Calculus of Variations and Elliptic Equations

10th class

Vector measures and BV space

A vector measure λ on a set X is a function associating with every measurable subset $A \subset X$ a vector $\lambda(A) \in \mathbb{R}^n$, satisfying the usual properties for measures (additivity on disjoint sets and countable unions... in particular we need, whenever $A = \bigcup_i A_i$ is a disjoint countable union, to have $\sum_i |\lambda(A_i)| < +\infty$ and $\lambda(A) = \sum_i \lambda(A_i)$). For a vector measure λ , given a norm on \mathbb{R}^n (we will always use the Euclidean one), we define the positive scalar measure

$$|\lambda|(A) := \sup\{\sum_{i} |\lambda(A_i)| : A = \bigcup_i A_i \text{ disjoint countable union }\}.$$

We can check that $|\lambda|$ is a measure and $\lambda \ll |\lambda|$ with a density of unit norm.

If X is accompact, the space of vector measures, denoted by $\mathcal{M}^n(X)$, is the topological dual of $C(X;\mathbb{R}^n)$ with the duality $\langle f, \lambda \rangle := \int f d\lambda = \sum_i f_i d\lambda_i$. If X is non-compact, then $\mathcal{M}^n(X)$ is the dual oc $C_0(X;\mathbb{R}^n)$, the space of continuous functions vanishing at infinity. The norm on $\mathcal{M}^n(X)$ is given by

$$||\lambda||_{\mathcal{M}} := |\lambda|(X) = \sup\{\int f d\lambda : |f| \le 1\}$$

Note that L^1 vector functions can be idenditifed with vector measures which are absolutely continuous wrt Lebesgue. Their L^1 norm coincides in this case with the norm in $\mathcal{M}^n(X)$

Once we know the space of vector measures on a domain $\Omega \subset \mathbb{R}^d$, we can define the space of functions with bounded variation, called $BV(\Omega)$: we define

$$BV(\Omega) := \{ u \in L^1(\Omega) : \nabla u \in \mathcal{M}^d(\Omega) \},\$$

where the gradient is to be intended in the sense of distributions. The norm on the space BV is given by $||u||_{BV} := ||u||_{L^1} + ||\nabla u||_{\mathcal{M}}.$

We can see that the space $W^{1,1}$, where gradients are in L^1 , is a subset of BV, since when a gradient is an L^1 function it is also a measure.

 $BV(\Omega)$ is a Banach space, which is coninuously injected in all L^p spaces for $p \leq d/(d-1)$. If Ω is bounded, the injection is compact for every p < d/(d-1) and in particular in L^1 .

Some non-trivial indicator functions may belong to the space BV, differently than what happens for sobolev spaces. For smooth sets A we can indeed see that we have

$$\nabla I_A = -n \cdot \mathcal{H}^{d-1}_{|\partial A},$$

where n is the exterior unit normal to A, and \mathcal{H}^{d-1} denotes the (d-1)-dimensional Hausdorff measure (see, for instance, [1] or [2]).

We say that a set $A \subset \Omega$ is a set of finite perimeter if $I_A \in BV(\Omega)$, and we define its perimeter Per(A) as $||\nabla I_A||_{\mathcal{M}}$.

Note that the perimeter of A defined in this way depends on the domain Ω . More precisely, this perimeter corresponds to the part of the boundary of 1 which is not $\partial\Omega$.

Approximation of the perimeter

We consider the following sequence of functionals defined on $L^1(\Omega)$,

$$F_{\varepsilon}(u) := \begin{cases} \varepsilon \int |\nabla u|^2 + \frac{1}{\varepsilon} \int W(u) & \text{if } u \in H_0^1(\Omega), \\ +\infty & \text{if not,} \end{cases}$$

where $W : \mathbb{R} \to \mathbb{R}$ is a continuous and bounded function satisfying W(0) = W(1) = 0 and W > 0 on $\mathbb{R} \setminus \{0, 1\}$. We denote by c_0 the constant given by $c_0 = 2 \int_0^1 \sqrt{W}$.

