## Calculus of Variations and Elliptic Equations

## 3rd class

Fenchel-Legendre Transform Let us fix a Banach space $X$ together with its dual $X^{\prime}$, and denote by $\xi \cdot x$ the duality between an element $\xi \in X^{\prime}$ and $x \in X$. We say that a function valued in $\mathbb{R} \cup\{+\infty\}$ is proper if it is not identically equal to $+\infty$
Definition - Given a vector space $X$ and its dual $X^{\prime}$, and a proper function $F=X \rightarrow \mathbb{R} \cup\{+\infty\}$ we define its Fenchel-Legendre transform $F^{*}: X^{\prime} \rightarrow \mathbb{R} \cup\{+\infty\}$ via

$$
F^{*}(\xi):=\sup _{x} \xi \cdot x-F(x)
$$

We note that $F^{*}$, as a sup of affine continuous (in the sequel we will just say affine and mean affine and continuous, i.e. of the form $\ell(x)=\xi \cdot x+c$ for $\xi \in X^{\prime}$ and $c \in \mathbb{R}$ ) functions, is both convex and l.s.c., as these two notions are stable by sup.
By abuse of notations, when considering functions defined on $X^{\prime}$ we will see their Fenchel-Legendre transform as a function defined on $X$ (and not on $X^{\prime \prime}$ : this is possible since $X \subset X^{\prime \prime}$ and we can restrict it to $X$, and by the way in most cases we will use only reflexive spaces.
We prove the following restuls.
Proposition 1. 1. If $F: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is proper, convex and l.s.c. then there exists an affine function $\ell$ such that $F \geq \ell$.
2. If $F: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is proper, convex and l.s.c. then it is a sup of affine functions.
3. If $F: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is proper, convex and l.s.c. then there exists $G: X^{\prime} \rightarrow \mathbb{R} \cup\{+\infty\}$ such that $F=G^{*}$.
4. If $F: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is proper, convex and l.s.c. then $F^{* *}=F$.

Proof. We consider the epigraph $\operatorname{Epi}(F):=\{(x, t) \in X \times \mathbb{R}: t \geq F(x)\}$ of $F$ which is a convex and closed set in $X \times \mathbb{R}$. We take a point $x_{0}$ such that $F\left(x_{0}\right)<+\infty$ and consider the singleton $\left\{\left(x_{0}, F\left(x_{0}\right)-1\right)\right\}$ which is a convex and compact set in $X \times \mathbb{R}$. The Hahn-Banach separation theorem provides the existence of a pair $(\xi, a) \in X^{\prime} \times \mathbb{R}$ such that $\xi \cdot x_{0}+a\left(F\left(x_{0}\right)-1\right)<0$ and $-x i \cdot x+a t \geq 0$ for every $(x, t) \in E p i(F)$. Note that this last condition implies $a \geq 0$ since we can take $t \rightarrow \infty$. Moreover, we should also have $a>0$ otherwise taking any point $(x, t)) \in E p i(F)$ with $x=x_{0}$ we have a contradiction. If we then take $t=F(x)$ for all $x$ such that $F(x)<+\infty$ we obtain $a F(x) \geq-\xi \cdot x+\xi \cdot x_{0}+a\left(F\left(x_{0}\right)-1\right)$ and, dividing by $a>0$, we obtain the first claim.
We now take an arbitrary $x_{0} \in X$ and $t_{0}<F\left(x_{0}\right)$ and separate again the singleton $\left\{\left(x_{0}, t_{0}\right)\right\}$ from $E p i(F)$, thus getting a pair $(\xi, a) \in X^{\prime} \times \mathbb{R}$ such that $\xi \cdot x_{0}+a t_{0}<0$ and $-x i \cdot x+a t \geq 0$ for every $(x, t) \in \operatorname{Epi}(F)$. Again, we have $a \geq 0$. If $F\left(x_{0}\right)<+\infty$ we obtain as before $a>0$ and the inequality $F(x)>-\frac{\xi}{a} \cdot\left(x-x_{0}\right)+t_{0}$. We then have an affine function $\ell$ with $F \geq \ell$ and $\ell\left(x_{0}\right)=x_{0}$. This shows that the sup of all affine functions smaller than $F$ is, at the point $x_{0}$, at least $t_{0}$. Hence this sup equals $F$ on $\{F<+\infty\}$. The same argument works for $F\left(x_{0}\right)=+\infty$ if for $t_{0}$ arbitrary large the corresponding coefficient $a$ is strictly positive. If not, we have $\xi \cdot x_{0}<0$ and $\xi \cdot x \geq 0$ for every $x$ such that $(x, t) \in E p i(F)$ for at least one $t \in \mathbb{R}$, i.e. for $x \in\{F<+\infty\}$. Consider now $\ell_{n}=\ell-n \xi$ where $\ell$ is the affine function smaller than $F$ previously found. We have $F \geq \ell \geq \ell-n \xi$ since $\xi$ is non-negative on $\{F<+\infty\}$ and moreover $\lim _{n} \ell_{n}\left(x_{0}\right)=+\infty$. This shows that in such a point $x_{0}$ the sup of the affine functions smaller than $F$ equals $+\infty$, and hence $F\left(x_{0}\right)$.
Once that we know that $F$ is a sup of affine functions we can write

$$
F(x)=\sup _{\alpha} \xi_{\alpha} \cdot x+c_{\alpha}
$$

for a family of indexes $\alpha$. We then set $c(\xi):=\sup \left\{c_{\alpha}: \xi_{\alpha}=\xi\right\}$. The set in the sup can be empty, which means $c(\xi)=-\infty$. Anyway, the sup is always finite: fix a point $x_{0}$ with $F\left(x_{0}\right)<+\infty$ and use since $c_{\alpha} \leq F\left(x_{0}\right)-\xi \cdot\left(x_{0}\right)$. We then define $G=-c$ and we see $F=G^{*}$.
Finally, before proving $F=F^{*} *$ we prove that for any function $F$ we have $F \geq F^{* *}$ even if $F$ is not convex or lsc. Indeed, we have $F(\xi)+F(x) \geq \xi \cdot x$ which allows to write $F(x) \geq \xi \cdot x-F^{*}(\xi)$, an inequality true for every $\xi$. Taking the sup over $\xi$ we obtain $F \geq F^{* *}$. We want now to prove that this inequality is an equality if $F$ is convex and lsc. We write $F=G^{*}$ and transform this into $F^{*}=G^{* *}$. We then have $F^{*} \leq G$ and, transforming this inequality (which changes its sign), $F^{* *} \geq G^{*}=F$, which proves $F^{* *}=F$.

Corollary 1. Given an arbitrary proper function $F: X \rightarrow \mathbb{R} \cup\{+\infty\}$ we have $F^{* *}=\sup \{G: G \leq$ $F, G$ is convex and lsc\}.

Proof. Let us call $H$ the function obtained as a sup on the right hand side. Since $F^{* *}$ is convex and lsc and smaller than $F$, we have $F^{* *} \leq H$. Note that $H$, as a sup of convex and lsc functions, is also convex and lsc, and it is of course smaller than $F$. We write $F \geq H$ and double transform this inequality, which preserves the signe. We then have $F^{* *} \geq H^{* *}=H$, and the claim is proven.

