Calculus of Variations and Elliptic PDEs

Mid-Term Examination

All kind of documents (notes, books...) are authorized. The total number of points is much larger than 20 , which means that attacking only some exercises could be a reasonable option. The exercises are not necessarily ordered by difficulty.

Exercice 1 (5 points). Consider the problem

$$
\min \left\{\int_{0}^{1}\left(e^{t} \frac{u^{\prime}(t)^{2}}{2}+e^{2 t} u(t)\right) d t \quad: \quad u \in C^{1}([0,1]), u(1)=0\right\} .
$$

Find its minimizer, proving that it is unique and justifying its minimality.

Solution:

The Euler-Lagrange system for this problem is given by

$$
\left\{\begin{array}{l}
\left(e^{t} u^{\prime}\right)^{\prime}=e^{2 t} \\
u(1)=0 \\
u^{\prime}(0)=0
\end{array}\right.
$$

Using the last condition we obtain

$$
e^{t} u^{\prime}(t)=\int_{0}^{t} e^{2 s} d s=\frac{1}{2}\left(e^{2 t}-1\right)
$$

hence

$$
u^{\prime}(t)=\frac{1}{2}\left(e^{t}-e^{-t}\right), \quad u(t)=\frac{1}{2}\left(e^{t}+e^{-t}\right)+c .
$$

In order to impose the Dirichlet condition at $t=1$ we need $c=-\frac{1}{2}\left(e+e^{-1}\right)$.
The function u given by $u(t)=\frac{1}{2}\left(e^{t}+e^{-t}-\left(e+e^{-1}\right)\right)$ satisfies all the conditions of the Euler-Lagrange system. The problem being convex, this function is a minimizer. It is the unique minimizer since the integrand is strictly convex in u^{\prime} and convex in u : as a consequence, two minimizers could only differ by a constant, bbut the final value being fixed they should coincide.
Exercice 2 (10 points). Let Ω be a bounded open subset of \mathbb{R}^{d}. Consider the minimization problem

$$
\min \left\{\int_{\Omega}\left(e^{|\nabla u(x)|}-|\nabla u(x)|-u(x)^{2}-f(x) u(x)\right) d x: u \in H_{0}^{1}(\Omega) \cap C^{0}(\Omega)\right\}
$$

where $f \in L^{1}(\Omega)$ is a given function.

1. Prove that the problem has a solution.
2. Find the Euler-Lagrange equation of the problem, and in which sense do solutions solve it.
3. If $d=1$, prove that minimizers are Lipschitz functions, and that they are C^{∞} if $f \in C^{\infty}$.
4. In case a minimizer \bar{u} is Lipschitz continuous, prove $\int_{\Omega}\left(e^{|\nabla \bar{u}|}-1\right)|\nabla \bar{u}| d x=\int_{\Omega}\left(2 \bar{u}^{2}+f \bar{u}\right) d x$.
5. (Much more difficult: the goalhere is to prove a similar relation without assuming $\bar{u} \in W^{1, \infty}$).
(a) Prove that at least a minimizer \bar{u} satisfies $\int_{\Omega}\left(e^{|\nabla \bar{u}|}-1\right)|\nabla \bar{u}| d x \leq \int_{\Omega}\left(2 \bar{u}^{2}+f \bar{u}\right) d x$.
(b) Prove that the same inequality is satisfied by any minimizer \bar{u}.

