Calculus of Variations and Elliptic PDEs

Mock Exam

Exercice 1 (6 points). Consider the problem

$$
\min \left\{\int_{0}^{\pi / 2}\left(u^{\prime}(t)^{2}+u(t)^{2}+2 \sin (t) u(t)\right) d t \quad: \quad u \in C^{1}([0, \pi / 2]), u(0)=0\right\}
$$

Prove that it admits a minimizer, that it is unique, and find it.
Exercice 2 (8 points). Let Ω be a bounded open subset of \mathbb{R}^{d}. Consider the following minimization problem

$$
\min \left\{\int_{\Omega}\left(1+e^{u}\right)\left(1+|\nabla u|^{2}\right) d x: u \in X\right\}
$$

1. If $X=H^{1}(\Omega)$, prove that the problem has no solution.
2. If $X=H_{0}^{1}(\Omega)$, prove that the problem admits at least a solution \bar{u}, and prove $\bar{u} \leq 0$.
3. Via a suitable change of variable $v=g(u)$ prove that the minimizer \bar{u} is unique, and that we have $\bar{u} \in C^{\infty}(\Omega)$ (interior regularity only).

Exercice 3 (6 points). Given a continuous function $L: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, positive and convex in the second variable, and a bounded open domain $\Omega \subset \mathbb{R}^{n}$, prove that the following minimization problem admits a solution

$$
\min \left\{\operatorname{Per}(A)+\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right)+\int_{A} L(u, \nabla u): u \in W^{1, p}(\Omega), A \subset \Omega,|A|=\frac{|\Omega|}{2}\right\}
$$

where $\operatorname{Per}(A)$ stands for the perimeter - in the BV theory - of A, and the minimization is performed over u and A.

Exercice 4 (7 points). For given $f \in L^{1}(\Omega)$ with $\int_{\Omega} f(x) d x=0$ and $p>d$ consider the functions u_{p} which solve

$$
\min \left\{\frac{1}{p} \int|\nabla u|^{p} d x+\int f u: u \in W^{1, p}(\Omega)\right\}
$$

Prove that the sequence u_{p} is compact in $C^{0}(\Omega)$ and that we have, up to extracting subsequences, $u_{p} \rightarrow u_{\infty}$ uniformly, where u_{∞} is a solution of the following problem

$$
\min \left\{\int f u: u \in \operatorname{Lip}_{1}(\Omega)\right\}
$$

where Lip_{1} is the space of Lipschitz functions with Lipschitz constant at most 1.

