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Outline

@ Classical unfolded dynamics and Cartan geometry
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© Semi-classical high-spin action principle

@ Quantum gauge principle

© Conclusions

Warning: Revisionist attempt to collect various ideas connecting “high-spin gauge
theory” to “quasi-topological field theory” — some details are based on work in
collaboration with N. Boulanger, C. lazeolla and E. Sezgin, other parts stolen
from literature.
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Classical unfolded dynamics and Cartan geometry

Generalized curvatures

Unfolded dynamics concerns the formulation of dynamical systems (with
finitely or infinitely many degrees of freedom) as external differential
systems generated by generalized curvature constraints

R = dX®+ Q*(X) ~ 0,

o fields X“ : locally defined differential forms on base manifold S.

@ structure functions Q% : sums of exterior products of X's (that can
be non-polynomial in zero-forms) obeying the compatibility condition

R9,Q° =0 = dR*+R9Q" =0,

which is assumed to hold independently of the topology of S.
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Classical unfolded dynamics and Cartan geometry

Classical @-manifolds

The basic dynamical variable is a sigma-model map f of vanishing intrinsic
degree:

f: M:=T[1]S — N, £ Qi) - qlels) |

where M and N are graded commutative Q-manifolds, i.e. N-graded
differentiable manifolds with nilpotent vector fields of degree 1, viz.
o M := T[1]S with local coordinates (¢",6M) of degrees (0,1) and

_pM_d
Q-structure d = 0" 5%; .

e N with local coordinates {X“} of degrees |[X*| = p, € N, and
Q = Q. £LoQ = [Q.Qlse. = 2(Q°9.Q%)5 = 0.
The equations of motion now read
df* +f*Q =0 .

One also assigns {X“} dual graded abelian modules R = B, Ryy)-
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Classical unfolded dynamics and Cartan geometry

Cartan gauge transformations

@ The constraint surface {R® ~ 0} is left invariant under
c(F*X*) = de* — €’ F*(93Q)
= 0R™ = (—1)P’RTF*(025Q%) ,

with unconstrained, locally defined gauge parameters €* dual to

f[*_l]iR where f[*_l] is a non-dynamical sigma-model map of intrinsic
degree —1 (~~ dynamical ghosts in BRST-BV-AKSZ action).

e Soft, open, N-graded algebra a := (R[—1],R), viz.
51, 8)(FX) = 6y (FFX) + (~1)7{ 3RO F(93,5Q%) .

where €3, = (—1)7*1e/ ] F*(02,Q7) .
@ Globally defined formulation with “unbroken” Cartan gauge
structuroid

a — P —-M.
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Classical unfolded dynamics and Cartan geometry

Twisted-adjoint representation

o Subalgebra ajg) := ((R[~1])[g], R) : Lie algebra represented softly and
linearly on fields of fixed degrees

X = bp, 1defty + plep)) X7 + O(X?)

Linearized representation matrices p define ordinary Lie algebra g.

@ Twisted-adjoint module

T == ((R[-1])[0): Ryq)) -

In quantum field theory, ¥ consists of the Weyl tensors and all their
on-shell derivatives, forming a unitarizable representation of the
space-time isometry algebra, g.
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Classical unfolded dynamics and Cartan geometry

Globally defined local symmetries

On-shell @- and d-morphisms connected to the identity:

@ infinitesimal target-space diffeos preserving Q :
dX* = —[Q, B]* for globally defined vector field B = B*d, on N of
degree |B| = —1 (since L,z Q@ = [[Q, B], Q] = 0) corresponding to
e = *B*(X)

@ infinitesimal base-manifold diffeos preserving d :

O(F*X¥) = L, X =[d,i,]f*X* for globally defined vector field v
on X corresponding to
€ ~ j, F*X?

On-shell, these symmetries are broken spontaneously by (X“) but not by
observables, i.e. observables must break symmetries “softly”.

