Calculus of Variations and Elliptic PDEs

Mid-Term Examination

All kind of documents (notes, books. . .) are authorized, but you cannot collaborate with anyone else. The total number of points is much larger than 20, which means that attacking two or three exercises could be a reasonable option.

Exercice 1 (7 points). Find the minimal value of the following variational problem

$$
\min \left\{\int_{0}^{1} e^{t}\left(u^{\prime}(t)^{2}+2 u(t)^{2}+4 u(t)\right) d t \quad: \quad u \in C^{1}([0,1]), u(0)=0\right\} .
$$

Solution :

The integrand $L(t, u, v):=e^{t}\left(|v|^{2}+2|u|^{2}+4 u\right)$ is convex in u and v, hence any solution to the E-L equation with the suitable boundary condition is a minimizer. Since we have $\partial_{v} L=2 e^{t} v, \partial_{u} L=$ $4 e^{t}(u+1)$ the equation to be solved is

$$
\left\{\begin{array}{l}
\left(2 e^{t} u^{\prime}(t)\right)^{\prime}=4 e^{t}(u(t)+1) \\
u(0)=0 \\
2 e^{1} u^{\prime}(1)=0
\end{array}\right.
$$

the first equation can be re-written as $2 u^{\prime \prime}+2 u^{\prime}=4 u+4$, i.e. $u^{\prime \prime}+u^{\prime}-2 u-2=0$. The function $u+1$ must be of the form $A e^{t}+B e^{-2 t}$. The boundary conditions impose $A+B=1$ and $A e-2 B e^{-2}=0$, hence $A=\frac{2}{e^{3}+2}, B=\frac{e^{3}}{e^{3}+2}$. The solution of the minimization problem is hence

$$
u(t)=\frac{2}{e^{3}+2} e^{t}+\frac{e^{3}}{e^{3}+2} e^{-2 t}-1 .
$$

We can re-write the quantity

$$
\int_{0}^{1} e^{t}\left|u^{\prime}(t)\right|^{2} d t=-\int_{0}^{1}\left(e^{t} u^{\prime}(t)\right)^{\prime} u(t) d t
$$

thanks to an integration by parts and without boundary terms because of the boundary conditions. Using the equation we get

$$
\int_{0}^{1} e^{t}\left(u^{\prime}(t)^{2}+2 u(t)^{2}+4 u(t)\right) d t=\int_{0}^{1}\left(-4 e^{t}(u(t)+1) u(t)+2 u(t)^{2}+4 u(t)\right) d t=-2 \int_{0}^{1} e^{t} u(t)^{2} d t .
$$

Then we must compute the integral, which I won't do :-).
Exercice 2 (6 points). Let Ω be a bounded, open, and connected subset of \mathbb{R}^{d} and $f: \Omega \rightarrow \mathbb{R}$ a given L^{1} function. Prove that the following minimization problem admits a solution

$$
\min \left\{\int_{\Omega} \sqrt{(1+|u|)\left(1+|v|^{2}\right)}+\sqrt{1+|\nabla u|^{3}}+\sqrt{1+|v|^{6}}: u \in W^{1,1}(\Omega), v \in L^{1}(\Omega), u v \geq f\right\} .
$$

Solution :

Take a minimizing sequence $\left(u_{n}, v_{n}\right)$. We see that v_{n} is bounded in L^{3} and $\left|\nabla u_{n}\right|$ in $L^{3 / 2}$. Moreover, $\int \sqrt{1+\left|u_{n}\right|}$ is also bounded. Set $m_{n}=\frac{1}{|\Omega|} \int u_{n}$ the average of u_{n}. Since the function $s \mapsto \sqrt{1+|s|}$ is Lipschitz continuous, we also have a bound from above on $\int \sqrt{1+\left|m_{n}\right|}-C \int\left|u_{n}-m_{n}\right|$. Thanks to a Poincaré-Wirtinger inequality, $\left\|u_{n}-m_{n}\right\|_{L^{1}} \leq C\left\|u_{n}-m_{n}\right\|_{L^{3 / 2}} \leq C\left\|\nabla u_{n}\right\|_{L^{3 / 2}}$, hence this term is bounded. We obtain a bound on $\int \sqrt{1+\left|m_{n}\right|}=|\Omega| \sqrt{1+\left|m_{n}\right|}$, hence on m_{n}. Then, u_{n} is bounded in $W^{1,3 / 2}$ (before we only had a bound on the gradient, now we obtain a bound on the full norm in the Sobolev space). We can then extract a subsequence where v_{n} weakly converges in L^{3} to v and u_{n} weakly converges in $W^{1,3 / 2}$ to u (and hence strongly in $L^{3 / 2}$).
The integrand in convex in v and ∇u (the terms which converge weakly) and continuous in u (which converges strongly). Then, the functional is lower semicontinuous for this convergence. The constraint $u v \geq f$ can be written as "for every $\varphi \geq 0$ we have $\int u v \varphi \geq \int f \varphi$ and passes to the limit since we have $u_{n} \rightarrow u$ strongly in $L^{3 / 2}$ and $v_{n} \rightharpoonup v$ weakly in L^{3} and these two spaces are in duality. The pair (u, v) is a minimizer.
Exercice 3 (6 points). Let $\Omega=\mathbb{T}^{d}$ be the d-dimensional torus and $f \in H^{1}(\Omega)$ a given function with zero mean. Consider the function $H: \mathbb{R}^{d} \rightarrow \mathbb{R}$ given by $H(z):=\sqrt{1+|z|^{4}}$ and the variational problem

