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Calculus of Variations and Elliptic PDEs

Mid-Term Examination

All kind of documents (notes, books...) are authorized. The total number of points is much
larger than 20, which means that attacking only some exercises could be a reasonable option.
The exercises are not necessarily ordered by difficulty.

Exercice 1 (5 points). Consider the problem

: Lo ()? 2t 1
mm{/o (e 5 +e u(t)) dt : weC(]0,1]), u(1) :0}.

Find its minimizer, proving that it is unique and justifying its minimality.

Solution:

The Euler-Lagrange system for this problem is given by

(etu/)/ — €2t,
u(1l) =0,
u'(0) = 0.

Using the last condition we obtain

2
hence ] 1
u'(t) = é(et —eh), u(t) = i(et +e ) +e
In order to impose the Dirichlet condition at ¢ = 1 we need ¢ = —3(e +e™1).

The function u given by u(t) = 3 (e’ + et —(e+e!)) satisfies all the conditions of the Euler-Lagrange
system. The problem being convex, this function is a minimizer. It is the unique minimizer since the
integrand is strictly convex in «’ and convex in u: as a consequence, two minimizers could only differ
by a constant, bbut the final value being fixed they should coincide.

Exercice 2 (10 points). Let © be a bounded open subset of R?. Consider the minimization problem
: [Vu(z)] - 2 . 1 0
min { / (e V()| - u(@)? — f(z)u(z))ds : ue H(Q)NC (Q)},
Q
where f € LY(Q) is a given function.

1. Prove that the problem has a solution.
2. Find the Euler-Lagrange equation of the problem, and in which sense do solutions solve it.
3. If d = 1, prove that minimizers are Lipschitz functions, and that they are C* if f € C°.

4. Tn case a minimizer 4 is Lipschitz continuous, prove [o(e/V¥ —1)|Vu|dr = [, (2u® + fu)dz.



5. (Much more difficult: the goalhere is to prove a similar relation without assuming u € WhH>).

(a) Prove that at least a minimizer @ satisfies [,,(e!V —1)|Va|dz < [,(2u® + fu)dx

(b) Prove that the same inequality is satisfied by any minimizer .
Solution:

1. Let us take a minimizing sequence u,. From e/V¥ — |Vu| = 1 + Sks2 11 Vul¥, we see that all

competitor for which the functional is finite actually belongs to I/VO1 P for every p. Choosing an
integer p with p > max{2,d}, we deduce a W'? bound on u,. Indeed, we have

1
];HVUHIEP ~llunllZs = 1f 1zl unl|z < C.

Using the injection of WP into both L? and L™ (because p is large) and the equivalence between
the WP norm and the LP norm of the gradient (because of the boundary condition), we see
that this provides a bound on Z%HVUHZJ Up to subsequences, we can suppose that we have

Uy — w in WP, with uniform convergence u,, — u.
Since z  el*l — |z] is convex, the functional is lower semicontinuous for the weak W'* conver-
gence. The function u is an admissible competitor since it belogns to H} as a weak limit (in

WP and hence also in H') of H} functions and since it is continuous as it belogs to WP for
p > d. Hence, u is a minimizer.

2. The Euler-Lagrange equation is given by

V- ((ev“| - 1);5‘) = —2u— f.

Yet, if we want to guarantee that we can differentiate under the integral sign in order to obtain

its weak version, i.e.
\Y
/(eIVu\ 1)— u Vi = / (2u+ f)o
Q |Vu|

we need to bound the integral of elV¥+V¥¢l which is possible if V| is bounded. This is why
we can state the weak version of the Euler-Lgrange equation is satsfied if restricted to Lipschitz
test functions ¢ with ¢ = 0 on 0€.

3. If d = 1, the weak deriviative of the L' function (e'ﬂl| — 1)% equals —2u — f, which is L'
Primitevs of L! functions are bounded, which provides a bound on |u'|, and # is Lipschitz
continuous. If f € C° we can iterate the regularity argument: we now know that (el®! — 1)%

has a Lipschitz derivative, hence it is C1'. We deduce & € C*! and by induction v € C*1! for
every k.