Note that the condition $u \in H_0^1(\Omega)$ is equivalent to requiring that we have $u \in H^1(\mathbb{R}^d)$ when we extend u to 0 outside Ω . We also define

$$F(u) := \begin{cases} c_0 \operatorname{Per}(A) & \text{if } u = I_A \in BV(\mathbb{R}^d), \\ +\infty & \text{if not.} \end{cases}$$

In this case we stress that the perimeter of A is computed inside the whole space, i.e. also conditing $\partial A \cap \partial \Omega$.

We will prove the following result, due to Modica and Mortola [3].

Proposition 1. Suppose that Ω is a bounded convex set in \mathbb{R}^d . Then $F_{\varepsilon} \xrightarrow{\Gamma} F$ in $L^1(\Omega)$, as $\varepsilon \to 0$.

Proof. Let us start from the Γ -limit inequality. Consider $u_{\varepsilon} \to u$ in L^1 .

Note that we have the lower bound

$$F_{\varepsilon}(u_{\varepsilon}) \ge 2 \int \sqrt{W(u_{\varepsilon})} |\nabla u_{\varepsilon}| = 2 \int |\nabla \Phi(u_{\varepsilon})|,$$

where $\Phi : \mathbb{R} \to \mathbb{R}$ is the function defined by $\Phi(0) = 0$ and $\Phi' = \sqrt{W}$. Note that, W being bounded, we have $|\Phi(u_{\varepsilon})| \leq C|u_{\varepsilon}|$. This means that $\Phi(u_{\varepsilon})$ is bounded in $BV(\Omega)$ and, up to a subsequence, it converges strongly in L^1 to a function v. Up to another subsequence we also have pointwise convergence a.e., but we already had $u_{\varepsilon} \to u$ a.e., hence $v = \Phi(u)$. We then have $|\nabla \Phi(u_{\varepsilon}) \to |\nabla \Phi(u)|$ in the sense of distributions and weakly as measures, and the lower semicontinuity of the norm implies

$$||\nabla \Phi(u)||_{\mathcal{M}} \le \liminf_{\varepsilon} \int |\nabla \Phi(u_{\varepsilon})| \le \frac{1}{2} \liminf_{\varepsilon} F_{\varepsilon}(u_{\varepsilon})$$

and the fact that we have $\Phi(u) \in BV(\Omega)$.

On the other hand, since we can of course assume $F_{\varepsilon}(u_{\varepsilon}) \leq C$, we also have $\int W(u_{\varepsilon}) \leq C\varepsilon$ and, by Fatou, $\int W(u) = 0$, i.e. $u \in \{0, 1\}$ a.e. This means that we do have $u = I_A$ for a measurable set $A \subset \Omega$. Note that in this case we have $\Phi(u) = \Phi(1)u = \Phi(1)I_A$. Since we have $\Phi(1) = \int_0^1 \sqrt{W} > 0$, this implies $I_A \in BV(\Omega)$, and we finally have

$$F(u) = 2\Phi(1) \operatorname{Per}(A) \leq \liminf F_{\varepsilon}(u_{\varepsilon}).$$

We now switch to the Γ -limsup inequality. We first consider the case $u = I_A$ with A smooth and $d(A, \partial \Omega) > 0$. We need to build a recovery sequence u_{ε} . Let us define sd_A the signed distance function to A given by

$$\operatorname{sd}_A(x) \begin{cases} d(x,A) & \text{if } x \notin A \\ -d(x,A^c) & \text{if } x \in A \end{cases}$$

Take a function $\phi : \mathbb{R} \to [0, 1]$ such that there exist $L_{\pm} > 0$ with $\phi = 1$ on $(-\infty, L_{-}], \phi = 0$ on $[L_{+}, +\infty)$, and $\phi \in C^{1}([-L_{-}, L_{+}])$. Define

$$u_{\varepsilon} = \phi\left(\frac{\mathrm{sd}_A}{\varepsilon}\right)$$

Note that $|\mathrm{sd}_A| = 1$ a.e. and hence we have $\varepsilon |\nabla u_\varepsilon|^2 = \frac{1}{\varepsilon} |\phi'|^2 \left(\frac{\mathrm{sd}_A}{\varepsilon}\right)$ and

$$F_{\varepsilon}(u_{\varepsilon}) = \frac{1}{\varepsilon} \int \left(|\phi'|^2 + W \right) \left(\frac{\mathrm{sd}_A}{\varepsilon} \right).$$