Solution:

1. Let us take a minimizing sequence u_{n}. From $e^{|\nabla u|}-|\nabla u|=1+\sum_{k \geq 2} \frac{1}{k!}|\nabla u|^{k}$, we see that all competitor for which the functional is finite actually belongs to $W_{0}^{1, p}$ for every p. Choosing an integer p with $p>\max \{2, d\}$, we deduce a $W^{1, p}$ bound on u_{n}. Indeed, we have

$$
\frac{1}{p!}\|\nabla u\|_{L^{p}}^{p}-\left\|u_{n}\right\|_{L^{2}}^{2}-\|f\|_{L^{1}}\left\|u_{n}\right\|_{L^{\infty}} \leq C
$$

Using the injection of $W^{1, p}$ into both L^{2} and L^{∞} (because p is large) and the equivalence between the $W^{1, p}$ norm and the L^{p} norm of the gradient (because of the boundary condition), we see that this provides a bound on $\frac{1}{p!}\|\nabla u\|_{L^{p}}^{p}$. Up to subsequences, we can suppose that we have $u_{n} \rightharpoonup u$ in $W^{1, p}$, with uniform convergence $u_{n} \rightarrow u$.
Since $z \mapsto e^{|z|}-|z|$ is convex, the functional is lower semicontinuous for the weak $W^{1, p}$ convergence. The function u is an admissible competitor since it belogns to H_{0}^{1} as a weak limit (in $W^{1, p}$ and hence also in H^{1}) of H_{0}^{1} functions and since it is continuous as it belogs to $W^{1, p}$ for $p>d$. Hence, u is a minimizer.
2. The Euler-Lagrange equation is given by

$$
\nabla \cdot\left(\left(e^{|\nabla u|}-1\right) \frac{\nabla u}{|\nabla u|}\right)=-2 u-f
$$

Yet, if we want to guarantee that we can differentiate under the integral sign in order to obtain its weak version, i.e.

$$
\int_{\Omega}\left(e^{|\nabla u|}-1\right) \frac{\nabla u}{|\nabla u|} \cdot \nabla \varphi=\int_{\Omega}(2 u+f) \varphi
$$

we need to bound the integral of $e^{|\nabla u+\varepsilon \nabla \varphi|}$, which is possible if $|\nabla \varphi|$ is bounded. This is why we can state the weak version of the Euler-Lgrange equation is satsfied if restricted to Lipschitz test functions φ with $\varphi=0$ on $\partial \Omega$.
3. If $d=1$, the weak deriviative of the L^{1} function $\left(e^{\left|\bar{u}^{\prime}\right|}-1\right) \frac{\bar{u}^{\prime}}{\left|\bar{u}^{\prime}\right|}$ equals $-2 \bar{u}-f$, which is L^{1}. Primitevs of L^{1} functions are bounded, which provides a bound on $\left|\bar{u}^{\prime}\right|$, and \bar{u} is Lipschitz continuous. If $f \in C^{\infty}$ we can iterate the regularity argument: we now know that $\left(e^{\left|\bar{u}^{\prime}\right|}-1\right) \frac{\bar{u}^{\prime}}{\left|\bar{u}^{\prime}\right|}$ has a Lipschitz derivative, hence it is $C^{1,1}$. We deduce $\bar{u} \in C^{2,1}$ and by induction $u \in C^{k, 1}$ for every k.
4. In case a minimizer \bar{u} is Lipschitz continuous we can use it as a test function in the Euler-Lgrange equation, and the resulting condition exactly provides $\int_{\Omega}\left(e^{|\nabla \bar{u}|}-1\right)|\nabla \bar{u}| d x=\int_{\Omega}\left(2 \bar{u}^{2}-f \bar{u}\right) d x$.
5. The difficult point here is that we cannot in general use the minimizer itself as a test function, while it is the case when the integrand has a polynomial growth. We therefore define $F_{N}(u)=$ $\int_{\Omega}\left(1+\sum_{k=2}^{N} \frac{|\nabla u|^{k}}{k!}\right)$ and $F(u)=\int_{\Omega} e^{|\nabla u|}-|\nabla u|=\lim _{N \rightarrow \infty} F_{N}(u)$, and consider the problem where F is replaced with F_{N}.
(a) If we call u_{N} a minimizer of $F_{N}(u)-\int_{\Omega} u^{2}+f u$ (which exists for $N>\max \{2, d\}$), we can prove now that we have

$$
\int_{\Omega} \sum_{k \geq 2}^{N} \frac{1}{(k-1)!}\left|\nabla u_{N}\right|^{k}=\int_{\Omega} 2 u_{N}^{2}+f u_{N}
$$

