Calculus of Variations and Elliptic Equations

9th class

Γ-convergence

Let us fix a metric space (X, d). Given a sequence of functionals $F_{n}: X \rightarrow \mathbb{R} \cup\{+\infty\}$ we define their Γ-liminf and their Γ-limsup as two other functionals on X, in the following way.
$\left(\Gamma-\liminf F_{n}\right)(x):=\inf \left\{\liminf _{n} F_{n}\left(x_{n}\right): x_{n} \rightarrow x\right\}, \quad\left(\Gamma-\limsup F_{n}\right)(x):=\inf \left\{\limsup _{n} F_{n}\left(x_{n}\right): x_{n} \rightarrow x\right\}$.
We say that $F_{n} \Gamma$-converges to F, and we write $F_{n} \xrightarrow{\Gamma} F$, if $\left(\Gamma-\lim \inf F_{n}\right)=\left(\Gamma-\lim \sup F_{n}\right)=F$. Very often we will write F^{-}instead of $\Gamma-\liminf F_{n}$ and F^{+}instead of $\Gamma-\limsup F_{n}$.
In practive, proving $F_{n} \xrightarrow{\Gamma} F$ requires to prove two facts:

- (Γ-liminf inequality): we need to prove $F^{-} \geq F$, i.e. we need to prove $\lim \inf _{n} F_{n}\left(x_{n}\right) \geq F(x)$ for any approximating sequence $x_{n} \rightarrow x$; of course it is sufficient to prove it when $F_{n}\left(x_{n}\right)$ is bounded;
- (Γ-limsup inequality): we need to prove $F^{+} \leq F$, i.e. we need to find, for every x, a sequence $x_{n} \rightarrow x$ such that $\lim \sup _{n} F_{n}\left(x_{n}\right) \leq F(x)$ or at least, for every $\varepsilon>0$, find a sequence with $\lim \sup _{n} F_{n}\left(x_{n}\right) \leq F(x)+\varepsilon$. We will see later that this inequality can be restricted to suitable dense subsets. In any cases it can be obviously restricted to the set $\{F<+\infty\}$, otherwise the inequality is trivial.

We will prove the following propositions
Among the properties of Γ-convergence we have the following:

- if there exists a compact set $K \subset X$ such that $\inf _{X} F_{n}=\inf _{K} F_{n}$ for any n, then F attains its minimum and $\inf F_{n} \rightarrow \min F$;
- if $\left(x_{n}\right)_{n}$ is a sequence of minimizers for F_{n} admitting a subsequence converging to x, then x minimizes F
- if F_{n} is a sequence Γ-converging to F, then $F_{n}+G$ will Γ-converge to $F+G$ for any continuous function $G: X \rightarrow \mathbb{R} \cup\{+\infty\}$.

Proposition 1. If $F_{n} \xrightarrow{\Gamma} F$ then for every subsequence we still have $F_{n_{k}} \xrightarrow{\Gamma} F$.
Proof. Let us take a sequence $x_{n_{k}} \rightarrow x$ corresponding to the indices of this subsequence and let us complete it to a full sequence using $x_{n}=x$ for all the other indices. We have

$$
\liminf _{k} F_{n_{k}}\left(x_{n_{k}}\right) \geq \liminf _{n} F_{n}\left(x_{n}\right) \geq\left(\Gamma-\liminf F_{n}\right)(x)
$$

which proves that the Γ-liminf of the subsequence is larger than that of the full sequence.
For the Γ-limsup, let us take a recovery sequence $x_{n} \rightarrow x$ for the full sequence. We then have

$$
\limsup _{k} F_{n_{k}}\left(x_{n_{k}}\right) \leq \lim \sup F_{n}\left(x_{n}\right) \leq\left(\Gamma-\lim \sup F_{n}\right)(x)+\varepsilon
$$

thus proving $\left(\Gamma-\lim \sup F_{n_{k}}\right) \leq\left(\Gamma-\limsup F_{n}\right)+\varepsilon$.
this proves that passing to a subsequence increases the Γ-liminf and reduces the Γ-limsup, but when they coincide they cannot change, thus proving the claim.

