
Calculus of Variations and Elliptic Equations
–

1st class

Geodesics
A very natural problem in optimization consists in finding the shortest path to connect two points. A
simple but interesting issue is the following: we are given a set M ⊂ Rd, two points x0, x1 ∈ M , and we
look for the shortest path connecting x0 to x1 and staying inM . For the sake of generality, we can replace
the set M , supposed to be a subset of the Euclidean space and inheriting its metric structure (i.e., the
Euclidean distance) with a more general metric space (X, d).
First of all, let us define the length of a curve ω in a general metric space (X, d).
Definition - For a curve ω : [0, 1]→ X, let us define

Length(ω) := sup
{
n−1∑
k=0

d(ω(tk), ω(tk+1) : n ≥ 1, 0 = t0 < t1 < · · · < tn = 1
}
.

Note that the same definition could be given for functions defined on [0, 1] and valued in X, not necessarily
continuous.
It is well-known and not difficult to prove, when X = M ⊂ Rd and ω ∈ C1, that we have the equality
Length(ω) =

∫ 1
0 |ω′|(t)dt. If we want to stay at a more general level, we need some notions to generalize

this equality to the metric setting. You could skip this part if you are only interested in the Euclidean
case (but, anyway, one would need to generalize to curves which are not C1).
Let us start from some properties about Lipschitz curves in metric spaces.
A curve ω is a continuous function defined on a interval, say [0, 1] and valued in a metric space (X, d).
As it is a map between metric spaces, it is meaningful to say whether it is Lipschitz or not, but its speed
ω′(t) has no meaning, unless X is a vector space.
Surprisingly, it is possible to give a meaning to the modulus of the velocity, |ω′|(t).
Definition - If ω : [0, 1] → X is a curve valued in the metric space (X, d) we define the metric derivative
of ω at time t, denoted by |ω′|(t) through

|ω′|(t) := lim
h→0

d(ω(t+ h), ω(t))
|h|

,

provided this limit exists.
The following theorem, in the spirit of Rademacher Theorem guarantees the existence of the metric
derivative for Lipschitz curves.
Theorem - Suppose that ω : [0, 1] → X is Lipschitz continuous. Then the metric derivative |ω′|(t) exists
for a.e. t ∈ [0, 1]. Moreover we have, for t < s,

d(ω(t), ω(s)) ≤
∫ s

t
|ω′|(τ) dτ.

The above theorem can be proved by using the fact that every compact metric space (and ω([0, 1]) is the
image of a compact set through a continuous map, hence it is compact) can be isometrically embedded
in `∞, where one can work componentwise. For all the notions and the proofs about metric derivatives,
we refer for instance to [?].
We also need to consider more general curves, not only Lipschitz continuous.
Definition - A curve ω : [0, 1] → X is defined absolutely continuous whenever there exists g ∈ L1([0, 1])
such that d(ω(t0), ω(t1)) ≤

∫ t1
t0
g(s)ds for every t0 < t1. The set of absolutely continuous curves defined

on [0, 1] and valued in X is denoted by AC(X).



It is well-known that every absolutely continuous curve can be reparametrized in time (through a monotone-
increasing reparametrization) and become Lipschitz continuous. A possible way to achieve this goal is the
following: let G(t) :=

∫ t
0 g(s)ds, then set S(t) = εt+G(t) (for any ε > 0), which is continuous and strictly

increasing, and valued in an interval [0, L]; for t ∈ [0, L], set ω̃(t) = ω(S−1(t)). It is easy to check that
ω̃ ∈ Lip1. If we add the assumption that ω has no interval (t0, t1) ⊂ [0, 1] on which it is constant, then
there is no need to use ε > 0 and G is already strictly increasing. in this case we use ε = 0 and obtain
a unit-speed reparametrization of ω. If we want to have parametrizations defined on the same interval
[0, 1], we just need to rescale by a factor L.
In particular the above Rademacher Theorem is also true for ω ∈ AC(X) (since the reparametrization
that we defined is differentiable a.e.).
With these definitions in mind, we can state the following general equality.
Proposition - For any curve ω ∈ AC(X) we have

Length(ω) =
∫ 1

0
|ω′|(t)dt.

We collect now some more definitions.
Definition - A curve ω : [0, 1] → X is said to be a geodesic between x0 and x1 ∈ X if it minimizes the
length among all curves such that ω(0) = x0 and ω(1) = x1.
Definition - A curve ω ∈ AC(X) defined on the interval [0, 1] is said to be a constant speed geodesic
between ω(0) and ω(1) ∈ X if it is a gesdesic and |ω′|(t) equals Length(ω) for a.e. t (this is equivalent to
saying that |ω′| is constant, since the only possible constant is the length of the curve).
The following characterization is useful.