If we fix again an integer p with $p>\max \{2, d\}$ and we restrict to $N \geq p$ we can obtain a uniform bound (not depending on N) on $\left\|\nabla u_{N}\right\|_{L^{p}}$. We can then extract a subsequence (that we still denote by u_{N}) such that $u_{N} \rightharpoonup u_{\infty}$ in $W^{1, p}$. This weak convergence implies the uniform convergence of u_{N} to u_{∞}. We then consider

$$
\int_{\Omega} \sum_{k \geq 2}^{p} \frac{1}{(k-1)!}\left|\nabla u_{N}\right|^{k} \leq \int_{\Omega} 2 u_{N}^{2}+f u_{N}
$$

and pass to the limit, using convexity and hence lower semicontinuity on the left hand side. We then obtain

$$
\int_{\Omega} \sum_{k \geq 2}^{p} \frac{1}{(k-1)!}\left|\nabla u_{\infty}\right|^{k} \leq \int_{\Omega} 2 u_{\infty}^{2}+f u_{\infty}
$$

and, taking the limit $p \rightarrow \infty$, we obtain the desired result. We just need now to show that u_{∞} is a minimizer of the original problem. This comes from the minimality of u_{N}, since we have, for an arbitrary competitor u and $N \geq p$,

$$
\int_{\Omega} 1+\sum_{k \geq 2}^{p} \frac{1}{k!}\left|\nabla u_{N}\right|^{k}-\int_{\Omega}\left(u_{N}^{2}+f u_{N}\right) \leq \int_{\Omega} 1+\sum_{k \geq 2}^{N} \frac{1}{k!}|\nabla u|^{k}-\int_{\Omega}\left(u^{2}+f u\right) \leq \int_{\Omega} e^{|\nabla u|}-|\nabla u|-\int_{\Omega}\left(u^{2}+f u\right) .
$$

From the semicontinuity on the left hand side we obtain

$$
\int_{\Omega} 1+\sum_{k \geq 2}^{p} \frac{1}{k!}\left|\nabla u_{\infty}\right|^{k}-\int_{\Omega}\left(u_{\infty}^{2}+f u_{\infty}\right) \leq \int_{\Omega} e^{|\nabla u|}-|\nabla u|-\int_{\Omega}\left(u^{2}+f u\right) .
$$

Sending $p \rightarrow \infty$ we obtain the desired minimality for u_{∞}.
(b) Proving that the same inequality is satisfied by any minimizer \bar{u} is more delicate since we do not have uniqueness of the minimizer. We then act in the following way. Let \bar{u} be a minimizer and set $g=2 \bar{u}+f$. We now consider u_{N} a minimizer of $F_{N}(u)-\int g u$. The same arguments as above prove that we have

$$
\int_{\Omega} \sum_{k \geq 2}^{N} \frac{1}{(k-1)!}\left|\nabla u_{N}\right|^{k}=\int_{\Omega} g u_{N}
$$

and that u_{N} is bounded in $W^{1, p}$ for $p>\max \{2, d\}$. We then call, again, u_{∞} its weak the limit and obtain (via the same computations as before) that u_{∞} minimizes the functional $u \mapsto \int_{\Omega} e^{|\nabla u|}-|\nabla u|-\int_{\Omega} g u$ and that we have, indeed

$$
\int_{\Omega}\left(e^{\left|\nabla u_{\infty}\right|}-1\right)\left|\nabla u_{\infty}\right| d x \leq \int_{\Omega}(2 \bar{u}+f) u_{\infty}
$$

We are left to prove $u_{\infty}=\bar{u}$.
To do this, we exploit both the minimality of u_{∞} and \bar{u} :

$$
\begin{aligned}
F\left(u_{\infty}\right)-\int g u_{\infty} & \leq F(\bar{u})-\int g \bar{u} \\
F(\bar{u})-\int \bar{u}^{2}+f \bar{u} & \leq F\left(u_{\infty}\right)-\int u_{\infty}^{2}+f u_{\infty}
\end{aligned}
$$

If we sum the two ineqalities and simplify the expressions using $g=2 \bar{u}+f$, we obtain $\int\left|u_{\infty}-\bar{u}\right|^{2} \leq 0$, i.e. $u_{\infty}=\bar{u}$.