Proposition 2. Both F^{-}and F^{+}are lsc functionals.
Proof. Let us take $x \in X$ and a sequence $x_{k} \rightarrow x$ as in the statement. We want to prove the semicontinuity of F^{-}. For each k there is a sequence $x_{n, k}$ such that $\lim _{n} x_{n, k}=x_{k}$ and $\lim \inf _{n} F_{n}\left(x_{n, k}\right)<F^{-}\left(x_{k}\right)+2^{-k}$. We can hence choose $n=n(k)$ arbitrarily large such that $d\left(x_{n, k}, x_{k}\right)<2^{-} k$ and $F_{n}\left(x_{n, k}\right)<F^{-}\left(x_{k}\right)+$ 2^{-k+1}. We can assume $n(k+1)>n(k)$ which means that the sets of indices n that we use defines a subsequence. Consider a sequence \tilde{x}_{n} defined as

$$
\tilde{x}_{n}= \begin{cases}x_{n, k} & \text { if } n=n(k) \\ x & \text { if } n \neq n(k) \text { for all } k\end{cases}
$$

We have $\lim _{n} \tilde{x}_{n}=x$ and

$$
F^{-}(x) \leq \liminf _{n} F_{n}\left(\tilde{x}_{n}\right) \leq \underset{k}{\lim \inf } F_{n(k)}\left(x_{n(k), k}\right) \leq \liminf F^{-}\left(x_{k}\right)
$$

which proves that F^{-}is lsc.
We want to prove the semicontinuity of F^{+}. We can assume, up to subsequences, that $\lim F^{-}\left(x_{k}\right)$ exists. For each k there is a sequence $x_{n, k}$ such that $\lim _{n} x_{n, k}=x_{k}$ and $\lim \sup _{n} F_{n}\left(x_{n, k}\right)<F^{+}\left(x_{k}\right)+2^{-k}$. This means that we can hence choose $n=n(k)$ such that for every $n \geq n(k)$ we have $d\left(x_{n, k}, x_{k}\right)<2^{-} k$ and $F_{n}\left(x_{n, k}\right)<F^{+}\left(x_{k}\right)+2^{-k+1}$. We can choose the sequence $n(k)$ such that $n(k+1)>n(k)$. We now define a sequence \tilde{x}_{n} defined as

$$
\tilde{x}_{n}=x_{n, k} \text { if } n(k) \leq n<n(k+1) .
$$

We have $\lim _{n} \tilde{x}_{n}=x$ and

$$
F^{+}(x) \leq \limsup _{n} F_{n}\left(\tilde{x}_{n}\right) \leq \lim _{k} F^{+}\left(x_{k}\right)
$$

which proves that F^{+}is lsc.

Proposition 3. If $F^{+} \leq F$ on a set D with the following property: for every $x \in X$ there is a sequence $x_{n} \rightarrow x$ contained in D and such that $F\left(x_{n}\right) \rightarrow F(x)$, then $F^{+} \leq F$ on X.

Proof. Let us take $x \in X$ and a sequence $x_{n} \rightarrow x$ as in the statement. We then write $F^{+}\left(x_{n}\right) \leq F\left(x_{n}\right)$ and pass to the limit, using the semicontinuity of F^{+}and the assumption $F\left(x_{n}\right) \rightarrow F(x)$. This provides $F^{+}(x) \leq F(x)$, as required.

Proposition 4. If $F_{n} \xrightarrow{\Gamma} F$ and there exists a compact set $K \subset X$ such that $\inf _{X} F_{n}=\inf _{K} F_{n}$ for any n, then F attains its minimum and $\inf F_{n} \rightarrow \min F$;

Proof. Let us first prove $\lim \inf _{n} \inf F_{n} \geq \inf F$. Up to extracting a subsequence, we can suppose that this liminf is a limit, and Γ-convergence is preserved. Now, take $x_{n} \in K$ such that $F_{n}\left(x_{n}\right) \leq \inf F_{n}+\frac{1}{n}$. Extract a subsequence $x_{n_{k}} \rightarrow x_{0}$ and look at the sequence of functionals $F_{n_{k}}$ whoch also Γ-converge to F. We then have $\inf F \leq F\left(x_{0}\right) \leq \liminf F_{n_{k}}\left(x_{n_{k}}\right)=\liminf \inf F_{n}$.
Take now a point x, and $\varepsilon>0$. There exists $x_{\rightarrow} x$ such that $\lim \sup F_{n}\left(x_{n}\right) \leq F(x)+\varepsilon$. In particular, $\limsup \inf F_{n} \leq F(x)+\varepsilon$ and, $\varepsilon>0$ and $x \in X$ being arbitrary, we get $\lim \sup \inf F_{n} \leq \inf F$.