Per Sundell (Université de Mons) () Quantizing high-spin gauge theory April 7, 2010 7 /30



Classical unfolded dynamics and Cartan geometry
Degrees of freedom and phases

Weyl zero-form & € f*R|g; deform otherwise “topological systems” into
“dynamical systems” in various phases characterized by different types of
gauge-invariant classical observables/degrees of freedom:

@ Unbroken phase:
> Generalized Casimir invariants Zy[®] < semi-classical amplitudes in
correspondence/twistor spaces.
» Decorated Wilson loops Tr[P{]]; Zn,[®]|,, exp §, A}] for possibly
composite connections A that are on-shell flat, dA + 1[A, A] ~ 0.

@ Softly broken Cartan geometries with soldering one-form E:

» Charges fS(H’ + K!) for globally defined, equivariantly on-shell closed,
possibly composite, p-form curvatures H'[®, E], dH' + f/(H) ~ 0 (c.f.
Sullivan algebras)

» Minimal areas for composite spin-s metrics Gpy,. m, [P, E] and brane
partition functions.

Naively
# d.o.f. in unbroken phase << # d.o.f. broken phase
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Classical unfolded dynamics and Cartan geometry

Locally defined gauge functions and integration constants

Expand Q (assume no constant forms in positive degrees and Stiickelberg

masses):
PO) = X @ XX
n>2
Expand X* = Y 72, X(Or‘]) around general linearized solution given by

gauge functions and integration constants:
X >0 : X(O{) ~ d\Y
|Xa|:0:X(O{) c*, dC* =0.
Cartan integrability implies:

Qfy ~ —d(Z)(C A dN)  (Z¢, local)

Q

X ~ Z =0 (C A dN)
n=1

where higher-order homogeneous solutions have been redefined away.
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Classical unfolded dynamics and Cartan geometry

Gluing compatibility

dc acts nonlinearly on gauge functions and linearly on integration constants
A = € +hot., 0:CY = p(e[o])gcﬁ +h.o.t.
Gluing compatibility: there exists a soft N-graded principal bundle
ad — P =M,

where a’ C a is the unbroken gauge algebra, containing transition
functions t} on the overlaps M;; = M; N M of charts in M such that

A=A = tj+hot.,

¢ = pto)3C) +heot.
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Classical unfolded dynamics and Cartan geometry

Generalized Casimir invariants (amplitudes)

Invariant functions on the twisted-adjoint representation, viz.

Tn[®] = Y T(®,..., ), &€ Ry = {X: X =0},
n>N

dIy~0, ZIy~ZIyn[C] (in “physical gauge") ,
where thus I,(V") are n-linear invariant functions of the linearized
twisted-adjoint representation.

One may think of Zy[C] as generalized Casimir invariants for the
C-deformed “topological modules” (C, \).

One may also think of Zy as generators of amplitudes — this interpretation
becomes more clear (or at least less obscure) in high-spin theories with
cosmological constant where the twisted-adjoint representations are
irreducible and self-dual (as modules).
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Classical unfolded dynamics and Cartan geometry
Cartan geometries and soldering one-forms

The unbroken phase, with Cartan gauge structure a — P — M, can be
broken softly, i.e. without generating masses, to Cartan geometries:

o the broken gauge symmetries reside in ajg) — Pjoy — M, and are
referred to as local translations, &.

@ the vector fields v on S can be identified with the local translations
via the broken gauge field E, referred to as the soldering one-form,
viz. v =), v; and & = icv; (using partition of unity).

@ the softly broken phase has order parameters given by observables
O[®, E] obeying

0:a@ = 0 fort*ca,
where @’ < P’ — M is the unbroken gauge structure of the

Cartan geometry, and
Ego ~ 0 5

i.e. the observables are gauge-invariant “off-shell” and intrinsically
defined on M on-shell.
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Vasiliev's equations and higher-spin geometry

Non-commutative correspondence space

@ Soft bundles ~» non-commutative correspondence spaces
@ “4D" gauge theories: twisted product of a non-commutative
phase-space and non-commutative twistor spaces, locally

T*(Mx) x Ty x T3
with two-form (o, & =1,2,M =1,2,...)