$$
\min \left\{\int_{\Omega} H^{*}(v): v \in L^{2}(\Omega), \nabla \cdot v=f\right\}
$$

Prove that it admits a unique minimizer v_{0} and that we have $v_{0} \in H^{1}(\Omega)$.

Solution :

We can compute the gradient and the Hessian of H :

$$
\nabla H(z)=\frac{2|z|^{2} z}{H(z)}, D^{2} H(z)=\frac{4 z \otimes z}{H(z)}+\frac{2|z|^{2} I}{H(z)}-\frac{2|z|^{2} z}{H^{2}(z)} \otimes \nabla H(z)=\frac{4 z \otimes z+2|z|^{2} I}{H(z)}-\frac{4|z|^{4} z \otimes z}{H^{3}(z)}
$$

Using $H(z) \geq|z|^{2}$ we see that $D^{2} H$ is bounded, hence H is $C^{1,1}$. We can also see that it is convex, since the Hessian cn be re-written as

$$
D^{2} H(z)=z \otimes z \frac{4 H^{2}-4|z|^{4}}{H^{3}(z)}+2 \frac{|z|^{2} I}{H(z)}
$$

which is positive definite since, again, $H(z) \geq|z|^{2}$.
Hence, H^{*} is an elliptic function (i.e. $D^{2} H^{*}$ is bounded from below by a positive constant times the identity matrix I). In particula it is strictly convex, which proves the uniqueness of the minimizer. Since H^{*} is elliptic, we also have $H^{*}(v) \geq c|v|^{2}-C$, which allows to obtain an L^{2} bound on any minimizing sequence v_{n}. If we extract a weakly converging subsequence, the limit will be a minimizer since it satisfies the constraint (which passes to the limit for weak convergence, tested against H^{1} test functions) and the functional is l.s.c. because of the convexity of H^{*}.
For the regularity, we use the ellipticity of H^{*} to write

$$
H(w)+H(v) \geq w \cdot v+c|v-\nabla H(w)|^{2}
$$

The duality theory we developed, using $f \in H^{1}$, hence provides $v=\nabla H(\nabla u) \in H^{1}$ (where u is the solution of the dual problem to this one).

Exercice 4 (9 points). Let $\Omega=[0,1]^{d}$ be the unit cube in \mathbb{R}^{d} and $f: \Omega \rightarrow \mathbb{R}$ a given L^{∞} function. Consider the following minimization problem

$$
\min \left\{\int_{\Omega} \frac{1}{2}|\nabla u|^{2}+u\left(u^{3}+f\right): u \in H^{1}(\Omega)\right\}
$$

1. Prove that it admits a unique minimizer u_{0}.
2. In dimension $d=1,2,3$, prove that we have $u_{0} \in W^{2, p}(\Omega)$ for every $p<\infty$.
3. In higher dimension, prove $u_{0} \in W^{2, \frac{4}{3}}$.
4. Supposing $d \leq 3$ and $f \in W^{1, \infty}(\Omega)$, also prove $u_{0} \in W^{3, p}(\Omega)$ for every $p<\infty$.
5. In higher dimension and still supposing $f \in W^{1, \infty}(\Omega)$, prove $u_{0} \in W^{3, r}(\Omega)$ for $r=4 d /(3 d-4)$.

Note that the required regularity results in this exercise are meant to be global in Ω and not only local.