We now use the co-area formula (see [2]) which provides the following equality, valid at least for smooth functions $f, g: \Omega \to \mathbb{R}$:

$$\int f|\nabla g| = \int_{\mathbb{R}} dt \int_{\{g=t\}} f d\mathcal{H}^{d-1}$$

We apply it to the case $g = sd_A$, for which the norm of the gradient is always 1. We then have

$$F_{\varepsilon}(u_{\varepsilon}) = \frac{1}{\varepsilon} \int_{\mathbb{R}} \left(|\phi'|^2 + W(\phi) \right) \left(\frac{t}{\varepsilon} \right) \mathcal{H}^{d-1}(\{ \mathrm{sd}_A = t \}) dt = \int_{\mathbb{R}} \left(|\phi'|^2 + W(\phi) \right) (r) \mathcal{H}^{d-1}(\{ \mathrm{sd}_A = \varepsilon r \}) dr,$$

where the second equality comes from the change of variable $t = \varepsilon r$.

Since A is smooth we have, for every r, the convergence $\mathcal{H}^{d-1}(\{\mathrm{sd}_A = \varepsilon r\}) \to \mathrm{Per}(A)$. We can restrict the integral to $r \in [-L_-, L_+]$ which allows to apply dominated convergence and obtain

$$\lim_{\varepsilon} F_{\varepsilon}(u_{\varepsilon}) = \operatorname{Per}(A) \int_{\mathbb{R}} \left(|\phi'|^2 + W \right) (r) dr.$$

Moreover, it is clear that $u_{\varepsilon} \to I_A$ in L^1 because of dominated convergence.

We have now to choose ϕ . Choose a function $\tilde{\phi}$ such that $\tilde{\phi}(0) = 1/2$ and $\tilde{\phi}' = -\sqrt{W(\tilde{\phi})}$. We necessarily have $\lim_{r \to -\infty} \tilde{\phi}(r) = 1$ and $\lim_{r \to +\infty} \tilde{\phi}(r) = 0$. The function $\tilde{\phi}$ is C^1 and strictly monotone. Fix $\delta > 0$ and let r_{\pm} be defined via $\tilde{\phi}(r_{-}) = 1 - \delta$ and $\tilde{\phi}(r) = \delta$. We then take $\phi = \phi_{\delta}$ a function such that $\phi_{\delta} = \tilde{\phi}$ on $[r_{-}, r_{+}], \phi_{\delta} \in C^1([r_{-} - 2\delta, r_{+} + 2\delta])$, and $|\phi'_{\delta}| \leq 1$ on $[r_{-} - 2\delta, r_{-}] \cup [r_{+}, r_{+} + 2\delta]$. We have

$$\int_{\mathbb{R}} \left(|\phi_{\delta}'|^2 + W(\phi_{\delta}) \right)(r) dr \le (1 + \sup W) 2\delta + \int_{r_-}^{r_+} \left(|\tilde{\phi}'|^2 + W(\tilde{\phi}) \right)(r) dr \le C\delta + \int_{\mathbb{R}} \left(|\tilde{\phi}'|^2 + W(\tilde{\phi}) \right)(r) dr.$$

Note that we have $\int_{\mathbb{R}} \left(|\tilde{\phi}'|^2 + W(\tilde{\phi}) \right)(r) dr = 2 \int_{\mathbb{R}} \sqrt{W(\tilde{\phi})} |\tilde{\phi}'| = 2 |\Phi(\tilde{\phi}(+\infty) - Phi(\tilde{\phi}(-\infty))| = 2\Phi(1) = c_0,$ which means

$$\lim_{\varepsilon} F_{\varepsilon}(u_{\varepsilon}) \le (c_0 + C\delta) \operatorname{Per} A,$$

for arbitrary $\delta > 0$, and hence

$$(\Gamma - \limsup F_{\varepsilon})(u) \le c_0 \operatorname{Per} A = F(u).$$

We now need to extend our Γ -limsup inequality to other functions u which are not of the form $u = I_A$ with A smooth and far from the boundary, but only $u = I_A$ with A of finite perimeter. We need hence to show that the class S of indicators of smooth sets far from the boundary is dense in energy.

