Calculus of Variations and Elliptic PDEs

Mid-Term Examination

All kind of documents (notes, books...) are authorized. The total number of points is much larger than 20, which means that attacking only some exercises could be a reasonable option. The exercises are not necessarily ordered by difficulty.

Exercice 1 (5 points). Consider the problem

$$\min\left\{\int_0^1 \left(e^t \frac{u'(t)^2}{2} + e^{2t}u(t)\right) dt \quad : \quad u \in C^1([0,1]), \ u(1) = 0\right\}.$$

Find its minimizer, proving that it is unique and justifying its minimality.

Solution:

The Euler-Lagrange system for this problem is given by

$$\begin{cases} (e^t u')' = e^{2t}, \\ u(1) = 0, \\ u'(0) = 0. \end{cases}$$

Using the last condition we obtain

$$e^{t}u'(t) = \int_{0}^{t} e^{2s} ds = \frac{1}{2}(e^{2t} - 1),$$

hence

$$u'(t) = \frac{1}{2}(e^t - e^{-t}), \qquad u(t) = \frac{1}{2}(e^t + e^{-t}) + c.$$

In order to impose the Dirichlet condition at t = 1 we need $c = -\frac{1}{2}(e + e^{-1})$.

The function u given by $u(t) = \frac{1}{2}(e^t + e^{-t} - (e + e^{-1}))$ satisfies all the conditions of the Euler-Lagrange system. The problem being convex, this function is a minimizer. It is the unique minimizer since the integrand is strictly convex in u' and convex in u: as a consequence, two minimizers could only differ by a constant, bbut the final value being fixed they should coincide.

Exercice 2 (10 points). Let Ω be a bounded open subset of \mathbb{R}^d . Consider the minimization problem

$$\min\left\{\int_{\Omega} (e^{|\nabla u(x)|} - |\nabla u(x)| - u(x)^2 - f(x)u(x))dx : u \in H_0^1(\Omega) \cap C^0(\Omega)\right\},\$$

where $f \in L^1(\Omega)$ is a given function.

1. Prove that the problem has a solution.

- 2. Find the Euler-Lagrange equation of the problem, and in which sense do solutions solve it.
- 3. If d = 1, prove that minimizers are Lipschitz functions, and that they are C^{∞} if $f \in C^{\infty}$.
- 4. In case a minimizer \bar{u} is Lipschitz continuous, prove $\int_{\Omega} (e^{|\nabla \bar{u}|} 1) |\nabla \bar{u}| dx = \int_{\Omega} (2\bar{u}^2 + f\bar{u}) dx$.

- 5. (Much more difficult: the goalhere is to prove a similar relation without assuming $\bar{u} \in W^{1,\infty}$).
 - (a) Prove that at least a minimizer \bar{u} satisfies $\int_{\Omega} (e^{|\nabla \bar{u}|} 1) |\nabla \bar{u}| dx \leq \int_{\Omega} (2\bar{u}^2 + f\bar{u}) dx$.
 - (b) Prove that the same inequality is satisfied by any minimizer \bar{u} .

Solution:

1. Let us take a minimizing sequence u_n . From $e^{|\nabla u|} - |\nabla u| = 1 + \sum_{k\geq 2} \frac{1}{k!} |\nabla u|^k$, we see that all competitor for which the functional is finite actually belongs to $W_0^{1,p}$ for every p. Choosing an integer p with $p > \max\{2, d\}$, we deduce a $W^{1,p}$ bound on u_n . Indeed, we have

$$\frac{1}{p!} ||\nabla u||_{L^p}^p - ||u_n||_{L^2}^2 - ||f||_{L^1} ||u_n||_{L^\infty} \le C.$$

Using the injection of $W^{1,p}$ into both L^2 and L^{∞} (because p is large) and the equivalence between the $W^{1,p}$ norm and the L^p norm of the gradient (because of the boundary condition), we see that this provides a bound on $\frac{1}{p!} ||\nabla u||_{L^p}^p$. Up to subsequences, we can suppose that we have $u_n \rightharpoonup u$ in $W^{1,p}$, with uniform convergence $u_n \rightarrow u$.

Since $z \mapsto e^{|z|} - |z|$ is convex, the functional is lower semicontinuous for the weak $W^{1,p}$ convergence. The function u is an admissible competitor since it belogns to H_0^1 as a weak limit (in $W^{1,p}$ and hence also in H^1) of H_0^1 functions and since it is continuous as it belogs to $W^{1,p}$ for p > d. Hence, u is a minimizer.