We then have

$$
\limsup \inf F_{n} \leq \inf F \leq F\left(x_{0}\right) \leq \liminf \inf F_{n} \leq \limsup \inf F_{n}
$$

Hence, all inequalities are equalities, which proves at the same $\inf F_{n} \rightarrow \inf F$ and $\inf F=F\left(x_{0}\right)$, i.e. the min is attained by x_{0}.

Proposition 5. If $F_{n} \xrightarrow{\Gamma} F$ and $x_{n} \in \operatorname{argmin} F_{n}$ and $x_{n} \rightarrow x$, then $x \in \operatorname{argmin} F$.

Proof. First notice that $\bigcup_{n}\left\{x_{n}\right\} \cup\{x\}$ is a compact set on which all the functionals F_{n} attain their minimum, so we can apply the previous proposition and get $\inf F_{n} \rightarrow \inf F$. We then apply the Γ-liminf property to this sequence, thus obtaining

$$
F(x) \leq \liminf F_{n}\left(x_{n}\right)=\liminf \inf F_{n}=\inf F
$$

which proves at the same time $x \in \operatorname{argmin} F$ and $\operatorname{argmin} F \neq \emptyset$.
Proposition 6. If $F_{n} \xrightarrow{\Gamma} F$, then $F_{n}+G \stackrel{\Gamma}{\rightarrow} F+G$ for any continuous function $G: X \rightarrow \mathbb{R} \cup\{+\infty\}$.
Proof. To prove the Γ-liminf inequality, take $x_{n} \rightarrow x$: we have $\liminf \left(F_{n}\left(x_{n}\right)+G\left(x_{n}\right)\right)=\left(\lim \inf F_{n}\left(x_{n}\right)\right)+$ $G(x) \geq F(x)+G(x)$. To prove the Γ-limisupinequality, the same recovery sequence $x_{n} \rightarrow x$:can be used: indeed, $\lim \sup \left(F_{n}\left(x_{n}\right)+G\left(x_{n}\right)\right)=\left(\limsup F_{n}\left(x_{n}\right)\right)+G(x) \leq F(x)+\varepsilon+G(x)$.

We then consider some examples
Example 1 Consider $X=L^{2}(\Omega)$ and some functions $f_{n} \in L^{2}(\Omega)$. Consider

$$
F_{n}(u):= \begin{cases}\int \frac{1}{p}|\nabla u|^{p}+f_{n} u & \text { if } u \in W_{0}^{1, p}(\Omega) \\ +\infty & \text { if not. }\end{cases}
$$

Suppose $f_{n} \rightharpoonup f$. Then we have $F_{n} \stackrel{\Gamma}{\rightarrow} F$ where F is defined by replacing f_{n} with f.
This can be proven in the following way. For the Γ-liminf inequality, suppose $u_{n} \rightarrow u$ in L^{2} and $F_{n}\left(u_{n}\right) \leq$ C. Using the L^{2} bounds on u_{n} and f_{n} we see that the $W^{1, p}$ norm of u_{n} is bounded, so that we can assume $\nabla u_{n} \rightharpoonup \nabla u$ in L^{p} and, by semicontinuity $\int \frac{1}{p}|\nabla u|^{p} \leq \lim \inf \int \frac{1}{p}\left|\nabla u_{n}\right|^{p}$. In thaw concerns the second part of the integral we have $\int f_{n} u_{n} \rightarrow \int f u$ since we have weak convergence of f_{n} and strong of u_{n}. We then obtain $\lim \inf F_{n}\left(u_{n}\right) \geq F(u)$. For the Γ-limsup inequality it is enough to choose u with $F(u)<+\infty$ and take $u_{n}=u$.
This Γ-convergence result implies the convergence of the minimizers as soon as they are compact for the L^{2} strong convergence. This is true for $p \geq \frac{2 d}{d-2}$ so that $W^{1, p}$ compactly embeds into L^{2}. We then deduce the L^{2} convergence of the solutions u_{n} of $\Delta_{p} u_{n}=f_{n}$ to the solution of $\Delta_{p} u=f$. Note that the linear case $p=2$ could be easy studied by bounding the norm $\left\|u_{n}-u\right\|_{H^{1}}$ in termes of $\left\|f_{n}-f\right\|_{H^{-1}}$ (which tends to 0 since L^{2} compactly embeds into H^{-1}) but the situation is more complicated in the non-linear case and Γ-convergence is a useful tool.
As a last remark, we observe that for $p \geq \frac{2 d}{d-2}$ the choice of the strong L^{2} convergence to establish the Γ-convergence is irrelevant. We could have for instance chosen the weak L^{2} convergence and deduce the strong L^{2} convergence in the Γ-liminf inequality from the $W^{1, p}$ bound. We could have chosen other norms, but in this case it would have been necessary to first obtain a bound on $\left\|u_{n}\right\|_{W^{1, p}}$.
Example 2 We now consider a more surprising example. We consider a sequence of functions $a_{n}:[0,1] \rightarrow$ \mathbb{R} such that $\lambda \leq a_{n} \leq \Lambda$ for two strictly positive constants λ, Λ. We then define a functional on $L^{2}([0,1])$ via