Proposition 1. Fix an exponent p > 1 and consider curves connecting x0 to x1. The following facts are
equivalent

1. ω is a constant speed geodesic,

2. ω solves min
{∫ 1

0 |ω′|(t)pdt : ω(0) = x0, ω(1) = x1
}
.

Proof. Set L0 = inf{Length(ω) : ω ∈ AC(X), ω(0) = x0ω(1) = x1}. We then have, for an arbitrary
curve ω joining x0 and x1: ∫ 1

0
|ω′|(t)pdt ≥

(∫ 1

0
|ω′|(t)dt

)p
≥ Lp0,

where the first inequality comes from Jensen inequality and the second from the definition of L0. The
first inequality is an equality if and only if |ω′| is constant. This shows that the infimum in the second
condition (inf

{∫ 1
0 |ω′|(t)pdt : ω(0) = x0, ω(1) = x1

}
) can be reduced to constant-speed curves, and in this

case we only need to look at the power p of the length. In particular, the infimum equals Lp0 and it is
attained if and only if a geodesic exists. Let us suppose that a geodesic exists. Then the value of the inf
is attained and the solutions are all the curves realizing both inequalities, which means geodesics with
constant speed, which shows the equivalence between the two conditions. If no geodesic exists, then no
curve satisfies either condition.

Geodesics on the sphere

We consider the case M : S2 ⊂ R3, i.e. the unit sphere in the three-dimensional space. Let us take two
vectors v0, v1 ∈M such that v0 · v1 = 0, and the curve

γ(t) = v0 cos(t) + v1 sin(t).
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This curve is a great circle in M . It is C∞ and parametrized at constant unit speed, since γ′(t) =
−v0 sin(t) + v1 cos(t) and |γ′(t)|2 = |v0|2 sin2(t) + |v1|2 cos2(t)−2v0 · v1 sin(t) cos(t) = sin2(t) + cos2(t) = 1.
Moreover, differentiating twice, se see that we have γ′′(t) = −γ(t).
We want to prove that, for small T , the curve γ is a geodesic in M , i.e. it minimizes the length among
those curves valued in M with same initial and final points. We will take advantage of Proposition ??
and prove that γ is a constant-speed geodesic (even if we already knew that its speed is constant).

Proposition 2. For T ≤ π, the arcs of great circles defined above are constant-speed geodesics.

Proof. We will compare γ of the form γ(t) = v0 cos(t)+v1 sin(t) to a competitor that we write as γ̃ = γ+η.
The vector-valued function η : [0, T ] → R3 will be such that γ̃ ∈ S2 and η(0) = η(T ) = 0. We will prove∫ T

0 |γ′|2 ≤
∫ T

0 |γ′ + η′|2. The condition |γ̃(t) ∈ S2 means |γ + η|2 = 1, i.e. |η|2 + 2γ · η = 0.
We have ∫ T

0
|γ′ + η′|2 =

∫ T

0
|γ′′|2 +

∫ T

0
|η′|2 +

∫ T

0
2γ′ · η′.

We can integrate by parts the last term and, using η(0) = η(T ) = 0, we get
∫ T

0 2γ′ · η′ = −
∫ T

0 2γ′′ · η. We
then use γ′′ = −γ and obtain

∫ T
0 2γ · η = −

∫ T
0 |η|2, after also using |η|2 + 2γ · η = 0.

Hence, ∫ T

0
|γ̃′|2 =

∫ T

0
|γ′′|2 +

∫ T

0
|η′|2 −

∫ T

0
|η|2.

and the claim is proven thanks to the next lemma, which provides
∫ T

0 |η′|2 ≥
∫ T

0 |η|2 for small T .

The following lemma is a statement of the well-known Poincaré inequality in 1D.

Lemma 1. There exists a constant C such that
∫ T

0 |η|2 ≤ CT 2 ∫ T
0 |η|2 for every H1 function η : [0, T ]→

Rn with η(0) = η(T ) = 0. The optimal value of this constant is π−2.

Proof. It is easy to prove the inequality with C = 1. Indeed, from η(0) = 0 we have η(t) =
∫ t

0 η
′(s)ds,

hence

|η(t)| ≤
∫ t

0
|η′(s)|ds ≤

∫ T

0
|η′(s)|ds ≤

√
T

√∫ T

0
|η′(s)|2ds.

This implies ∫ T

0
|η(t)|2 ≤ T · T ·

∫ T

0
|η′(s)|2ds.

