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Calculus of Variations and Elliptic PDEs
–

Mid-Term Examination
–

All kind of documents (notes, books. . . ) are authorized, but you cannot collaborate with anyone
else. The total number of points is much larger than 20, which means that attacking two or
three exercises could be a reasonable option.

Exercice 1 (7 points). Find the minimal value of the following variational problem

min
{∫ 1

0
et
(
u′(t)2 + 2u(t)2 + 4u(t)

)
dt : u ∈ C1([0, 1]), u(0) = 0

}
.

Solution :
The integrand L(t, u, v) := et(|v|2 + 2|u|2 + 4u) is convex in u and v, hence any solution to the E-L
equation with the suitable boundary condition is a minimizer. Since we have ∂vL = 2etv, ∂uL =
4et(u+ 1) the equation to be solved is

(2etu′(t))′ = 4et(u(t) + 1),
u(0) = 0,
2e1u′(1) = 0.

the first equation can be re-written as 2u′′+ 2u′ = 4u+ 4, i.e. u′′+u′−2u−2 = 0. The function u+ 1
must be of the form Aet +Be−2t. The boundary conditions impose A+B = 1 and Ae− 2Be−2 = 0,
hence A = 2

e3+2 , B = e3

e3+2 . The solution of the minimization problem is hence

u(t) = 2
e3 + 2e

t + e3

e3 + 2e
−2t − 1.

We can re-write the quantity ∫ 1

0
et|u′(t)|2dt = −

∫ 1

0

(
etu′(t)

)′
u(t)dt,

thanks to an integration by parts and without boundary terms because of the boundary conditions.
Using the equation we get∫ 1

0
et
(
u′(t)2 + 2u(t)2 + 4u(t)

)
dt =

∫ 1

0

(
−4et(u(t) + 1)u(t) + 2u(t)2 + 4u(t)

)
dt = −2

∫ 1

0
etu(t)2dt.

Then we must compute the integral, which I won’t do :-).

Exercice 2 (6 points). Let Ω be a bounded, open, and connected subset of Rd and f : Ω→ R a given
L1 function. Prove that the following minimization problem admits a solution

min
{∫

Ω

√
(1 + |u|)(1 + |v|2) +

√
1 + |∇u|3 +

√
1 + |v|6 : u ∈W 1,1(Ω), v ∈ L1(Ω), uv ≥ f

}
.



Solution :
Take a minimizing sequence (un, vn). We see that vn is bounded in L3 and |∇un| in L3/2. Moreover,∫ √

1 + |un| is also bounded. Set mn = 1
|Ω|
∫
un the average of un. Since the function s 7→

√
1 + |s|

is Lipschitz continuous, we also have a bound from above on
∫ √

1 + |mn| − C
∫
|un −mn|. Thanks

to a Poincaré-Wirtinger inequality, ||un −mn||L1 ≤ C||un −mn||L3/2 ≤ C||∇un||L3/2 , hence this term
is bounded. We obtain a bound on

∫ √
1 + |mn| = |Ω|

√
1 + |mn|, hence on mn. Then, un is bounded

in W 1,3/2 (before we only had a bound on the gradient, now we obtain a bound on the full norm in
the Sobolev space). We can then extract a subsequence where vn weakly converges in L3 to v and un

weakly converges in W 1,3/2 to u (and hence strongly in L3/2).
The integrand in convex in v and ∇u (the terms which converge weakly) and continuous in u (which
converges strongly). Then, the functional is lower semicontinuous for this convergence. The constraint
uv ≥ f can be written as “for every ϕ ≥ 0 we have

∫
uvϕ ≥

∫
fϕ and passes to the limit since we

have un → u strongly in L3/2 and vn ⇀ v weakly in L3 and these two spaces are in duality. The pair
(u, v) is a minimizer.

Exercice 3 (6 points). Let Ω = Td be the d-dimensional torus and f ∈ H1(Ω) a given function with
zero mean. Consider the function H : Rd → R given by H(z) :=

√
1 + |z|4 and the variational problem

min
{∫

Ω
H∗(v) : v ∈ L2(Ω), ∇ · v = f

}
.

Prove that it admits a unique minimizer v0 and that we have v0 ∈ H1(Ω).

Solution :
We can compute the gradient and the Hessian of H:

∇H(z) = 2|z|2z
H(z) , D

2H(z) = 4z ⊗ z
H(z) + 2|z|2I

H(z) −
2|z|2z
H2(z) ⊗∇H(z) = 4z ⊗ z + 2|z|2I

H(z) − 4|z|4z ⊗ z
H3(z) .

Using H(z) ≥ |z|2 we see that D2H is bounded, hence H is C1,1. We can also see that it is convex,
since the Hessian cn be re-written as

D2H(z) = z ⊗ z 4H2 − 4|z|4

H3(z) + 2 |z|
2I

H(z) ,

which is positive definite since, again, H(z) ≥ |z|2.
Hence, H∗ is an elliptic function (i.e. D2H∗ is bounded from below by a positive constant times the
identity matrix I). In particula it is strictly convex, which proves the uniqueness of the minimizer.
Since H∗ is elliptic, we also have H∗(v) ≥ c|v|2 − C, which allows to obtain an L2 bound on any
minimizing sequence vn. If we extract a weakly converging subsequence, the limit will be a minimizer
since it satisfies the constraint (which passes to the limit for weak convergence, tested against H1 test
functions) and the functional is l.s.c. because of the convexity of H∗.
For the regularity, we use the ellipticity of H∗ to write

H(w) +H(v) ≥ w · v + c|v −∇H(w)|2.

