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Calculus of Variations and Elliptic PDEs

Mid-Term Examination

All kind of documents (notes, books. .. ) are authorized, but you cannot collaborate with anyone
else. The total number of points is much larger than 20, which means that attacking two or
three exercises could be a reasonable option.

Exercice 1 (7 points). Find the minimal value of the following variational problem
1
min {/ o (W07 +2u(t) +4u(®)) dt : e C(0,1]), u(0) = o} .
0

Solution :

The integrand L(t,u,v) := e'(|v|? + 2|u|? + 4u) is convex in u and v, hence any solution to the E-L
equation with the suitable boundary condition is a minimizer. Since we have 9,L = 2e'v,d,L =
4e'(u + 1) the equation to be solved is

(2e"u/ (1)) = de’ (u(t) + 1),
u(0) = 0,
2etu/(1) =

the first equation can be re-written as 2u” +2u’ = 4u+4, i.e. v’ +u' —2u—2 = 0. The function u+1
must be of the form Ae + Be™2t. The boundary conditions impose A+ B =1 and Ae — 2Be 2 =0,
hence A = B = The solution of the minimization problem is hence

5+27 63+2
2 e3
u(t) = — el + — e 2 —1

e3 +2 e3 42

We can re-write the quantity

1 1 /
/ o (1) 2dt = — / (e (1)) (),
0 0

thanks to an integration by parts and without boundary terms because of the boundary conditions.
Using the equation we get

/0 ¢! (U'(t)2 +2u(t)® + 4u(t)) dt — /

(—4e (ult) + Dyu(t) + 2u(t)® + dut 72/ etu(
JO

Then we must compute the integral, which I won’t do :-).

Exercice 2 (6 points). Let © be a bounded, open, and connected subset of R and f : Q — R a given
L' function. Prove that the following minimization problem admits a solution

mm{/Q O D+ 02) + 1+ [up + /11 Jolf - uEWl’l(Q),veLl(Q),uvzf}.



Solution :
Take a minimizing sequence (uy,v,). We see that v, is bounded in L? and |Vu,| in L3/2. Moreover,
[ /1+ |uy| is also bounded. Set m,, = ﬁ J uy, the average of w,. Since the function s — /1 + |s]

is Lipschitz continuous, we also have a bound from above on [ /1 + |my| — C [ |u, — my|. Thanks
to a Poincaré-Wirtinger inequality, ||u, — my||r1 < Cllun — mp||ps2 < C||Vug| s/2, hence this term
is bounded. We obtain a bound on [ +/1 + |m,| = [Q]\/1 + |my]|, hence on m,,. Then, u,, is bounded
in Wh3/2 (before we only had a bound on the gradient, now we obtain a bound on the full norm in
the Sobolev space). We can then extract a subsequence where v, weakly converges in L? to v and u,,
weakly converges in W13/2 to u (and hence strongly in L3/ .

The integrand in convex in v and Vu (the terms which converge weakly) and continuous in u (which
converges strongly). Then, the functional is lower semicontinuous for this convergence. The constraint
uv > f can be written as “for every ¢ > 0 we have [wuvyp > [ fe and passes to the limit since we
have u, — u strongly in L?/2 and v, — v weakly in L3 and these two spaces are in duality. The pair
(u,v) is a minimizer.

Exercice 3 (6 points). Let Q = T¢ be the d-dimensional torus and f € H'(Q) a given function with
zero mean. Consider the function H : R? — R given by H(z) := /1 + |2[? and the variational problem

min{/ H*(v) : v e L*(Q), V-v:f}.
Q
Prove that it admits a unique minimizer vy and that we have vg € H*(£).

Solution :
We can compute the gradient and the Hessian of H:

4z®z+2z2 1  4z*2®z
VH(z) = — ‘
CVHE=ThG) ()

2222, C4zez | 22 2|z

VH(z) H(z)’ (2) = H(z) H(z) H2(2)

Using H(z) > |2|? we see that D?H is bounded, hence H is C1'!. We can also see that it is convex,
since the Hessian cn be re-written as
4H? — 4]z|* |z|2T

H3(2) H(z)’

D’H(z)=2® 2

which is positive definite since, again, H(z) > |z|%.

Hence, H* is an elliptic function (i.e. D?H* is bounded from below by a positive constant times the
identity matrix I). In particula it is strictly convex, which proves the uniqueness of the minimizer.
Since H* is elliptic, we also have H*(v) > c|v|*> — C, which allows to obtain an L? bound on any
minimizing sequence v,. If we extract a weakly converging subsequence, the limit will be a minimizer
since it satisfies the constraint (which passes to the limit for weak convergence, tested against H'! test
functions) and the functional is l.s.c. because of the convexity of H*.