2. The Euler-Lagrange equation is given by

$$\nabla \cdot \left((e^{|\nabla u|} - 1) \frac{\nabla u}{|\nabla u|} \right) = -2u - f.$$

Yet, if we want to guarantee that we can differentiate under the integral sign in order to obtain its weak version, i.e.

$$\int_{\Omega} (e^{|\nabla u|} - 1) \frac{\nabla u}{|\nabla u|} \cdot \nabla \varphi = \int_{\Omega} (2u + f) \varphi$$

we need to bound the integral of $e^{|\nabla u + \varepsilon \nabla \varphi|}$, which is possible if $|\nabla \varphi|$ is bounded. This is why we can state the weak version of the Euler-Lgrange equation is satisfied if restricted to Lipschitz test functions φ with $\varphi = 0$ on $\partial \Omega$.

- 3. If d = 1, the weak derivative of the L^1 function $(e^{|\bar{u}'|} 1)\frac{\bar{u}'}{|\bar{u}'|}$ equals $-2\bar{u} f$, which is L^1 . Primitevs of L^1 functions are bounded, which provides a bound on $|\bar{u}'|$, and \bar{u} is Lipschitz continuous. If $f \in C^{\infty}$ we can iterate the regularity argument: we now know that $(e^{|\bar{u}'|} - 1)\frac{\bar{u}'}{|\bar{u}'|}$ has a Lipschitz derivative, hence it is $C^{1,1}$. We deduce $\bar{u} \in C^{2,1}$ and by induction $u \in C^{k,1}$ for every k.
- 4. In case a minimizer \bar{u} is Lipschitz continuous we can use it as a test function in the Euler-Lgrange equation, and the resulting condition exactly provides $\int_{\Omega} (e^{|\nabla \bar{u}|} 1) |\nabla \bar{u}| dx = \int_{\Omega} (2\bar{u}^2 f\bar{u}) dx$.
- 5. The difficult point here is that we cannot in general use the minimizer itself as a test function, while it is the case when the integrand has a polynomial growth. We therefore define $F_N(u) = \int_{\Omega} (1 + \sum_{k=2}^{N} \frac{|\nabla u|^k}{k!})$ and $F(u) = \int_{\Omega} e^{|\nabla u|} |\nabla u| = \lim_{N \to \infty} F_N(u)$, and consider the problem where F is replaced with F_N .
 - (a) If we call u_N a minimizer of $F_N(u) \int_{\Omega} u^2 + fu$ (which exists for $N > \max\{2, d\}$), we can prove now that we have

$$\int_{\Omega} \sum_{k \ge 2}^{N} \frac{1}{(k-1)!} |\nabla u_N|^k = \int_{\Omega} 2u_N^2 + fu_N.$$

If we fix again an integer p with $p > \max\{2, d\}$ and we restrict to $N \ge p$ we can obtain a uniform bound (not depending on N) on $||\nabla u_N||_{L^p}$. We can then extract a subsequence (that we still denote by u_N) such that $u_N \rightharpoonup u_\infty$ in $W^{1,p}$. This weak convergence implies the uniform convergence of u_N to u_∞ . We then consider

$$\int_{\Omega} \sum_{k\geq 2}^{p} \frac{1}{(k-1)!} |\nabla u_N|^k \leq \int_{\Omega} 2u_N^2 + fu_N$$

and pass to the limit, using convexity and hence lower semicontinuity on the left hand side. We then obtain

$$\int_{\Omega} \sum_{k\geq 2}^{p} \frac{1}{(k-1)!} |\nabla u_{\infty}|^{k} \leq \int_{\Omega} 2u_{\infty}^{2} + fu_{\infty}$$

and, taking the limit $p \to \infty$, we obtain the desired result. We just need now to show that u_{∞} is a minimizer of the original problem. This comes from the minimality of u_N , since we have, for an arbitrary competitor u and $N \ge p$,

$$\int_{\Omega} 1 + \sum_{k \ge 2}^{p} \frac{1}{k!} |\nabla u_{N}|^{k} - \int_{\Omega} (u_{N}^{2} + fu_{N}) \le \int_{\Omega} 1 + \sum_{k \ge 2}^{N} \frac{1}{k!} |\nabla u|^{k} - \int_{\Omega} (u^{2} + fu) \le \int_{\Omega} e^{|\nabla u|} - |\nabla u| - \int_{\Omega} (u^{2} + fu) \le \int_{\Omega} e^{|\nabla u|} + \int_{\Omega} e^{|\nabla u|} +$$

From the semicontinuity on the left hand side we obtain

$$\int_{\Omega} 1 + \sum_{k \ge 2}^{p} \frac{1}{k!} |\nabla u_{\infty}|^{k} - \int_{\Omega} (u_{\infty}^{2} + fu_{\infty}) \le \int_{\Omega} e^{|\nabla u|} - |\nabla u| - \int_{\Omega} (u^{2} + fu).$$

Sending $p \to \infty$ we obtain the desired minimality for u_{∞} .

