
Calculus of Variations and Elliptic Equations
–

5th class

From local to global regularity – reflections
Let Ω ⊂ Rd be a compact domain, closure of an open set, with a flat part in ∂Ω and R : Rd → Rd a
reflection which fixes this part. For instance, if Ω = [0, 1]d, we can consider R(x1, . . . , xd) = (−x1, . . . , xd).
The map R is linear, self-adjoint, with determinant equal to −1, and R2 = id.
Suppose that u ∈ H1

0 (Ω) solves in the weak sense ∆u = f . Define Ω̃ := Ω ∪R(Ω) and

ũ(x) =
{
u(x) if x ∈ Ω,
−u(Rx) if x ∈ R(Ω),

.

We define in analoguous way f̃ . Note that the condition u ∈ H1
0 (i.e., zero on the boundary) makes ũ

well-defined on Ω ∩ R(Ω) and we have ũ ∈ H1
0 (Ω̃). This is not the case for f if we do not suppose any

boundry condition on it, but f ∈ Lp(Ω) clearly implies f̃ ∈ Lp(Ω̃).
We want to prove that we also have ∆ũ = f̃ in Ω̃. To do so, we take a test function ϕ ∈ H1

0 (Ω̃) and we
compute ˆ

Ω̃
∇ũ · ∇ϕ =

ˆ
Ω
∇u · ∇ϕ+

ˆ
R(Ω)
−R∇u ◦R · ∇ϕ.

Now, we have
ˆ

R(Ω)
R∇u ◦R · ∇ϕ =

ˆ
R(Ω)
∇u ◦R ·R∇ϕ =

ˆ
Ω
∇u ·R∇ϕ ◦R =

ˆ
Ω
∇u · ∇(ϕ ◦R),

where the first equality comes from R being self-adjoint and the second is a change-of-variable. If we now
set ϕ̂ := ϕ− ϕ ◦R we have ˆ

Ω̃
∇ũ · ∇ϕ =

ˆ
Ω
∇u · ∇ϕ̂.

We just need to observe that we have ϕ̂ ∈ h1
0(Ω) since it vanishes both on ∂Ω \ R(Ω) (as a consequence

of ϕ ∈ H1
0 (ω̃)) and on ∂Ω ∩R(Ω) (because here R is the identity). We then have

ˆ
Ω̃
∇ũ · ∇ϕ =

ˆ
Ω
∇u · ∇ϕ̂ = −

ˆ
Ω
fϕ̂ = −

ˆ
Ω
fϕ+

ˆ
Ω
f ϕ ◦R.

In the very last integral we can use a change of variable and obtain
´

Ω f ϕ ◦R =
´

R(Ω) f ◦Rϕ, so that we
finally have ˆ

Ω̃
∇ũ · ∇ϕ = −

ˆ
Ω̃
f̃ϕ,

which means ∆ũ = f̃ .
In the case of Neumann boundary conditions instead of Dirchlet ones it is possible to use a different
symmetrization, namely

ũ(x) =
{
u(x) if x ∈ Ω,
u(Rx) if x ∈ R(Ω),

and the same for f̃ (no change of sign in R(Ω)). This is useful because if u does not vanish on the
boundary the extension with the cange of sign does not belong to H1. On the other hand, the function
ϕ̂ will be now defined as ϕ̂ := ϕ + ϕ ◦ R and does not vanish anymore on ∂Ω ∩ R(Ω), but since u solves
∆u = f with Neumann boundary conditions, the relation

´
∇u · ∇φ = −

´
fφ is true for any φ ∈ H1(Ω),

with no conditions on the values on the boundary.



Proposition 1. Suppose that u ∈ H1
0 (Ω) is a weak solution of ∆u = f (i.e.

´
∇u · ∇φ = −

´
fφ for

every φ ∈ C1
c (Ω)) with f ∈ Lp(Ω) and Ω is a cube. Then u ∈W 2,p(Ω).

Suppose that u ∈ H1(Ω) is weak solution of ∆u = f with Neumann boundary conditions (i.e.
´
∇u ·∇φ =

−
´
fφ for every φ ∈ C1(Ω)) with f ∈ Lp(Ω) and Ω is a cube. Then u ∈W 2,p(Ω). If moreover f ∈W 1,p(Ω)

then u ∈W 3,p(Ω).

Proof. Both for the Dirichlet and for the Neumann case we can iterate reflections Rk so that we iterately
extend u into functions uk, defined on Ωk := Ωk−1 ∪ Rk−1(Ωk−1), with Ω0 = Ω, and extanding f to fk

on the same domains, with ∆uk = fk, according to the construction that we previously detailed. After
a suitable number of iterations if the reflections are well-chosen then Ω is compactly contained in Ωk

and the local regularity result coming from the Lp theory for the Laplacian (see [1]) implies u ∈ W 2,p if
fk ∈W 2,p. Since reflections preserve the Lp summability, we do have fk ∈ Lp(Ωk) and we can apply this
to u ∈ W 2,p(Ω) in both cases. Should we have fk ∈ W 1,p, by differentiating the equation we would also
have u ∈ W 3,p(Ω) (note that we need to first reflect and then differentiate, since if we first differentiate
the equation we lose the boundary data). On the other hand, the reflection defined with a minus sign
in the Dirichlet case in general destroy the W 1,p behavior as they create discontinuities at the common
boundary between Ω and R(Ω), so we cannot conclude the W 3,p regularity in the Dirichlet case. Yet,
this can be done in the Neumann case as the reflection without changing the sign preserves the W 1,p

behavior.
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