For the regularity, we use the ellipticity of H* to write
H(w)+ H(v) > w-v+ clv — VH(w)|?.

The duality theory we developed, using f € H!, hence provides v = VH(Vu) € H' (where u is the
solution of the dual problem to this one).

Exercice 4 (9 points). Let Q = [0,1]¢ be the unit cube in R? and f : Q — R a given L* function.
Consider the following minimization problem

min{/ﬁ%|Vu|2+u(u3+f) : uGHl(Q)}.

1. Prove that it admits a unique minimizer ug.

2. In dimension d = 1,2, 3, prove that we have ug € W?2P(Q) for every p < co.



3. In higher dimension, prove ugy € W25,
4. Supposing d < 3 and f € W>(Q), also prove ug € W3P(Q) for every p < co.
5. In higher dimension and still supposing f € Wh*(Q), prove ug € W37 (Q) for r = 4d/(3d — 4).

Note that the required reqularity results in this exercise are meant to be global in 2 and not only local.

Solution :

1. The integrand is strictly convex in v and in Vu, which provides uniqueness of a possible mini-
mizer. Calling J the functional to be minimized, we have

J(u) > el|Vul[Z2 + |lullzs = cllullzs,

which provides at the same time a bound on ||Vuy,||;2 and ||u,|| 4 for any minimizing sequence
up. The sequence u,, is then bounded in H' and we can extract a weakly converging subsequence.
The functional is obviously l.s.c. for this convergence.

2. The minimizer ug solves the Euler-Lagrange equation Aug = 4u3 + f with Neumann boundary
conditions. By reflection (and without changing the signs of the functions ug or f, we can
assume that the same equation is solved on the the whole space, and that we only look at the
restriction to the cube. In dimension d = 1,2 we have ug € H' whch implies that it belongs to
any LP space. The same is true for 4u3 + f so the Calderon-Zygmund regularity result provides
ug € W2P. The case of dimension 3 is trickier. In this case we have ug € LS, if we use the
Sobolev injection (we also know ug € L* but LS is better). We know 4u3 + f € L? since ug € L°
and we deduce ucW?2 c W6 ¢ L>®. Hence, the right-hand side of the equation is in all the
LP spaces, and we deduce again uy € W?2P for every p.

3. In higher dimension, it is better to use up € L* than the Sobolev injection (the result is the same
for d = 4). This provides 4u + f € L3 and uy € W2*3. Unofrtunately, the Sobolev injection
does not improve the summability of ug and we should stop here.

4. Supposing d < 3 we now know ug € W?P for every p. We can differentiate the equation, and
write the equation for v = d;u. The equation is Av = 12uv + 0;f. It is satisfied on the whole
space because of the reflection trick, and luckily the reflection does not destroy the property
f € Whee, By assumption, 0;f is L>. Moreover, ug € WP implies uy bounded and v € WP,
so that v is also bounded (using p > d). Hence the right hand side is bounded and we obtain
v € W?2P for every p, i.e. ug € W3P(Q) for every p < oo.

5. In higher dimension the strategy is the same, and the only missing point is to prove u3v € L.
This is unfortunately quite difficult, since we do have v € L" (using u € W24/3 which gives
ve W3 ¢ L"), but we do not have yet uy € L°°. Even worse, even in the simplest case d = 4,
we have ugp € L* and r = 2, i.e. the term w3v is only in L' and we cannot apply any elliptic
regulairty theory. We should definitely obtain ug € L in another way. This is possible (and
could actually allow to improve the previous results for d > 4) using a truncation argument. Let
M be a constant such that 4M3 + |f(x)| > 0 for every x (M exists since f € L™).

We can see that up; := min{u, M} is a better competitor than u, i.e. J(up) < J(u). Indeed,
the truncation reduces the gradient part of J, and we have

(u(@)* + u(@) f(x)) = (unr ()" + uar(2) f(2)) = az)(u(z) — upr(z))

where a(z) is the derivative of s — s* + sf(x) computed at a certain value s € (ups(x), u(x)),
in particular, unless ups(z) = u(z), we have s > M and a > 0, which proves that the integral
decreases when passing from u to uys. By uniqueness of the minimizer, this shows ug < M. A
similar argument with max{u, —M } also shows ug > —M and ug € L.

Actually, this argument shows ug € W2P for every p and every d, and (with the assumption
f € Wh®) ug € W3P for every p and every d.



