Calculus of Variations - Homework

Try to do it in $3 \mathrm{~h} \max$; all kind of paper documents (notes, books...) are authorized.

Exercice 1 (7 points). Consider the problem

$$
\min \left\{\int_{0}^{L} e^{-t}\left(u^{\prime}(t)^{2}+5 u(t)^{2}\right) d t \quad: \quad u \in C^{1}([0, L]), u(0)=1\right\} .
$$

Prove that it admits a minimizer, that it is unique, find it, compute the value of the minimum, and the limit of the minimizer (in which sense?) and of the minimal value as $L \rightarrow+\infty$.
Exercice 2 (7 points). Consider the functional $F: H^{1}([0, L]) \rightarrow \mathbb{R}$ defined through

$$
F(u)=\int_{0}^{L}\left(u^{\prime}(t)^{2}+\arctan (u(t)-t)\right) d t .
$$

Prove that

1. the problem $(P):=\min \left\{F(u): u \in H^{1}([0, L])\right\}$ has no solution;
2. the problem $\left(P_{a}\right):=\min \left\{F(u): u \in H^{1}([0, L]), u(0)=a\right\}$ admits a solution for every $a \in \mathbb{R}$;
3. we have $F(-|u|) \leq F(u)$;
4. the solution of $\left(P_{a}\right)$ is unique as soon as $a \leq 0$;
5. there exists $L_{0}<+\infty$ such that for every $L \leq L_{0}$ the solution of $\left(P_{a}\right)$ is unique for every $a \in \mathbb{R}$
6. the minimizers of (P) and $\left(P_{a}\right)$ are C^{∞} functions.

Exercice 3 (7 points). Given a bounded, smooth and connected domain $\Omega \subset \mathbb{R}^{d}$, and $f \in L^{2}(\Omega)$, set $X(\Omega)=\left\{v \in L^{2}\left(\Omega ; \mathbb{R}^{d}\right): \nabla \cdot v \in L^{2}(\Omega)\right\}$ and consider the minimization problems

$$
\begin{aligned}
(P) & :=\min \left\{F(u):=\int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}+\frac{1}{2}|u|^{2}+f(x) u\right) d x: u \in H^{1}(\Omega)\right\} \\
(D) & :=\min \left\{G(v):=\int_{\Omega}\left(\frac{1}{2}|v|^{2}+\frac{1}{2}|\nabla \cdot v-f|^{2}\right) d x: v \in X(\Omega)\right\},
\end{aligned}
$$

1. Prove that (P) admits a unique solution;
2. Prove $\min (P)+\inf (D) \geq 0$;
3. Prove that there exist $v \in X(\Omega)$ and $u \in H^{1}(\Omega)$ such that $F(u)+G(v)=0$;
4. Deduce that $\min (D)$ is attained and $\min (P)+\inf (D)=0$;
5. Justify by a formal inf-sup exchange the duality $\min F(u)=\sup -G(v)$;
6. Prove that the solution of (D) belongs indeed to $H^{1}\left(\Omega ; \mathbb{R}^{d}\right)$.

Exercice 4 (5 points). Given a bounded, smooth and connected domain $\Omega \subset \mathbb{R}^{3}$, an exponent p with $2<p<6$, and a function $f \in L^{r}(\Omega)$ consider the minimization problem

$$
\min \left\{\int_{\Omega}\left(\sqrt{1+|\nabla u|^{p}}+\frac{|\nabla u|}{1+u^{2}}+f(x) u\right) d x: u \in W_{0}^{1, q}(\Omega)\right\} .
$$

Prove that (P) admits a solution for $q \leq p / 2$ and $r \geq 3 p /(4 p-6)$ and write the Euler-Lagrange equation satisfied by the minimizer. Prove that this solution also satisfies

$$
\int_{\Omega}\left(\frac{p}{2} \frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{p}}}+\frac{\left(1-u^{2}\right)|\nabla u|}{\left(1+u^{2}\right)^{2}}+f(x) u\right) d x=0 .
$$

Exercice 5 (4 points). Let Ω be the d-dimensional flat torus (just to avoid boundary conditions, think at a cube), λ a given real number, and $u \in H^{1}(\Omega)$ a solution of

$$
\Delta u=\sqrt{1+|\nabla u|^{2}}+\lambda u
$$

1. Prove that u is necessarily a C^{∞} function.
2. Prove that there is no such a solution for $\lambda=0$.
3. Prove that, if $\lambda>0$, the only solution of this equation is $u=-\lambda^{-1}$.