(b) Proving that the same inequality is satisfied by any minimizer \bar{u} is more delicate since we do not have uniqueness of the minimizer. We then act in the following way. Let \bar{u} be a minimizer and set $g = 2\bar{u} + f$. We now consider u_N a minimizer of $F_N(u) - \int gu$. The same arguments as above prove that we have

$$\int_{\Omega} \sum_{k\geq 2}^{N} \frac{1}{(k-1)!} |\nabla u_N|^k = \int_{\Omega} g u_N$$

and that u_N is bounded in $W^{1,p}$ for $p > \max\{2, d\}$. We then call, again, u_∞ its weak the limit and obtain (via the same computations as before) that u_∞ minimizes the functional $u \mapsto \int_{\Omega} e^{|\nabla u|} - |\nabla u| - \int_{\Omega} gu$ and that we have, indeed

$$\int_{\Omega} (e^{|\nabla u_{\infty}|} - 1) |\nabla u_{\infty}| dx \le \int_{\Omega} (2\bar{u} + f) u_{\infty}.$$

We are left to prove $u_{\infty} = \bar{u}$.

To do this, we exploit both the minimality of u_{∞} and \bar{u} :

$$F(u_{\infty}) - \int gu_{\infty} \leq F(\bar{u}) - \int g\bar{u}$$

$$F(\bar{u}) - \int \bar{u}^{2} + f\bar{u} \leq F(u_{\infty}) - \int u_{\infty}^{2} + fu_{\infty}.$$

If we sum the two ineqalities and simplify the expressions using $g = 2\bar{u} + f$, we obtain $\int |u_{\infty} - \bar{u}|^2 \leq 0$, i.e. $u_{\infty} = \bar{u}$.

Exercice 3 (5 points). Consider the two functions $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ given by

$$f_1(x) = \begin{cases} x(\log x)^2 & \text{if } x \ge 1\\ 0 & \text{if } x < 1, \end{cases} \quad f_2(x) = \begin{cases} x(\log x)^2 & \text{if } x \ge 1\\ +\infty & \text{if } x < 1, \end{cases}$$

- 1. Prove that f_1 and f_2 are convex.
- 2. Find f_1^* and f_2^* .

Solution: Let us compute the first derivative of $x \mapsto x(\log x)^2$: it is given by $(\log x)^2 + 2\log x$, which is positive and increasing on $x \ge 1$. Hence, both f_1 and f_2 are convex and increasing on $[1, +\infty)$, and they are also convex on \mathbb{R} since in the case of f_1 the function has be extended to be equal to its tangent at x = 1, in the case of f_2 to $+\infty$ our of a convex set.

We now compute f_1^* . We have $f_1^*(y) = \sup_x xy - f_1(x)$. Since $f_1 = 0$ before 1, if y > 0 the minimization can be restricted to $\{x \ge 0\}$ since for x < 1 we obtain results smaller than what is obtained for x = 1. On the other hand, for y < 0 the sup can be attained using a sequence of points diverging to $-\infty$, and we have $f_1^*(y) = +\infty$. For y = 0 we have $f_1^*(0) = \sup_x -f_1 = 0$. We ust have to compute the value of $f_1^*(y)$ for y > 0 and we look for the maximizer by computing the derivative. The derivative of $x \mapsto xy - f_1(x)$ is equal for $x \ge 0$ to $y - (\log x)^2 + 2\log x$. Setting $z = \log x \ge 0$, this vanishes whenever $(z + 1)^2 = y + 1 > 1$, hence $z = \pm \sqrt{y + 1} - 1$. Since the choice of the negative sign would give z < 0, the maximum is attained for a point x such that $\log x = \sqrt{y + 1} - 1 > 1 - 1 = 0$, so that x > 1. We now compute this maximum:

$$f_1^*(y) = xy - x(\log x)^2 = x(y - z^2) = x((z+1)^2 - 1 - z^2) = 2xz = 2e^{\sqrt{y+1}-1}(\sqrt{y+1} - 1)$$