Q = dXMdPy + dy®dy. + dy“dys — dz%dzs — dz9dZ, .

@ Closed and twisted-central element
J=bdA(=1)M™M L he.
i.e. d*Y xdJ =0 (treating dY as fermionic zero-modes) and
d*Y x[f, )], =0 YV f(Y;X,P,Z;dX,dP,dZ)
with [f, glr :=fxg — g xm(f) and
w:y,dy,z,dz — —(y,dy,z dz) .
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Vasiliev's equations and higher-spin geometry

Simplest example: Vasiliev's equations

@ One-form A and zero-form ® obeying
d*Yx(F+oxJ) ~ 0, d'Y«Do ~ 0,
F:=dA+AxA, D® :=do + [A D],
@ Minimal bosonic models with spin s =0,2,4,... :
(A B) = (~An(B),  (AB)f = (~An(B))

where 7 : y,dy,z,dz — i(y,dy, —z,—dz) is a graded
anti-automorphism.

@ Linear-in-® coupling <= manifest Lorentz invariance plus fixed parity
of the scalar field.
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Vasiliev's equations and higher-spin geometry

Manifest Lorentz invariance

Embed canonical Lorentz connection (w®?, @%7)
1

W = dXMAy + dPyAM = Vv + Iwaﬁ Map — h.c.
i

where My := Yo * y5 — Za * Zg + S(a * Sg) With S, = z, — 2iA,.

Manifestly Lorentz-covariant constraints
1
VV+VxV+ ERaﬁMag —he ~ 0,

Vo +[V,®], = 0, VS,+[V,S]. =~ 0,
[Sa, Sl = —2ieqp(l—Pxk), [Sa,Sals = O,
Sa*x®+dx7(S,) =0
Field redefinition ~~ shift-symmetry ~» can impose
82
——F—V]y=7z-0 = 0.
ayaayﬁ |Y—Z—0
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Vasiliev's equations and higher-spin geometry

Minimal Type A/B models

e Parity assignments (P exchanges dotted and undotted spinors):
Type A model : b =1 and P(A,®) = (A, ®) ~» scalar 0+
Type B model : b= and P(A,®) = (A, —®P) ~» pseudo-scalar 0_
o Conjectured AdS/CFT correspondence:
Type A / B models in asymptotic AdS, backgrounds with coupling &

<
O(N) model / Gross-Neveu model with N = h~2 scalars / fermions.
» few h-corrections to bulk fields

» dynamical symmetry breaking ~~ anomalous dimensions for
spin s =0,4,6, ...

Question: Are the Type A/B models UV completions of (effective)
quantum gravity?
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Vasiliev's equations and higher-spin geometry

Gauge function method

e Contract T*Mx — Mx (“trivial sector” of phase-space functions)
~> Maurer-Cartan system on My
~» possibly multi-valued gauge function:

Au ~ g xoug, ® ~ g 'x9xn(g),
Av = g1 (0a+A,)xg
where “initial data” obey Oy ®’' ~ 8MA’& ~ 0 and twistor-space
equations
FF+d'xJ~0, D' ~0.
@ Equivalent deformed oscillator with “anyon-statistics parameter” ¢':
[Se, Sl = —2ieap(l—® %K), S,x® + & xn(S,) =0,

~ exact solution-generating methods, e.g. Type D moduli space.
@ Contract T3 in physical gauge ZQSfl = 0 (again trivial sector)
~> unique perturbative expansion in C(Y) := ®'|z_¢
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Vasiliev's equations and higher-spin geometry

Observables in unbroken phase

P {H Xon; | expjz{ WH

where Trr[-] = Tr[l % ()], Tr is chiral trace and adjoint impurities

Xoy = XN X = dan(d).