We start from a set A fo finite perimeter with $d(A, \partial \Omega) > 0$ and set $u = I_A$. Take a smooth and compactly supported convolution kernel $\eta_n \rightharpoonup \delta_0$ defined by reslacing of a fixed kernel η_1 , and define $v_n := \eta_n * u$. The function v_n is smooth and, for large n, compactly supported in Ω . We have $\int |\nabla v_n| \leq ||\nabla u||_{\mathcal{M}}$ since the norm of the gradient is a convex functional invariant by translations, hence it decreases under convolution. We use again the coarea formula to write

$$\int |\nabla v_n| = \int_0^1 dr \mathcal{H}^{d-1}(\{v_n = r\}).$$

If we fix $\delta > 0$ we can then choose a number $r_n \in [\delta, 1 - \delta]$ such that

$$\operatorname{Per}(\{v_n \ge r_n\}) \le \mathcal{H}^{d-1}(\{v_n = r_n\}) \le \frac{\operatorname{Per} A}{1 - 2\delta}$$

and r_n is not a critical value for v_n (since, by Sard's lemma, a.e. value is not critical). In particular, the set $A_n := \{v_n \ge r_n\}$ is a smooth set, and we then take $u_n = I_{A_n}$. By construction the perimeter of A_n is bounded by $\frac{\operatorname{Per} A}{1-2\delta}$ and u_n is bounded in BV. We want to prove that we have $u_n \to u$ in L^1 . Up to subsequences, we do have $u_n \to w$ strongly in L^1 and a.e. Since $u_n \in \{0, 1\}$. also $w \in \{0, 1\}$ a.e. Considera

point x which is a Lebesgue point for u. In particular, this implies $v_n(x) \to u(x)$ as $n \to \infty$. Consider the case w(x) = 1. Then $u_n(x) = 1$ for large n, i.e. $v_n(x) \ge r_n \ge \delta$. Then $u(x) \ge \delta$, which means u(x) = 1. Analogously, w(x) = 0 implies u(x) = 0. Finally we have w = u and $u_n \to u$ strongly in L^1 . This is not yet the desired sequence, since we have $F(u_n) \le (1 - 2\delta)^{-1}F(u)$ instead of $\limsup_n F(u_n) \le F(u)$ but this can be fixed easily. Indeed, this allows for every δ to find $\tilde{u} \in S$ with $||\tilde{u} - u||_{L^1}$ arbitrarily small and $F(\tilde{u}) \le (1 - 2\delta)^{-1}F(u)$, which can be turned, using $\delta_n \to 0$, into a sequence which shows that S is dense in energy.

We have no tget rid of the assumption $d(A, \partial \Omega) > 0$. Using the fact that Ω is convex, and supposing without loss of generality that the origin 0 belongs to the interior of Ω , we can take $u = I_A$ and define $u_n = I_{t_nA}$ for a sequence $t_n \to 1$. The sets t_nA are indeed far from the boundary. Moreover, we have $F(u_n) = c_0 \operatorname{Per}(t_nA) = t_n^{d-1}F(u) \to F(u)$. We are just left to prove $u_n \to u$ strongly in L^1 . Because of the BV bound which provides compactness in L^1 we just need to prove any kind of weak convergence. Take a test function φ and compute $\int \varphi u_n = \int_{t_nA} \varphi = (t_n)^d \int_A \varphi(t_n y) dy \to \int_A \varphi$, as soon as φ is continuous. This shows weak convergence in the sense of measures $u_n \to u$ and, thanks to the BV bound, strong L^1 convergence and concludes the proof.

References

- [1] L. AMBROSIO AND P. TILLI, *Topics on analysis in metric spaces*. Oxford Lecture Series in Mathematics and its Applications (25). Oxford University Press, Oxford, 2004.
- [2] L. C. Evans, R. F. Gariepy, *Measure theory and fine properties of functions*. Revised edition. Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2015. xiv+299 pp.
- [3] L. Modica and S. Mortola, Un esempio di Γ-convergenza. (Italian) Boll. Un. Mat. Ital. B (14), no. 1, 285–299, 1977.