The geometry of Romans mass

Alessandro Tomasiello

Introduction

String theory:

metric g accompanied by many antisymmetric fields

"RR fluxes" $F_k \in \Lambda^k T^* M_{10}$

IIA: k even

IIB: k odd

In particular, F_0 is called "Romans mass"

[Romans '86; Polchinski '95]

For $F_0 = 0$, strongly coupled IIA develops 11^{th} dimension

[Witten '95]

For $F_0 \neq 0$?

In this talk we study F_0 's effects on classical $AdS_4 \times M_6$ solutions.

Why AdS₄?

- they are easier to find than Minkowski solutions
- they have CFT (holographic) duals

In particular, we will study supersymmetric solutions

With $F_0 = 0$:

All vacua come from 11d supergravity

$$S^1 \xrightarrow{\longrightarrow} M_{11}$$

$$\downarrow$$

$$M_{10}$$

11d solutions on M_{11}

rod solutions on M_{10}

with

•
$$c_1 = F_2$$
 (RR 2-flux) [Chern class]

• size of
$$S^1 = e^{\phi}$$
 [dilaton]

	8d cone	<mark>7d</mark> horizon
$\mathcal{N}=3$	hyperKähler	weakly G_2
$\mathcal{N}=2$	Calabi-Yau	Sasaki-Einstein
$\mathcal{N}=1$	$\mathrm{Spin}(7)$ hol.	3-Sasakian

the 11d solutions originate from "M2" membranes:

With $F_0 \neq 0$: no such a relation to 11d

Recently: introducing F_0 has produced many new solutions

An example of a phenomenon we'll see:

Plan

- (Generalized Complex) Geometry of AdS supersymmetric solutions
- An Ansatz: SU(3) structure solutions
- Comments on the general case

Supersymmetry

We look for solutions $AdS_4 \times M_6$ in type II supergravity

'Vacuum':

- \bullet metric is 'warped product': $ds_{10}^2=e^{2A}ds_{\mathrm{AdS}_4}^2+ds_{M_6}^2$
- ullet fluxes don't break symmetries: $F=f+\mathrm{vol}_{\mathrm{AdS}_4}\wedge *_6 f$

and closed three-form $H^{\bullet \circ \circ \circ \circ}$ diff. forms on M_6

such that $(d - H \wedge)f = 0$.

susy equations contain susy parameters $\epsilon_{1,2}$

decompose:
$$\epsilon_{1,2} = \zeta \otimes \eta_{1,2} + \text{c.c.}$$

ullet each η defines almost complex structure:

$$I^m{}_n = \eta^\dagger \gamma^m{}_n \eta$$

$$(I^2 = -1)$$

• I is hermitian: $gI \equiv J$ is antisymmetric.

 $\{U(3) \text{ structure on } M_6.\}$

• Chern class
$$c_1(I) = 0 \Leftrightarrow \exists \Omega_{3,0}$$

$$\Omega_{mnp} = \eta^t \gamma_{mnp} \eta$$

 \bullet they also satisfy $3i\Omega\wedge\bar\Omega=4J^3$.

[SU(3) structure on M_6 .]

Two SU(3) structures η_1 , η_2 on TM_6

better to work with:

$$SU(3) \times SU(3)$$
 structure on $TM_6 \oplus T^*M_6$

П

Two differential forms $\Phi_{1,2}$ obeying algebraic conditions:

[Hitchin '02;Gualtieri '04]

1. each Φ is pure:

$$\{\operatorname{Ann}(\Phi) \subset T \oplus T^* \text{ has dimension 6}\}$$

2. Compatibility:
$$(\Phi_1, X \cdot \Phi_2) = 0 \\ (\Phi_1, X \cdot \bar{\Phi}_2) = 0$$

$$\forall X \in T \oplus T^* \\ \{X \cdot = \{1 - \text{form } \land, \text{vector } \bot \}\}$$

The map

$$(\eta_1, \eta_2) \mapsto (\Phi_1, \Phi_2)$$
 is given by

$$\Phi_1 = \eta_1 \otimes \eta_2^{\dagger}$$

$$\Phi_2 = \eta_1 \otimes \eta_2^{t}$$

Example:

('SU(3) structure')

$$\Phi_1 = e^{-iJ}$$
 three-form

{ when $\eta_1 = \eta_2$ }

1. $\operatorname{Ann}(e^{-iJ}) = \{v + i(v \cup J) \land, \forall v \in T\}$

$$\operatorname{Ann}(\Omega) = \{T_{1,0}^* \land, T_{0,1} \bot\}$$

2. $(\Omega, \alpha \wedge e^{-iJ}) = -i\Omega \wedge v \wedge J = 0$.

the susy equations on $\Phi_{1,2}$ now read

$$d_H \Phi_1 = -2\mu \operatorname{Re}\Phi_2$$
$$d_H \operatorname{Im}\Phi_2 = -3\mu \operatorname{Im}\Phi_1 + *f$$