Solution :

1. The integrand is strictly convex in u and in ∇u, which provides uniqueness of a possible minimizer. Calling J the functional to be minimized, we have

$$
J(u) \geq c\|\nabla u\|_{L^{2}}^{2}+\|u\|_{L^{4}}^{4}-c\|u\|_{L^{4}},
$$

which provides at the same time a bound on $\left\|\nabla u_{n}\right\|_{L^{2}}$ and $\left\|u_{n}\right\|_{L^{4}}$ for any minimizing sequence u_{n}. The sequence u_{n} is then bounded in H^{1} and we can extract a weakly converging subsequence. The functional is obviously l.s.c. for this convergence.
2. The minimizer u_{0} solves the Euler-Lagrange equation $\Delta u_{0}=4 u_{0}^{3}+f$ with Neumann boundary conditions. By reflection (and without changing the signs of the functions u_{0} or f, we can assume that the same equation is solved on the the whole space, and that we only look at the restriction to the cube. In dimension $d=1,2$ we have $u_{0} \in H^{1}$ whch implies that it belongs to any L^{p} space. The same is true for $4 u_{0}^{3}+f$ so the Calderon-Zygmund regularity result provides $u_{0} \in W^{2, p}$. The case of dimension 3 is trickier. In this case we have $u_{0} \in L^{6}$, if we use the Sobolev injection (we also know $u_{0} \in L^{4}$ but L^{6} is better). We know $4 u_{0}^{3}+f \in L^{2}$ since $u_{0} \in L^{6}$ and we deduce $u_{\in} W^{2,2} \subset W^{1,6} \subset L^{\infty}$. Hence, the right-hand side of the equation is in all the L^{p} spaces, and we deduce again $u_{0} \in W^{2, p}$ for every p.
3. In higher dimension, it is better to use $u_{0} \in L^{4}$ than the Sobolev injection (the result is the same for $d=4$). This provides $4 u_{0}^{3}+f \in L^{4 / 3}$ and $u_{0} \in W^{2,4 / 3}$. Unofrtunately, the Sobolev injection does not improve the summability of u_{0} and we should stop here.
4. Supposing $d \leq 3$ we now know $u_{0} \in W^{2, p}$ for every p. We can differentiate the equation, and write the equation for $v=\partial_{i} u$. The equation is $\Delta v=12 u_{0}^{2} v+\partial_{i} f$. It is satisfied on the whole space because of the reflection trick, and luckily the reflection does not destroy the property $f \in W^{1, \infty}$. By assumption, $\partial_{i} f$ is L^{∞}. Moreover, $u_{0} \in W^{2, p}$ implies u_{0} bounded and $v \in W^{1, p}$, so that v is also bounded (using $p>d$). Hence the right hand side is bounded and we obtain $v \in W^{2, p}$ for every p, i.e. $u_{0} \in W^{3, p}(\Omega)$ for every $p<\infty$.
5. In higher dimension the strategy is the same, and the only missing point is to prove $u_{0}^{2} v \in L^{r}$. This is unfortunately quite difficult, since we do have $v \in L^{r}$ (using $u \in W^{2,4 / 3}$ which gives $\left.v \in W^{1,4 / 3} \subset L^{r}\right)$, but we do not have yet $u_{0} \in L^{\infty}$. Even worse, even in the simplest case $d=4$, we have $u_{0} \in L^{4}$ and $r=2$, i.e. the term $u_{0}^{2} v$ is only in L^{1} and we cannot apply any elliptic regulairty theory. We should definitely obtain $u_{0} \in L^{\infty}$ in another way. This is possible (and could actually allow to improve the previous results for $d \geq 4$) using a truncation argument. Let M be a constant such that $4 M^{3}+|f(x)|>0$ for every $x\left(M\right.$ exists since $\left.f \in L^{\infty}\right)$.
We can see that $u_{M}:=\min \{u, M\}$ is a better competitor than u, i.e. $J\left(u_{M}\right) \leq J(u)$. Indeed, the truncation reduces the gradient part of J, and we have

$$
\left(u(x)^{4}+u(x) f(x)\right)-\left(u_{M}(x)^{4}+u_{M}(x) f(x)\right)=\alpha(x)\left(u(x)-u_{M}(x)\right)
$$

where $\alpha(x)$ is the derivative of $s \mapsto s^{4}+s f(x)$ computed at a certain value $s \in\left(u_{M}(x), u(x)\right)$, in particular, unless $u_{M}(x)=u(x)$, we have $s \geq M$ and $\alpha>0$, which proves that the integral decreases when passing from u to u_{M}. By uniqueness of the minimizer, this shows $u_{0} \leq M$. A similar argument with $\max \{u,-M\}$ also shows $u_{0} \geq-M$ and $u_{0} \in L^{\infty}$.
Actually, this argument shows $u_{0} \in W^{2, p}$ for every p and every d, and (with the assumption $\left.f \in W^{1, \infty}\right), u_{0} \in W^{3, p}$ for every p and every d.

