Calculus of Variations and Elliptic PDEs

Mock Exam

Exercice 1 (6 points). Consider the problem

$$\min\left\{\int_0^{\pi/2} \left(u'(t)^2 + u(t)^2 + 2\sin(t)u(t) \right) dt \quad : \quad u \in C^1([0,\pi/2]), \ u(0) = 0 \right\}.$$

Prove that it admits a minimizer, that it is unique, and find it.

Solution

The function L given by $L(t, x, v) = |v|^2 + |x|^2 + 2\sin(t)x$ is convex in (x, v). Hence, any solution of the Euler-Lagrange equation of the problem coupled with the suitable boundary conditions, is also a minimizer. considering that we have $\partial_v L(t, x, v) = 2v$ and $partial_x L(t, x, v) = 2x + 2\sin(t)$ the Euler-Lagrange system is

$$\begin{cases} 2u'' = 2u + 2\sin(t), \\ u(0) = 0, \\ u'(\pi/2) = 0. \end{cases}$$

It is easy to see that the solution is of the form $u(t) = Ae^t + Be^{-t} - \frac{1}{2}\sin(t)$ and find A + B = 0 and $Ae^{\pi/2} = Be^{-\pi/2}$, hence A = B = 0. The solution is then given by $u(t) = -\frac{1}{2}\sin(t)$.

This function is C^1 and solves the Euler-Lagrange system, it then minimizes the functional among any admissible competitor. Uniqueness can be justified either using the strict convexity of L in (x, v), or just be noting that this is the only solution of the Euler-Lagrange system.

Exercice 2 (8 points). Let Ω be a bounded open subset of \mathbb{R}^d . Consider the following minimization problem

$$\min\left\{\int_{\Omega} (1+e^{u})(1+|\nabla u|^{2})dx : u \in X\right\}.$$

- 1. If $X = H^1(\Omega)$, prove that the problem has no solution.
- 2. If $X = H_0^1(\Omega)$, prove that the problem admits at least a solution \bar{u} , and prove $\bar{u} \leq 0$.
- 3. Via a suitable change of variable v = g(u) prove that the minimizer \bar{u} is unique, and that we have $\bar{u} \in C^{\infty}(\Omega)$ (interior regularity only).

Solution

1. If $X = H^1(\Omega)$, we can easily see that the inf of the problem is $|\Omega|$. Indeed, for every function $u \in X$ we have $F(u) > \int 1 = |\Omega|$ (let F be the functional we minimize). Moreover, $F(-n) = |\Omega|(1 + e^{-n}) \to |\Omega|$ (where -n is the constant function -n). Yet, no function u can satisfy the equality $F(u) = |\Omega|$ since this would imply $e^u = 0$.

2. If $X = H_0^1(\Omega)$, we take a minimizing sequence u_n . From the bound from above on $F(u_n \dot{a})$ we deduce that $\int |\nabla u_n|^2 \leq \int (1 + |\nabla u_n|^2) \leq F(u_n)$ is also bounded. Hence, u_n is bounded in H_0^1 and admits a subsequence which weakly converges in H^1 and strongly in L^2 . Since the integrand $L(x, v) = (1 + e^x)(1 + |v|^2)$ is continuous in (x, v) and convex in v, the functional F is l.s.c. for this convergence, and the limit \bar{u} is a minimizer.

Let us compare \bar{u} and $-|\bar{u}|$. The modulus of their gradient is the same, so that we have

$$(1 + e^{-|\bar{u}|})(1 + |\nabla|\bar{u}||^2) \le (1 + e^{\bar{u}})(1 + |\nabla\bar{u}|^2),$$

with strict inequality where $-|\bar{u}| < \bar{u}$, i.e. where $\bar{u} > 0$. This proves that we have $F(-|\bar{u}|) < F(\bar{u})$ unless $\bar{u} \leq 0$ a.e. Since \bar{u} is a minimizer, we deduce $\bar{u} \leq 0$.