[Graña, Minasian, Petrini, AT'06]

for some constant
$$\mu(=-\sqrt{\Lambda_{\mathrm{AdS}_4}}\,)$$

[suppressed a few details]

[recall: H, f fluxes]

$$d_H = d - H \wedge$$

SU(3) structure

We now use

$$\Phi_1 = e^{-iJ}$$

$$\Phi_2 = \Omega$$

in

$$d_H \Phi_1 = -2\mu \operatorname{Re} \Phi_2$$
$$d_H \operatorname{Im} \Phi_2 = -3\mu \operatorname{Im} \Phi_1 + *f$$

('SU(3) structure')

$$H + idJ = 2\mu e^{-i\theta} \operatorname{Re}\Omega$$

$$F_0 = 5\mu\cos(\theta)$$

$$F_0 = 5\mu\cos(\theta)$$

Hence $F_0 = 0 \implies \theta = \frac{\pi}{2}$

but $F_0 \neq 0$ allows any θ

All the geometric conditions:

$$dJ = \alpha \operatorname{Re}\Omega$$

$$\Delta \operatorname{Re}\Omega = \beta \operatorname{Re}\Omega$$

$$i\Omega \wedge \bar{\Omega} = \frac{3}{4}J^{3}$$

Example:
$$AdS_4 \times S^7$$
 (round)

[Hopf]

 $AdS_4 \times \mathbb{CP}^3$ (Fubini-Study)

[Nilsson,Pope'84; Watamura'84; Sorokin,Tkach,Volkov'85]

we know we should have a IIA solution on this space.

Usually on \mathbb{CP}^3 : Fubini-Study (Kähler, Einstein) I_{FS}, g_{FS}

It can't be useful for us:

• susy
$$\Rightarrow$$
 $dJ \propto \text{Re}\Omega$ \Rightarrow I not integrable
$$(1,1) \qquad (3,0)+(0,3)$$

• I_{FS} has no globally defined (3,0)-form: $\nexists \Omega_{FS}$

We need a different almost complex structure I.

 \mathbb{CP}^3 is a sphere fibration.

not integrable

[Eells, Salamon '85]

 \mathbb{CP}^3 is a sphere fibration.

supersymmetry equations boil down to:

$$\tan(\theta) = \frac{\sqrt{(\sigma - \frac{2}{5})(2 - \sigma)}}{\sigma + 2}$$

[Behrnd-Cvetic '04]

nearly Kähler:
$$\begin{cases} dJ = \alpha \operatorname{Re}\Omega \\ d\operatorname{Im}\Omega = -\frac{2}{3}\alpha \, J^2 \end{cases}$$

in a sense, this is the closest one can get to a Calabi-Yau

[Behrnd-Cvetic '04]

Bottom line for $AdS_4 \times \mathbb{C}P^3$:

[AT '07]

Another example:

$$AdS_4 \times \mathbb{F}(1,2;3)$$
:

"flag manifold"

two relevant parameters in the metric

Open question:

Does this happen for all 3-Sasakian manifolds?

The general case

Supersymmetry:
$$\begin{cases} d_H\Phi_1=-2\mu\operatorname{Re}\Phi_2\\ d_H\operatorname{Im}\Phi_2=-3\mu\operatorname{Im}\Phi_1+*f \end{cases}$$

$$\Phi_1 = e^{i \theta} e^{-i J}$$
 is not exhaustive. $\Phi_2 = \Omega$

$$\Phi_2 = \Omega$$

For example:

we should also consider general Φ_1 , Φ_2 (SU(3) × SU(3) structure)

General solution to algebraic conditions is known; but differential equations are hard

so far, only perturbative analysis

ullet all-orders (numerical) $\mathcal{N}=2$ solution

on
$$\mathrm{AdS}_4 imes M_{111}$$
 \downarrow [Petrini,Zaffaroni '09] \mathbb{CP}^2 $\mathbb{SE}_5 \hookrightarrow Y_6$ \downarrow [Lüst, Tsimpis '09]

Fortunately, there is an argument that predicts many such solutions!

In string theory,

 $AdS_4 \times M_6$ solutions are dual to

It has been found recently that these CFTs are

[Aharony, Bergman, Jafferis, Maldacena '08]

Chern-Simons theories with
$$G_{\text{gauge}} = \prod_{i=1}^{n} \mathrm{U}(N_i)$$

[+ various matter fields]

But:
$$F_0 = \sum_{i=1}^{n} k_i$$

[Gaiotto,AT '09; Fujita,Li,Ryu,Takayanagi '09]

In most cases, $F_0 \neq 0$ does not seem to destroy the CFT.

Conclusions

- F_0 enhances the supersymmetric geometry of IIA sugra.
- Some examples explicitly known.
- AdS/CFT seems to predict rich many new examples.