Calculus of Variations and Elliptic Equations

8th class

Equations in divergence form with right-hand-side

We consider a point-dependent matrix $a(x)$ (for $x \in \Omega \subset \mathbb{R}^{d}$) satisfying $\lambda I \leq a \leq \Lambda I$ for two contstants $\Lambda>\lambda>0$ together with a vector field $F: \Omega \rightarrow \mathbb{R}^{d}$ and the equation $\nabla \cdot(a \nabla u)=\nabla \cdot F$. A function $u \in H_{1}(\Omega)$ is a solution if for every $\phi \in H_{0}^{1}(\Omega)$ we have $\int a \nabla u \cdot \nabla \phi=\int F \cdot \nabla \phi$.
We also call subsolution of the same equation any function $u \in H_{1}(\Omega)$ such that $\int a \nabla u \cdot \nabla \phi \leq \int F \cdot \nabla \phi$ for every $\phi \in H_{0}^{1}(\Omega)$ with $\phi \geq 0$.
We have the following
Proposition 1. Suppose that $u \in H^{1}(\Omega)$ is a positive subsolution of weak solution of the equation ∇. $(a \nabla u)=\nabla \cdot F$ where F is a bounded vector field. Then, for every $x_{0} \in \Omega$ with $B\left(x_{0}, 2 R\right) \subset \Omega$ we have

$$
\|u\|_{L^{\infty}\left(B\left(x_{0}, R\right)\right)} \leq C\left(f_{B\left(x_{0}, 2 R\right)}|u|^{2}\right)^{1 / 2}+C R\|F\|_{L^{\infty}}
$$

for a constant $C=C(\lambda, \Lambda, d)$.
Proof. We try to mimick Moser's proof for the case $F=0$ (see [1]). Since we cannot say that convex functions of subsolutions are subsolutions of the very same equation we will directly use the good test functions, i.e. $\phi=u^{2 m-1} \eta^{2}$ where η is a cut-off fonction with $\eta=1$ on $B\left(x_{0}, r_{1}\right)$ and $\eta=0$ outside $B\left(x_{0}, r_{2}\right)$ for $r_{1}<r_{2}$. We then obtain
$(2 m-1) \int a \nabla u \cdot \nabla u u^{2 m-2} \eta^{2}=(2 m-1) \int F \cdot \nabla u u^{2 m-2} \eta^{2}+2 \int a \nabla u \cdot \nabla \eta u^{2 m-1} \eta+2 \int F \cdot \nabla \eta u^{2 m-1} \eta$.
Applying suitable young inequalities we do have

$$
\int a \nabla u \cdot \nabla \eta u^{2 m-1} \eta \leq \frac{1}{4} \int a \nabla u \cdot \nabla u u^{2 m-2} \eta^{2}+\int a \nabla \eta \nabla \eta u^{2}
$$

as well as

$$
\int F \cdot \nabla u u^{2 m-2} \eta^{2} \leq \int|F|^{2} u^{2 m-2} \eta^{2}+\frac{1}{4} \int|\nabla u|^{2} u^{2 m-2} \eta^{2} .
$$

and

$$
\int F \cdot \nabla \eta u^{2 m-1} \eta \leq \frac{1}{2} \int|F|^{2} u^{2 m-2} \eta^{2}+\frac{1}{2} \int|\nabla \eta|^{2} u^{2 m} .
$$

This allows to obtain an inequality of the form

$$
\int\left|\nabla\left(u^{m}\right)\right|^{2} \eta^{2}=m^{2} \int u^{2 m-2}|\nabla u|^{2} \eta^{2} \leq C(m) \int|F|^{2} u^{2 m-2} \eta^{2}+C(m) \int|\nabla \eta|^{2} u^{2 m},
$$

where $C(m)$ is a constant polynomially depending on m. We then choose η so that $|\nabla \eta| \leq C /\left(r_{2}-r_{1}\right)$ and obtain

$$
\int_{B\left(x_{0}, r_{1}\right)}\left|\nabla\left(u^{m}\right)\right|^{2} \leq \frac{C(m)}{\left(r_{2}-r_{1}\right)^{2}} \int_{B\left(x_{0}, r_{2}\right)}\left(r_{2}-r_{1}\right)^{2}|F|^{2} u^{2 m-2}+u^{2 m} .
$$

The iterations will be the same as in Moser's method, choosing $r_{1}=R_{k+1}$ and $r_{2}=R_{k}$ and $R_{k}:=$ $R\left(1+2^{-k}\right)$. This allows to write

$$
\int_{B\left(x_{0}, R_{k}\right)}\left|\nabla\left(u^{m}\right)\right|^{2} \leq \frac{C(m) 4^{k}}{R^{2}} \int_{B\left(x_{0}, R_{k}\right)} R^{2}|F|^{2} u^{2 m-2}+u^{2 m} ;
$$

note that this inequality is far from being sharp, since we estimated the coefficient $\left(r_{2}-r_{1}\right)^{2}$ in front of $|F|^{2}$ by R^{2}, while we could have written $4^{-k} R^{2}$.
The idea now is to use the L^{2} norm of the gradient on the left hand side to estimate an L^{p} norm of u^{m} for $p>2$, but we have to handle the term involving F. The easiest solution is to consider $v:=\max \left\{|u|,\left.R| | F\right|_{L^{\infty}}\right\}$, a function which satisfies $\left|\nabla\left(v^{m}\right)\right| \leq\left|\nabla\left(u^{m}\right)\right|$ and $R|F|,|u| \leq v$. We then have

$$
\int_{B\left(x_{0}, R_{k}\right)}\left|\nabla\left(v^{m}\right)\right|^{2} \leq \frac{C(m) 4^{k}}{R^{2}} \int_{B\left(x_{0}, R_{k}\right)} v^{2 m}
$$

We then apply standard Moser iterations, for which we use a sequence m_{k} of exponents, with $m_{k}=\beta^{k}$, $\beta \in\left(1, \frac{2^{*}}{2}\right)$, so that the term $C(m) 4^{k}$ can be replaced by another exponential term c^{k} for a constant $c>1$ depending on β. We then obtain

$$
\|v\|_{L^{\infty}\left(B\left(x_{0}, R\right)\right.} \leq C\left(f_{B\left(x_{0}, 2 R\right)}|v|^{2}\right)^{1 / 2} \leq C\left(f_{B\left(x_{0}, 2 R\right)}|u|^{2}\right)^{1 / 2}+R\|F\|_{L^{\infty}}
$$

from which the claim follows.

References

[1] J. Moser A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations. Communications on Pure and Applied Mathematics 13.3 (1960): 457-468.