Decorated Wilson loops

TI’,{R

Trivial L and removal of point-split ~» generalized Casimir invariants
Ton = Tra[X*V].
Contract T*Mx x T perturbatively yields
Ty = STH(C*(O) ™M+ > ZH(C)
n>2N+1

where Ié',(,) are n-linear invariant functions on the linearized twisted-adjoint
representation given by closed-contour homotopy integrals in T.
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Vasiliev's equations and higher-spin geometry

High-spin Cartan geometry

Define Pr = 3(1£7) and split Vinto E := P_V, Q = P,V ~
VE +[Q, E]x + %R“BP,MQB —he ~ 0,

1
VQ+Q*Q—|—E*E+IRO‘BPJrMaﬁ—h.c. ~ 0,
I

Vo +[Q,¢], + {E,d}, ~ 0

that can be examined using geometric methods:
@ Real and imaginary parts of on-shell Chern classes

9

Hpony = Tro[E**N] + R*B-corrections dHpn) = 0.
@ High-spin metrics of ranks s =2,4,6,...:
Gmy..me = TrewlEgm, * -+ % Emp)l
that define norms, geodesics and minimal areas.

2
Question: Calibrations (Hap, Gop) ~~ Brane actions/partition functions
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Semi-classical high-spin action principle

Generalized Poisson sigma model

@ Classical unfolded system df* + f*Q =~ 0 with f : M = T[1]S — N.
e Embed M — B = T[1]D and N’ — T*[D]N with D = dim(D) — 1.
e Extend f: B — T*[D]N and consider action Siot = Shuik + Smarg-

o Bulk action Spui = fig F*(R*Po + N5°PsPy + NS P, P3Py + )
= [, F(dXPy + H(X, P))

o Gauge invariance requires {H, H}l=Pl = 9,HO“H = 0 ,ie.
LQQ =0, Lol =0, {MM2}sp +LoM3 =0,

which implies Q% = ng‘ﬁaﬂh (Hamiltonian Q-structure).
Semi-classically marginal deformation Sparg = fM *M[X, dX]

SgangeM = 0, M ~ 0,

so that [, M ~ generator of semi-classical amplitudes ( “tree
diagrams”).
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Semi-classical high-spin action principle

Duality extended Vasiliev system

Extend (A, ®, J) by forms in higher degrees:

A~ A A A~

kx(y,dy,z,dz) = —(y,dy,z,dz)xk , kxk = 1,
and degree assignments (D € 2N):

A=A+ Az + -+ Ap_y

V=Vip_y+ Vip—y + -+ Wy
B = Bip—o) + Bip—q) + -+ + B

and J = Jj2) + Jja) is real, closed, central and iMj =iMj=0 (Jj4p brings
in four new parameters).
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Semi-classical high-spin action principle

Semi-classical Type A/B bulk action

~ ~ o~

B

where f(U) := AU + f,U* + --- and the linear dependence on Bis
required by gauge invariance.

Type A/B projection: insert Py := %(1 + kk) into the trace and impose
B[O] = P+k*¢, A[l] = P+*A,
J[2] = P+k*./

plus consequences in higher degrees = D € 4N and f(—U) = —f(U) and
only two parameters remain in Jg = Pi (b1 + bokk)dZ*.
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Semi-classical high-spin action principle

Classically marginal deformations

@ Broken phase: split W into E=P_W and §~2~: pw
~~ candidate full Fradkin-Vasiliev-like action (R := dQ + Q% Q):

Sev = Im /M Tt g ik [clm Rt R+ SExE)wEE

Question: Lorentz-covariant perturbative expansion on-shell (with
?

fixed parameters)«<» CFT correlators

@ Unbroken phase: ?rdwdkd,; [c{F x F+ c5(F + 3B xJ) % B |peT+my

. ?
Question: Perturbative expansion on-shell (with fixed parameters) <

correlation functions of topological open “singleton” string
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Quantum gauge principle

Generalized AKSZ sigma models

Starting from generalized Poisson sigma model Sy, the minimal
BRST-BV classical master action is given by

Siin = /f*(dXO‘PaJrH)[O] ,
B

where f : B — T*[D]N has non-vanishing first-quantized and
second-quantized ghost numbers gh; and gho, respectively, but vanishing
intrinsic total degree gh; + gh + 2, where gh; is identified as the form

degree on B:
a _ o [gha]
X* = > (XMgh -

ghy € N
ghy € Z

Extra assumptions on auxiliary volume form ~» Agy Smin = 0.