This same expression is also valid for y = 0, as it gives 0 as a value. Summarizing, we have

$$f_1^*(y) = \begin{cases} 2e^{\sqrt{y+1}-1}(\sqrt{y+1}-1) & \text{if } y \ge 0, \\ +\infty & \text{if } y < 0. \end{cases}$$

The computations for f_2^* are exactly the same for y > 0 since in this case it is obvious that the maximum should be restricted to $x \ge 1$ and the maximizer obtained by canceling the derivative satisfies x > 1. For y = 0 we have again $f_2^*(0) = \sup -f_2 = 0$. For y < 0 the function $x \mapsto xy - f_2(x)$ is decreasing, so that x = 1 is optimal, and we have $f_2^*(y) = y$. In this case we have

$$f_2^*(y) = \begin{cases} 2e^{\sqrt{y+1}-1}(\sqrt{y+1}-1) & \text{ if } y \ge 0, \\ y & \text{ if } y < 0. \end{cases}$$

Exercice 4 (8 points). Let Ω be a bounded open subset of \mathbb{R}^d . Consider the following minimization problem

$$\inf\left\{\int_{\Omega} \left(\frac{1}{2}|\nabla u|^2 - 2\sqrt{u}\right) dx : u \ge 0, u - 1 \in H_0^1(\Omega)\right\}.$$

- 1. Prove that it admits a unique solution.
- 2. Prove that the solution \bar{u} satisfies $\bar{u} \geq 1$.
- 3. Prove that the solution is C^{∞} on the interior of Ω .
- 4. In the cases where Ω is a cube, prove that we have $\bar{u} \in W^{2,p}(\Omega)$ for every $p < \infty$.
- 5. In the cases where Ω is a ball, prove that the solution is radially decreasing and C^{∞} up to the boundary.

Solution:

1. Any minimizing sequence u_n satisfies $||\nabla u_n||_{L^2}^2 \leq C(1 + \int \sqrt{u_n}) \leq C(1 + ||u_n||_{L^1}^{1/2})$ (the last inequality comes from Jensen's or Hölder's inequalities). Using $||u_n||_{L^1} \leq ||u_n - 1||_{L^1} + C$ together with Poincaré's inequality we see that this imples a bound on $||\nabla u_n||_{L^2}$. We can then extract a weakly converging subsequence in H^1 . The limit u is non-negative and is a minimizer since the functional is l.s.c. as the integrand is convex in both u and ∇u . The minimizer is unique since the functional is even strictly convex.

- 2. If the solution \bar{u} does not satisfy $\bar{u} \ge 1$ then $\tilde{u} := \max\{1, \bar{u}\}$ would provide a better value than \bar{u} .
- 3. the Euler-Lagrange equation of the problem is $\Delta u = u^{-1/2}$ and is solved by $u = \bar{u} \ge 1$. This implies $\Delta \bar{u} \in L^{\infty} \subset L^p$ for every p, so that $\bar{u} \in W_{loc}^{2,p}$. The function $s \mapsto s^{-1/2}$ is a C^{∞} diffeomorphism with bounded derivatives on $[1, \infty)$, so that $\bar{u}^{-1/2}$ has the same regularity as \bar{u} . Iterating the regularity argument we obtain $\bar{u} \in W_{loc}^{2k,p}$ for every k, hence $\bar{u} \in C^{\infty}$ far from the boundary.
- 4. In the cases where Ω is a cube the standard reflection arguments allow to see \bar{u} as the restriction of a solution u to $\Delta u = f$ with $f \in L^{\infty}$ (but no extra regularity since the reflection breaks the continuity of f). this proves that the $W^{2,p}$ regularity is global.
- 5. In the cases where Ω is a ball, the uniqueness of the solution implies that \bar{u} is radial. We then write $\bar{u}(x) = \bar{f}(|x|)$ and look at the variational problem solved by \bar{f} , which minimizes

$$\int_0^R r^{d-1} \left(\frac{|f'(r)|^2}{2} - \sqrt{f(r)} \right) dr$$

among functions with f(R) = 1. The correspondin Euler-Lagrange equation is $(r^{d-1}f'(r))' = -r^{d-1}f(r)^{-1/2}$. Since we know that \bar{u} is smooth inside the ball, then we have f'(0) = 0, which implies f'(r) < 0 for every r using the equation, and hence \bar{u} is radially decreasing. Moreover, the above differential equation shows that, at least far from r = 0, the regularity of f' is one extra derivative better than that of f, which iteratively implies $f \in C^{\infty}$. This can be applied on (ε, R) , while the general result can be applied on $[0, R - \varepsilon)$ and, together, they imply $\bar{u} \in C^{\infty}$ up to the boundary.