3. We can write F(u) in the form $F(u) = \int |h(u)|^2 |\nabla u|^2 + |h(u)|^2$, where $h(s) = \sqrt{1 + e^s}$. Take g the anti-derivative of h, i.e. g(0) = 0 and g' = h. Do not look for an explicit expression of g. Set v = g(u) and $\tilde{F}(v) = F(u)$. The problem becomes then

$$\min \tilde{F}(v) = \int |\nabla v|^2 + \phi(v)$$

where $\phi = |h^2| \circ g^{-1}$. Note that g is a C^{∞} diffeomorphism, since $g \in C^{\infty}$ and $g' \ge 1$. The function ϕ is also C^{∞} .

The Euler-Lagrange equation of the problem is

$$2\Delta v = \phi'(v)$$

and a simple bootstrap procedure proves $v \in C^{\infty}$. Indeed, we start from $v \in H^1$ and we can prove by induction $v \in H^k$ since $v \in H^k \Rightarrow v \in H^{k+2}$ by elliptic regularity. Hence, the minimizer \bar{u} is also C^{∞} .

Uniqueness can be proven once we check that ϕ is convex, and this makes \tilde{F} strictly convex on X. Let us compute ϕ' . We have

$$\phi(s) = 1 + e^{g^{-1}(s)}, \quad \phi'(s) = \frac{e^{g^{-1}(s)}}{g'(g^{-1}(s))} \quad \phi'(g(s)) = \frac{e^s}{h(s)} = \frac{e^s}{\sqrt{1 + e^s}}.$$

The function ϕ is convex if and only if ϕ' is increasing, which is also equivalent to $\phi' \circ g$ being increasing. A simple computation proves that $s \mapsto \frac{e^s}{\sqrt{1+e^s}}$ is increasing since its derivative is $\frac{e^s + \frac{1}{2}e^{2s}}{(1+e^s)^{3/2}}$ and is positive, hence ϕ is convex.

Exercice 3 (6 points). Given a continuous function $L : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$, positive and convex in the second variable, and a bounded open domain $\Omega \subset \mathbb{R}^n$, prove that the following minimization problem admits a solution

$$\min\left\{\operatorname{Per}(A) + \int_{\Omega} \left(|\nabla u|^p + |u|^p\right) + \int_A L(u, \nabla u) : u \in W^{1,p}(\Omega), A \subset \Omega, \, |A| = \frac{|\Omega|}{2}\right\},$$

where Per(A) stands for the perimeter - in the BV theory - of A, and the minimization is performed over u and A.

Solution

Sorry, we should have written p > 1... Also, it is maybe not clear that, even if we impose $A \subset \Omega$, we compute the perimeter of A as a subset of \mathbb{R}^n (i.e., we count the part of the boundary which is on $\partial\Omega$).

Take a minimizing sequence (A_n, u_n) . From the bound of the functional we obtain that u_n is bounded in $W^{1,p}$ and that I_{A_n} is bounded in BV. We can extract a subsequence such that $u_n \rightarrow u$ in $W^{1,p}$ and $I_{A_n} \rightarrow v$ strongly in L^1 and a.e. Moreover, by pointwise a.e. convergence, we see that v is also an indicator function $v = I_A$. The strong convergence in L^1 implies $\int v = |\Omega|/2$, so that A also satisfies the constraint. We can also assume $\nabla I_{A_n} \rightarrow \nabla v = \nabla I_A$ as measures. We then have $\operatorname{Per}(A) \leq \liminf_n \operatorname{Per}(A_n)$ and $\int_{\Omega} (|\nabla u|^p + |u|^p) \leq \liminf_n \int_{\Omega} (|\nabla u_n|^p + |u_n|^p)$. In order to obtain the lower semicontinuity of the functional and prove existence we just need to prove that the term $\int_A L(u, \nabla u)$ is also l.s.c.

This term can be written as $\int I_A L(u, \nabla u)$. Consider the function $\tilde{L}(t, x, w) := t_+ L(x, w)$. This function is continuous in (t, x, w) and convex in w. Since (I_{A_n}, u_n) converges strongly to (I_A, u) and ∇u_n weakly to ∇u , we obtain the desired lower semicontinuity, and hence the existence of a minimizer.