Question: Precise generalization to systems with non-commutative base
manifold, and central+closed elements?
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Quantum gauge principle

Gauge fixing

Add canonical (albeit in general non-minimal) gauge fixing sector (ghost

momenta with ghy < 0 and Lagrange multipliers, and then additional
layers of ghosts, ghost momenta and multipliers):

Sg.f. = Skin"i'sinta
Skin = /(dX“Pa+...)[0] 7
B
Swe = [(Q 0P, + N3 (PP )0
B

exhibiting tensorial supersymmetry in the sense that

7= Ski . :
/D(ﬁelds)ehz K" = 1 + auxiliary-curvature corrections .
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Quantum gauge principle

Topological sum

Expand around (E) = E and adapt auxiliary vielbein to E — additional

1-loop corrections from p(E).
Acc = 0 = Mass? ~- all vacuum bubbles cancel.
Question: What happens for critical masses if Acc # 07

Topological sum: If all one-loop corrections combine into curvature
invariants then it makes sense to examine for which topologies the
partition function is actually well-defined and to sum over these

~» notion of “third quantization”.

Per Sundell (Université de Mons) () Quantizing high-spin gauge theory April 7, 2010 26 / 30



Quantum gauge principle

de Rham-like BRST operator and non-commutativity

The prototype bulk action

Sbulk ~ /B f*(dX[p] . P[D—p] + d;([D—p—l] . F)[p—i-l] + P[D—p] . ﬁ[p-‘rl] 4+

induces de Rham-like BRST operator acting on non-commutative
zero-modes:

6P = de+---, 0P = de+---,
§X = —(=1)PPHE . §X = —e4 .-
_ 0 ~p+1] O
~  QprsT ~ C P A
[0] o X[[()E]) —p—1] [0] o X[[é’]]
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Quantum gauge principle

Russian doll structure: Quantum Gauge Principle

Unify Einstein-Weyl's Gauge Principle and Quantum Mechanics
— Quantum Gauge Principle

Fundamental interactions in Nature form hierarchic structure
(n=..1,2,3,..)

SigmaModel,[CartanGeom,,, BRST-BVGeom,; LoopExp,; TopSum,]

Zn[aiv hna gn] = Z (gn)lndexn / eh#nS[Map,,;ai,;h,,]
M.

Topologiesn apsp: Base,— Target,

SigmaModel, = Master theory of SigmaModel,_1
CartanGeom,, = BRST-BVGeom,_1 ( o}, = hp—1)
LoopExp, = TopSum,_1 (fin = gn-1)

Base,, : zero-modes of (n — 1)th unfolded system
Target, : composite operators of the (n — 1)th unfolded system
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Quantum gauge principle

High-spin implementation

Limit iy =1, hp = h3 =0

~ classical unfolded system on noncommutative Z-graded manifold
D N-graded correspondence space

Natural arena for High-Spin Gauge Theory !
~ Starting point for examining QGP :

@ 1°t-quantized TopOpenString on the correspondence space for
massless fields in four space-time dimensions

e 2"_quantized Vasiliev Systems in correspondence space

e 3"_quantized moduli space (geometric quantization of high-spin
invariant observables)
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Conclusions

Conclusions

@ Existence of an action principle for Vasiliev's equations

@ Germ of geometric framework for quantization as well as exact
solution finding

Merci beaucoup!
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