The duality theory we developed, using f ∈ H1, hence provides v = ∇H(∇u) ∈ H1 (where u is the
solution of the dual problem to this one).

Exercice 4 (9 points). Let Ω = [0, 1]d be the unit cube in Rd and f : Ω → R a given L∞ function.
Consider the following minimization problem

min
{∫

Ω

1
2 |∇u|

2 + u(u3 + f) : u ∈ H1(Ω)
}
.

1. Prove that it admits a unique minimizer u0.

2. In dimension d = 1, 2, 3, prove that we have u0 ∈W 2,p(Ω) for every p <∞.



3. In higher dimension, prove u0 ∈W 2, 4
3 .

4. Supposing d ≤ 3 and f ∈W 1,∞(Ω), also prove u0 ∈W 3,p(Ω) for every p <∞.

5. In higher dimension and still supposing f ∈W 1,∞(Ω), prove u0 ∈W 3,r(Ω) for r = 4d/(3d− 4).

Note that the required regularity results in this exercise are meant to be global in Ω and not only local.

Solution :

1. The integrand is strictly convex in u and in ∇u, which provides uniqueness of a possible mini-
mizer. Calling J the functional to be minimized, we have

J(u) ≥ c||∇u||2L2 + ||u||4L4 − c||u||L4 ,

which provides at the same time a bound on ||∇un||L2 and ||un||L4 for any minimizing sequence
un. The sequence un is then bounded inH1 and we can extract a weakly converging subsequence.
The functional is obviously l.s.c. for this convergence.

2. The minimizer u0 solves the Euler-Lagrange equation ∆u0 = 4u3
0 + f with Neumann boundary

conditions. By reflection (and without changing the signs of the functions u0 or f , we can
assume that the same equation is solved on the the whole space, and that we only look at the
restriction to the cube. In dimension d = 1, 2 we have u0 ∈ H1 whch implies that it belongs to
any Lp space. The same is true for 4u3

0 + f so the Calderon-Zygmund regularity result provides
u0 ∈ W 2,p. The case of dimension 3 is trickier. In this case we have u0 ∈ L6, if we use the
Sobolev injection (we also know u0 ∈ L4 but L6 is better). We know 4u3

0 + f ∈ L2 since u0 ∈ L6

and we deduce u∈W 2,2 ⊂ W 1,6 ⊂ L∞. Hence, the right-hand side of the equation is in all the
Lp spaces, and we deduce again u0 ∈W 2,p for every p.

3. In higher dimension, it is better to use u0 ∈ L4 than the Sobolev injection (the result is the same
for d = 4). This provides 4u3

0 + f ∈ L4/3 and u0 ∈W 2,4/3. Unofrtunately, the Sobolev injection
does not improve the summability of u0 and we should stop here.

4. Supposing d ≤ 3 we now know u0 ∈ W 2,p for every p. We can differentiate the equation, and
write the equation for v = ∂iu. The equation is ∆v = 12u2

0v + ∂if . It is satisfied on the whole
space because of the reflection trick, and luckily the reflection does not destroy the property
f ∈ W 1,∞. By assumption, ∂if is L∞. Moreover, u0 ∈ W 2,p implies u0 bounded and v ∈ W 1,p,
so that v is also bounded (using p > d). Hence the right hand side is bounded and we obtain
v ∈W 2,p for every p, i.e. u0 ∈W 3,p(Ω) for every p <∞.

5. In higher dimension the strategy is the same, and the only missing point is to prove u2
0v ∈ Lr.

This is unfortunately quite difficult, since we do have v ∈ Lr (using u ∈ W 2,4/3 which gives
v ∈W 1,4/3 ⊂ Lr), but we do not have yet u0 ∈ L∞. Even worse, even in the simplest case d = 4,
we have u0 ∈ L4 and r = 2, i.e. the term u2

0v is only in L1 and we cannot apply any elliptic
regulairty theory. We should definitely obtain u0 ∈ L∞ in another way. This is possible (and
could actually allow to improve the previous results for d ≥ 4) using a truncation argument. Let
M be a constant such that 4M3 + |f(x)| > 0 for every x (M exists since f ∈ L∞).
We can see that uM := min{u,M} is a better competitor than u, i.e. J(uM ) ≤ J(u). Indeed,
the truncation reduces the gradient part of J , and we have

(u(x)4 + u(x)f(x))− (uM (x)4 + uM (x)f(x)) = α(x)(u(x)− uM (x))

where α(x) is the derivative of s 7→ s4 + sf(x) computed at a certain value s ∈ (uM (x), u(x)),
in particular, unless uM (x) = u(x), we have s ≥ M and α > 0, which proves that the integral
decreases when passing from u to uM . By uniqueness of the minimizer, this shows u0 ≤ M . A
similar argument with max{u,−M} also shows u0 ≥ −M and u0 ∈ L∞.
Actually, this argument shows u0 ∈ W 2,p for every p and every d, and (with the assumption
f ∈W 1,∞), u0 ∈W 3,p for every p and every d.