Exercice 3 (5 points). Consider the two functions $f_{1}, f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f_{1}(x)=\left\{\begin{array}{ll}
x(\log x)^{2} & \text { if } x \geq 1 \\
0 & \text { if } x<1,
\end{array} \quad f_{2}(x)= \begin{cases}x(\log x)^{2} & \text { if } x \geq 1 \\
+\infty & \text { if } x<1\end{cases}\right.
$$

1. Prove that f_{1} and f_{2} are convex.
2. Find f_{1}^{*} and f_{2}^{*}.

Solution: Let us compute the first derivative of $x \mapsto x(\log x)^{2}$: it is given by $(\log x)^{2}+2 \log x$, which is positive and increasing on $x \geq 1$. Hence, both f_{1} and f_{2} are convex and increasing on $[1,+\infty)$, and they are also convex on \mathbb{R} since in the case of f_{1} the function has be extended to be equal to its tangent at $x=1$, in the case of f_{2} to $+\infty$ our of a convex set.
We now compute f_{1}^{*}. We have $f_{1}^{*}(y)=\sup _{x} x y-f_{1}(x)$. Since $f_{1}=0$ before 1 , if $y>0$ the minimization can be restricted to $\{x \geq 0\}$ since for $x<1$ we obtain results smaller than what is obtained for $x=1$. On the other hand, for $y<0$ the sup can be attained using a sequence of points diverging to $-\infty$, and we have $f_{1}^{*}(y)=+\infty$. For $y=0$ we have $f_{1}^{*}(0)=\sup -f_{1}=0$. We ust have to compute the value of $f_{1}^{*}(y)$ for $y>0$ and we look for the maximizer by computing the derivative. The derivative of $x \mapsto x y-f_{1}(x)$ is equal for $x \geq 0$ to $y-(\log x)^{2}+2 \log x$. Setting $z=\log x \geq 0$, this vanishes whenever $(z+1)^{2}=y+1>1$, hence $z= \pm \sqrt{y+1}-1$. Since the choice of the negative sign would give $z<0$, the maximum is attained for a point x such that $\log x=\sqrt{y+1}-1>1-1=0$, so that $x>1$. We now compute this maximum:

$$
f_{1}^{*}(y)=x y-x(\log x)^{2}=x\left(y-z^{2}\right)=x\left((z+1)^{2}-1-z^{2}\right)=2 x z=2 e^{\sqrt{y+1}-1}(\sqrt{y+1}-1) .
$$

This same expression is also valid for $y=0$, as it gives 0 as a value.
Summarizing, we have

$$
f_{1}^{*}(y)= \begin{cases}2 e^{\sqrt{y+1}-1}(\sqrt{y+1}-1) & \text { if } y \geq 0 \\ +\infty & \text { if } y<0\end{cases}
$$

The computations for f_{2}^{*} are exactly the same for $y>0$ since in this case it is obvious that the maximum should be restricted to $x \geq 1$ and the maximizer obtained by canceling the derivative satisfies $x>1$. For $y=0$ we have again $f_{2}^{*}(0)=\sup -f_{2}=0$. For $y<0$ the function $x \mapsto x y-f_{2}(x)$ is decreasing, so that $x=1$ is optimal, and we have $f_{2}^{*}(y)=y$. In this case we have

$$
f_{2}^{*}(y)= \begin{cases}2 e^{\sqrt{y+1}-1}(\sqrt{y+1}-1) & \text { if } y \geq 0 \\ y & \text { if } y<0\end{cases}
$$