$$
F_{n}(u):= \begin{cases}\int_{0}^{1} a_{n}(x) \frac{\left|u^{\prime}(x)\right|^{2}}{2} d x & \text { if } u \in W^{1,2}, u(1)=0 \\ +\infty & \text { if not. }\end{cases}
$$

We now wonder what could be the Γ-limit of F_{n}. A natural guess is to suppose, up to subsequences, that we have $a_{n} \rightharpoonup a$ (weak-* convergence in L^{∞}) and hope to prove that the functional where we replace a_{n} with a is the Γ-limit. If this was true, then we would also have Γ-convergence should we add $\int f u$ to the functional, for fixed $f \in L^{2}$, and convergence of the minimizers. The minimizers u_{n} would be characterized by $\left(a_{n} u_{n}^{\prime}\right)^{\prime}=f$ with a transversality condition $u_{n}^{\prime}(0)=0$, so that we have $a_{n}(x) u_{n}^{\prime}(x)=\int_{0}^{x} f(t) d t$ and hence $u_{n}^{\prime}(x)=\left(a_{n}(x)\right)^{-1} \int_{0}^{x} f(t) d t$. We then see that the weak convergence of a_{n} is not the good assumption, but we should rather require $a_{n}^{-1} \rightharpoonup a^{-1}!!$

We can now prove the following. Suppose that a_{n} is such that $a_{n}^{-1} \rightharpoonup a^{-1}$, then $F_{n} \xrightarrow{\Gamma} F$, where F is defined as F_{n} by replacing a_{n} with a.
To prove the Γ-liminf inequality, we write $F_{n}(u)=\int L\left(u_{n}^{\prime},{ }_{n}^{1}\right) d x$, where $L: \mathbb{R} \times \mathbb{R}_{+}$is given by $L(v, s)=$ $\frac{|v|^{2}}{2 s}$. We take a sequence $u_{n} \rightarrow u$ with $F_{n}\left(u_{n}\right) \leq C$. This boiund implies that u_{n} is bounded in H^{1} and then $u_{n}^{\prime} \rightharpoonup u^{\prime}$ in L^{2}. We can easily check that L is a convex function of two variables, for instance by computing its Hessiand, which is given by

$$
D^{2} L(v, s)=\left(\begin{array}{cc}
\frac{1}{s} & -\frac{v}{s^{2}} \\
\frac{v}{s^{2}} & \frac{|v|^{2}}{s^{3}}
\end{array}\right) \geq 0 .
$$

Hence, by semicontinuity, we deduce from $a_{n}^{-1} \rightharpoonup a^{-1}$ and $u_{n}^{\prime} \rightharpoonup u^{\prime}$ that we have $\lim \inf F_{n}\left(u_{n}\right) \geq F(u)$.
To prove the Γ-limsup inequality, given u with $F(u)<+\infty$ (i.e. $u \in H^{1}$), we define u_{n} via $u_{n}^{\prime}=\frac{a}{a_{n}} u^{\prime}$ and $u_{n}(1)=0$. We see that u_{n}^{\prime} is bounded in L^{2} and hence $u_{n}^{\prime} \rightharpoonup v$. Integrating against a test function ans using $a_{n}^{-1} \rightharpoonup a^{-1}$ we see $v=\frac{a}{a} u^{\prime}=u^{\prime}$, so that we have $u_{n}^{\prime} \rightharpoonup u^{\prime}$ and, thanks to the final value $u_{n}(1)=u(1)=0$, we deduce weak convergence of u_{n} to u in H^{1}, and strong in L^{2}. We then have

$$
F_{n}\left(u_{n}\right)=\int \frac{1}{2} a_{n} u_{n}^{\prime} \cdot u_{n}^{\prime}=\int \frac{1}{2} a u^{\prime} \cdot u_{n}^{\prime} \rightarrow \int \frac{1}{2} a u^{\prime} \cdot u^{\prime}=F(u),
$$

which proves the Γ-limsup inequality.

