brings
in four new parameters).
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Semi-classical high-spin action principle

Semi-classical Type A/B bulk action

Sbulk =

∫
B

T̂ rd4Ydkdk̄

[
Û ? D̂B̂ + V̂ ? (F̂ + B̂ ? Ĵ) + V̂ ? f (Û)

]
,

where f (U) := f1U + f2U
?2 + · · · and the linear dependence on B̂ is

required by gauge invariance.

Type A/B projection: insert P± := 1
2 (1 + kk̄) into the trace and impose

B[0] = P+k ? Φ , A[1] = P+ ? A ,

J[2] = P+k ? J

plus consequences in higher degrees ⇒ D ∈ 4N and f (−Û) = −f (Û) and
only two parameters remain in J[4] = P+(b1 + b2κκ̄)dZ 4.
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Semi-classical high-spin action principle

Classically marginal deformations

Broken phase: split W into Ẽ = P−W and Ω̃ = P+W
 candidate full Fradkin-Vasiliev-like action (R̃ := dΩ̃ + Ω̃ ? Ω̃):

SFV := Im
∫
M

T̂ rd4YJ[4]dkdk̄κ

[
c1R̃ ? R̃ + c2(R̃ +

1

2
Ẽ ? Ẽ ) ? Ẽ ? Ẽ

]
.

Question: Lorentz-covariant perturbative expansion on-shell (with

fixed parameters)
?↔ CFT correlators

Unbroken phase: T̂ rd4Ydkdk̄

[
c ′1F ? F + c ′2(F + 1

2B ? J) ? B
]
|p∈T∗MX

Question: Perturbative expansion on-shell (with fixed parameters)
?↔

correlation functions of topological open “singleton” string
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Quantum gauge principle

Generalized AKSZ sigma models

Starting from generalized Poisson sigma model Sbulk, the minimal
BRST-BV classical master action is given by

Smin =

∫
B

f∗(dXαPα + H)|[0] ,

where f : B → T ∗[D]N has non-vanishing first-quantized and
second-quantized ghost numbers gh1 and gh2, respectively, but vanishing
intrinsic total degree gh1 + gh + 2, where gh1 is identified as the form
degree on B:

Xα =
∑

gh1 ∈ N
gh2 ∈ Z

(Xα)
[gh2]
[gh1] .

Extra assumptions on auxiliary volume form  ∆BV Smin = 0.

Question: Precise generalization to systems with non-commutative base
manifold, and central+closed elements?
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Quantum gauge principle

Gauge fixing

Add canonical (albeit in general non-minimal) gauge fixing sector (ghost
momenta with gh2 < 0 and Lagrange multipliers, and then additional
layers of ghosts, ghost momenta and multipliers):

Sg.f. = Skin + Sint ,

Skin =

∫
B

(dXαPα + · · · )[0] ,

Sint =

∫
B

(Qα(X)Pα + Παβ
2 (X)PβPα + · · · )[0] ,

exhibiting tensorial supersymmetry in the sense that∫
D(fields)e

i
~2

Skin = 1 + auxiliary-curvature corrections .
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Quantum gauge principle

Topological sum

Expand around 〈E 〉 = E and adapt auxiliary vielbein to E → additional
1-loop corrections from ρ(E ).

ΛCC = 0 = Mass2  all vacuum bubbles cancel.

Question: What happens for critical masses if ΛCC 6= 0?

Topological sum: If all one-loop corrections combine into curvature
invariants then it makes sense to examine for which topologies the
partition function is actually well-defined and to sum over these

 notion of “third quantization”.
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Quantum gauge principle

de Rham-like BRST operator and non-commutativity

The prototype bulk action

Sbulk ∼
∫
B

f ∗(dX[p] ·P[D−p] + dX̃[D−p−1] · P̃[p+1] + P[D−p] · P̃[p+1] + · · · ) ,

induces de Rham-like BRST operator acting on non-commutative
zero-modes:

δP = dε+ · · · , δP̃ = d ε̃+ · · · ,

δX = − (−1)D(p+1)ε̃ , δX̃ = − ε+ · · · .

 QBRST ∼ C
[D−p]
[0] · ∂

∂X̃
[D−p−1]
[0]

+ C̃
[p+1]
[0] · ∂

∂X
[p]
[0]
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Quantum gauge principle

Russian doll structure: Quantum Gauge Principle

Unify Einstein-Weyl’s Gauge Principle and Quantum Mechanics

→ Quantum Gauge Principle

Fundamental interactions in Nature form hierarchic structure
(n = ..., 1, 2, 3, ...)

SigmaModeln[CartanGeomn, BRST-BVGeomn; LoopExpn; TopSumn]

Zn[α′n, ~n, gn] =
∑

Topologiesn

(gn)Indexn

∫
Mapsn:Basen→Targetn

e
i

~n
S[Mapn;α′n;~n]

SigmaModeln = Master theory of SigmaModeln−1

CartanGeomn = BRST-BVGeomn−1 ( α′n = ~n−1)

LoopExpn = TopSumn−1 (~n = gn−1)

Basen : zero-modes of (n − 1)th unfolded system

Targetn : composite operators of the (n − 1)th unfolded system
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Quantum gauge principle

High-spin implementation

Limit ~1 = 1, ~2 = ~3 = 0

 classical unfolded system on noncommutative Z-graded manifold
⊃ N-graded correspondence space

Natural arena for High-Spin Gauge Theory !

 Starting point for examining QGP :

1st-quantized TopOpenString on the correspondence space for
massless fields in four space-time dimensions

2nd -quantized Vasiliev Systems in correspondence space

3rd -quantized moduli space (geometric quantization of high-spin
invariant observables)
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Conclusions

Conclusions

Existence of an action principle for Vasiliev’s equations

Germ of geometric framework for quantization as well as exact
solution finding

Merci beaucoup!
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