Exercice 4 (7 points). For given $f \in L^1(\Omega)$ with $\int_{\Omega} f(x) dx = 0$ and p > d consider the functions u_p which solve

$$\min\left\{\frac{1}{p}\int |\nabla u|^p dx + \int f u : u \in W^{1,p}(\Omega)\right\}.$$

Prove that the sequence u_p is compact in $C^0(\Omega)$ and that we have, up to extracting subsequences, $u_p \to u_\infty$ uniformly, where u_∞ is a solution of the following problem

$$\min\left\{\int f u \, : \, u \in \operatorname{Lip}_1(\Omega)\right\},\,$$

where Lip_1 is the space of Lipschitz functions with Lipschitz constant at most 1.

Solution

It is clear that the minimizer u_p is not unique, and that we can add constants to it. Let us choose the minimizers u_p with 0 average. This should have been clarified in the statement, sorry. Also, We should add an assumption on Ω , which should be supposed to be bounded and sufficiently smooth.

Let us fix an exponent $p_0 > d$. For any $p > p_0$, we have (by comparing u_p to the constant function 0)

$$\frac{1}{p} ||\nabla u_p||_{L^p}^p \le ||f||_{L^1} ||u_p||_{L^{\infty}}.$$

We now use the Jensen inequality in order to obtain $\int_{\Omega} h^{p_0} \leq (\int_{\Omega} h^p)^{p_0/p} |\Omega|^{1-p_0/p}$ for any $h \geq 0$, i.e. $||h||_{L^{p_0}} \leq |\Omega|^{1/p_0-1/p} ||h||_{L^p}$. Hence we have

$$||\nabla u_p||_{L^{p_0}} \le |\Omega|^{1/p_0 - 1/p} ||\nabla u||_{L^p} \le |\Omega|^{1/p_0 - 1/p} p^{1/p} ||f||_{L^1}^{1/p} ||u_p||_{L^{\infty}}^{1/p}.$$

We then use $||u_p||_{L^{\infty}} \leq C||\nabla u_p||_{L^{p_0}}$, which is a consequence of the injection of W^{1,p_0} into L^{∞} and of the choice of u_p as a zero-average minimizer, and obtain

$$||\nabla u_p||_{L^{p_0}}^{1-1/p} \le |\Omega|^{1/p_0 - 1/p} p^{1/p} |(C|f||_{L^1})^{1/p}$$

Note that the constant C here depends on p_0 .

By raising both sides to the power p' = p/(p-1) we obtain

$$||\nabla u_p||_{L^{p_0}} \le |\Omega|^{p'/p_0 - 1/(p-1)} p^{1/(p-1)} |(C|f||_{L^1})^{1/(p-1)}.$$

The r.h.s is bounded, hence the norm $||\nabla u_p||_{L^{p_0}}$ is also bounded independently of p. The compact injection of W^{1,p_0} into C^0 provides the desired compactness.

We can then assume, up to subsequences, that we have uniform convergence $u_p \to u$. The function u also belongs to W^{1,p_0} and satisfies

$$|\nabla u||_{L^{p_0}} \le |\Omega|^{1/p_0}$$

which can be obtained by passing to the limit $p \to \infty$ (and hence $p' \to 1$) the previous inequality. We then use the fact that $p_0 > d$ is arbitrary and let $p_0 \to \infty$. we then obtain

$$||\nabla u||_{L^{\infty}} \le 1$$

and we have $u \in \text{Lip}_1$. We must now prove that the function u minimizes $\int f u$ among functions in Lip_1 . Take $v \in \text{Lip}_1$. We can write

$$\int fu_p \leq \frac{1}{p} \int |\nabla u_p|^p dx + \int fu_p \leq \frac{1}{p} \int |\nabla v|^p dx + \int fv \leq \frac{|\Omega|}{p} + \int fv.$$

We take the limit $p \to \infty$ and we obtain

$$\int f u \leq \int f v,$$

which is the desired inequality.