Exercice 4 (8 points). Let Ω be a bounded open subset of \mathbb{R}^{d}. Consider the following minimization problem

$$
\inf \left\{\int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}-2 \sqrt{u}\right) d x: u \geq 0, u-1 \in H_{0}^{1}(\Omega)\right\}
$$

1. Prove that it admits a unique solution.
2. Prove that the solution \bar{u} satisfies $\bar{u} \geq 1$.
3. Prove that the solution is C^{∞} on the interior of Ω.
4. In the cases where Ω is a cube, prove that we have $\bar{u} \in W^{2, p}(\Omega)$ for every $p<\infty$.
5. In the cases where Ω is a ball, prove that the solution is radially decreasing and C^{∞} up to the boundary.

Solution:

1. Any minimizing sequence u_{n} satisfies $\left\|\nabla u_{n}\right\|_{L^{2}}^{2} \leq C\left(1+\int \sqrt{u_{n}}\right) \leq C\left(1+\left\|u_{n}\right\|_{L^{1}}^{1 / 2}\right)$ (the last inequality comes from Jensen's or Hölder's inequalities). Using $\left\|u_{n}\right\|_{L^{1}} \leq\left\|u_{n}-1\right\|_{L^{1}}+C$ together with Poincaré's inequality we see that this imples a bound on $\left\|\nabla u_{n}\right\|_{L^{2}}$. We can then extract a weakly converging subsequence in H^{1}. The limit u is non-negative and is a minimizer since the functional is l.s.c. as the integrand is convex in both u and ∇u. The minimizer is unique since the functional is even strictly convex.
2. If the solution \bar{u} does not satisfy $\bar{u} \geq 1$ then $\tilde{u}:=\max \{1, \bar{u}\}$ would provide a better value than \bar{u}.
3. the Euler-Lagrange equation of the problem is $\Delta u=u^{-1 / 2}$ and is solved by $u=\bar{u} \geq 1$. This implies $\Delta \bar{u} \in L^{\infty} \subset L^{p}$ for every p, so that $\bar{u} \in W_{l o c}^{2, p}$. The function $s \mapsto s^{-1 / 2}$ is a C^{∞} diffeomorphism with bounded derivatives on $[1, \infty)$, so that $\bar{u}^{-1 / 2}$ has the same regularity as \bar{u}. Iterating the regulairty argument we obtain $\bar{u} \in W_{l o c}^{2 k, p}$ for every k, hence $\bar{u} \in C^{\infty}$ far from the boundary.
4. In the cases where Ω is a cube the standard reflection arguments allow to see \bar{u} as the restriction of a solution u to $\Delta u=f$ with $f \in L^{\infty}$ (but no extra regularity since the reflection breaks the continuity of f). this proves that the $W^{2, p}$ regularity is global.
5. In the cases where Ω is a ball, the uniqueness of the solution implies that \bar{u} is radial. We then write $\bar{u}(x)=\bar{f}(|x|)$ and look at the variational problem solved by \bar{f}, which minimizes

$$
\int_{0}^{R} r^{d-1}\left(\frac{\left|f^{\prime}(r)\right|^{2}}{2}-\sqrt{f(r)}\right) d r
$$

among functions with $f(R)=1$. The correspondin Euler-Lagrange equation is $\left(r^{d-1} f^{\prime}(r)\right)^{\prime}=$ $-r^{d-1} f(r)^{-1 / 2}$. Since we know that \bar{u} is smooth inside the ball, then we have $f^{\prime}(0)=0$, which implies $f^{\prime}(r)<0$ for every r using the equation, and hence \bar{u} is radially decreasing. Moreover, the above differential equation shows that, at least far from $r=0$, the regularity of f^{\prime} is one extra derivative better than that of f, which iteratively implies $f \in C^{\infty}$. This can be applied on (ε, R), while the general result can be applied on $[0, R-\varepsilon)$ and, together, they imply $\bar{u} \in C^{\infty}$ up to the boundary.