Using η(t) = v0 sin(πt/T ) (for an arbitrary vector v0 ∈ Rn \ {0}) we see that the constant cannot be
better than π−2. Proving the sharp inequality can be done via Fourier series. If T = π we can write η =∑
n∈Z an sin(nt), η′ =

∑
n∈Z nan cos(nt). We then have ||η||2L2([0,π]) =

∑
|an|2 ≤

∑
n2|an|2 = ||η′||2L2([0,π]).

The inequality is hence proven in its sharp form for T = π. A simple scaling argument, applying the
inequality on [0, π] to the function η̃ given by η̃(t) = η(tT/π) provides the general statement.

Techniques for existence
The most common way to prove that a function admits a minimizer is called “direct method in calculus
of variations”. It simply consists in the classic Weierstrass Theorem, possibly replacing continuity with
semi-continuity.
Definition - On a metric space X, a function f : X → R∪{+∞} is said to be lower-semi-continuous (l.s.c.
in short) if for every sequence xn → x we have f(x) ≤ lim infn f(xn).
Definition - A metric space X is said to be compact if from any sequence xn we can extract a converging
subsequence xnk

→ x ∈ X.
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Theorem 1 (Weierstrass). If f : X → R∪{+∞} is lower semi-continuous and X is compact, then there
exists x̄ ∈ X such that f(x̄) = min{f(x) : x ∈ X}.

Proof. Define ` := inf{f(x) : x ∈ X} ∈ R ∪ {−∞} (` = +∞ only if f is identically +∞, but in this case
any point in X minimizes f , or if X is empty, another no-interesting case). By definition there exists a
minimizing sequence xn, i.e. points in X such that f(xn) → `. By compactness we can assume xn → x̄.
By lower semi-continuity, we have f(x̄) ≤ lim infn f(xn) = `. On the other hand, we have f(x̄) ≥ ` since
` is the infimum. This proves ` = f(x̄) ∈ R and this value is the minimum of f , realized at x̄.

Note that there is no need to check in advance that f is bounded from below and ` 6= −∞: this will be
proven as a consequence of ` = f(x̄).
We will apply the same ideas so as to prove existence of a minimizer in a toy-example.
Consider an interval I = [a, b] ⊂ R and a countinuous function F : I × R → R. We suppose F ≥ 0
(bounded from below by a different constant could be treated in a similar way).

Theorem 2. Consider the problem

min
{
J(u) :=

∫ b

a

(
F (t, u(t)) + |u′(t)|2

)
dt : u ∈ H1(I), u(a) = A, u(b) = B

}
.

This minimization problem admits a solution.

Proof. Take a minimizing sequence un, i.e. J(un)→ inf J . The sum of the two terms of J (the part with
F and the one with |u′|2) is then bounded, but the two terms are positive, hence they are both separatey
bounded from above. In particular, ||u′n||L2 is bounded. Moreover, since the boundary values of un are
fixed, an easy application of the Poincaré inequality shows that ||un||H1 is bounded.
Hence, (un)n is bounded in H1 and we can extract a weakly converging subsequence, since H1 is a
separable and reflexif space. We have un ⇀ u in H1. This convergence also implies uniform convergence,
because of the compact injection of H1 into C0. In particular, we have pointwise convergence and the
boundary values are preserved, so that we obtain u(a) = A and u(b) = B. the limit u is then an admissible
competitor in our minimization problem. We just need to prove J(u) ≤ lim infn J(un) = inf J in order to
deduce that u minimizes J .
since un → u uniformly, the functions vn defined by vn(t) = F (t, un(t)) uniformly converge to v defined
via v(t) = F (t, u(t)) (using the continuity of F ). In particular,

∫ b
a vn →

∫ b
a v. This provides the continuity

(w.r.t. the weak convergence in H1) of the first term.
We then note that the map H1 3 v 7→ v′ ∈ L2 is continous, so that the weak convergence of un to u in
H1 implies that of u′n to u′ in L2. We then use the well-known property of the lower semi-continuity of
the norm for the weak convergence: we have ||u′||L2 ≤ lim inf ||u′n||L2 . Hence∫ b

a
|u(t)|2dt ≤ lim inf

n

∫ b

a
|un(t)|2dt.

This shows the lower semicontinuity of the second term and proves the claim.

Remarks and variants
The same arguments could be applied with minor modifications if the constraints on u(a) and/or u(b)
were replaced with penalizations, such as in

min
{
J(u) :=

∫ b

a

(
F (t, u(t)) + |u′(t)|2

)
dt+ g(u(a)) + h(u(b)) : u ∈ H1(I)

}
.

If g and h are continuous, the uniform convergence of un to u implies the continuity of the two additional
terms. Yet, we need to guarantee that the sequence stays bounded in H1. For this any of the following
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assumptions is enough: either limx→±∞ g(x) = +∞ and h is bounded from below, or limx→±∞ h(x) = +∞
and g is bounded from below, or g and h are bounded from below and F (t, x) ≥ c(|x|2 − 1) for a positive
constant. Indeed, if the conditions on the growth of g or h are satisfied we can obtain a bound on the
value of un(a) or un(b); if the condition on the growth of F is satisfied, then J provides a bound on the
L2 norm of un and we can obtain the H1 norm without using Poincaré.
Another easy variant concerns replacing the continuity assumption on F , g or h with lower semicontinuity
(in the case of F , the semicontinuity of the integral term is obtained by using Fatou’s lemma).
Finally, the term |u′(t)|2 could be easily replaced with |u′(t)|p, p > 1, and the result could be proven
using the space W 1,p(I). For p = 1, on the other hand, there is a difficulty because we would have a
non-reflexive space.
Minimization among smooth functions
What about solving the same minimization problem in a more classical functional space, such as C1?a
possible strategy is the following: we extend the problem to a larger space such as H1 or another Sobolev
space, choosing a space in which the functional J is well-defined and we are able to prove existence; then,
we write the Euler-Lagrange of the problem and we use it to prove that the minimizer is more regular than
just Sobolev, and in particular C1. this can depend on the regularity of the data of the problem, and in
particular on F . If we suppose F ∈ C1, then the Euler-Lagrange equation is of the form u′′(t) = F ′(t, u(t))
(where F ′ is the derivative w.r.t. the second variable): using F ′ ∈ C0 and u ∈ C0 (since sobolev functions
in 1D are continuous) we deduce u′′ ∈ C0, hence u ∈ C2. In case F ∈ C∞ then we also obtain, iterating
the same argument, u ∈ C∞.

In the example of Theorem ?? every minimizing sequence satisfies he compactness property that we need
to guarantee existence of a minimizer. This is not always the case, as we can see from the following result
(see also [?], Chapter 4).

Theorem 3. Suppose that (X, d) is a metric space in which closed balls are compact. Then for every
two points x0, x1 ∈ X which can be connected by a finite-length curve, there exists at least one geodesic
connecting them.

Proof. Following the usual strategy we consider a minimizing sequence γn : [0, 1]→ X of AC curves with
γn(i) = xi for i = 0, 1, and Length(γn)→ ` := inf{Length(ω) : ω ∈ AC([0, 1];X), ω(0) = x0, ω(1) = x1}.
Since Length(γn) =

∫ 1
0 |γ′n|(t)dt we have a bound on the L1 norm of the metric speed |γ′n|. Unfortunately,

L1 is not a reflexive space, nor the dual of a separable space, and we cannot apply the Banach-Alaoglou
theorem to extract a converging subsequence.
We will be able to extract a suitable subsequence only after improving the sequence γn. First, we can
remove from each γn any possible interval on which γn is constant (and reparametrize the curve we obtain)
since this does not change the lenth, nor the endpoints. Then, we can parametrize the obtained curve by
constant speed. We thus obtain a sequence γ̃n with the property |γ̃′n| = Length(γ̃n) = Length(γn) → `.
For these curves, the L∞ and the L1 norms of the speed coincide. In particular, the sequence γ̃n is
equi-Lipschitz since Lip(γ̃n) = |||γ̃′n|||L∞ .
Using d(γ̃n(t), x0) ≤ Length(γ̃n) ≤ C we easily see that all the curves γ̃n are contained in a given ball,
hence in a compact set. We can then apply Ascoli-Arzelà’s theorem, extracting a uniformly converging
subsequence, that we will still call γ̃n, and we denote by γ its uniform limit. As the limit is also pointwise,
the endpoints are preserved. We write

d(γ̃n(t), γ̃n(s)) ≤ Lip(γ̃n)|t− s|

and, passing to the limit n→∞, we obtain

d(γ(t), γ(s)) ≤ `|t− s|,

which shows that γ is `-Lipschitz continuous. This implies Length(γ) ≤ ` and shows that γ is a geodesic.
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Note that in the above proof we could have used the L1 and L∞ bounds on |γ̃′n| to deduce an L2 bound,
and use the weak convergence in H1, at least in the Euclidean case X ⊂ Rd (otherwise the H1 space is
not defined). An extra difficulty would be in this case to prove the semicontinuity of the L1 norm w.r.t.
the weak L2 convergence, as the norm is not the same (but this can be easily be fixed, for instance noting
that L2 continuously embeds into L1).
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