4. In case a minimizer u is Lipschitz continuous we can use it as a test function in the Euler-Lgrange
equation, and the resulting condition exactly provides [,,(e!V¥ — 1)|Va|dx = [,(2u® — fu)dz.

5. The difficult point here is that we cannot in general use the minimizer itself as a test function,
while it is the case when the integrand has a polynomial growth. We therefore define Fi(u) =

Jo(1+ 0, Wu‘ ) and F(u) = [elV¥ —|Vu| = limy_,o Fi(u), and consider the problem
where F' is replaced with Fly.

(a) If we call ux a minimizer of Fy(u) — o u? + fu (which exists for N > max{2,d}), we can
prove now that we have
L

oy Vel = / 23 + fuy.
k>2



If we fix again an integer p with p > max{2,d} and we restrict to N > p we can obtain
a uniform bound (not depending on N) on ||Vuy/||zr. We can then extract a subsequence
(that we still denote by wuy) such that uy — s in WHP. This weak convergence implies
the uniform convergence of uy to us. We then consider

i

and pass to the limit, using convexity and hence lower semicontinuity on the left hand side.

We then obtain

k>2

|VuN|k / 2uN+fuN
k>2

]Vuoo\ /2u + oo

and, taking the limit p — oo, we obtain the desired result. We just need now to show that
Uso 18 @ minimizer of the original problem. This comes from the minimality of uy, since we
have, for an arbitrary competitor u and N > p,

1+Z |qu|— (uN+fuN) 1+Z '|Vu\k (u2+fu)§ VU | Tu|— [ (P4 fu).
Q k! Q Q

k>2 k>2

From the semicontinuity on the left hand side we obtain

/ 1+ Z k']Vuoo\k /(ugo + fuso) < /Qewu‘ — |Vu| — /Q(u2 + fu).

k>2

Sending p — oo we obtain the desired minimality for ux.

(b) Proving that the same inequality is satisfied by any minimizer u is more delicate since we
do not have uniqueness of the minimizer. We then act in the following way. Let u be a
minimizer and set g = 2u+ f. We now consider uy a minimizer of Fy(u)— [ gu. The same
arguments as above prove that we have

L

and that uy is bounded in WP for p > max{2,d}. We then call, again, us, its weak the
limit and obtain (via the same computations as before) that u., minimizes the functional
u s eVl —|Vul — [, gu and that we have, indeed

Gyl = / Jun
k>2 Q

/(e\V%ol 1) |V |de < / (200 + f)ttoe.
Q Q

We are left to prove us = u.

To do this, we exploit both the minimality of us, and u:
F(uoo)—/guoo < F(ﬂ)—/gﬂ
P@) - [@+fi < Flus) = [k + fus.

If we sum the two ineqalities and simplify the expressions using g = 2u + f, we obtain
[ Ntoo — ul? <0, ie. us = .

Exercice 3 (5 points). Consider the two functions f1, fo : R — R given by

xlogw2 ifz>1 gvlog:v2 ifz>1
fiw) = {loB ) falawy = { P8 e L
0 ifr <1, +o0 ifr <1,



1. Prove that f; and fo are convex.

2. Find f{ and f3.

Solution: Let us compute the first derivative of z +— x(logz)?: it is given by (log z)? + 2log , which
is positive and increasing on x > 1. Hence, both f; and fs are convex and increasing on [1,+00),
and they are also convex on R since in the case of fi the function has be extended to be equal to its
tangent at x = 1, in the case of fs to +00 our of a convex set.

We now compute f;. We have f{(y) = sup, xy— fi(x). Since f; = 0 before 1, if y > 0 the minimization
can be restricted to {x > 0} since for x < 1 we obtain results smaller than what is obtained for x = 1.
On the other hand, for y < 0 the sup can be attained using a sequence of points diverging to —oo,
and we have f{(y) = +oo. For y = 0 we have f;(0) = sup—f; = 0. We ust have to compute the
value of f(y) for y > 0 and we look for the maximizer by computing the derivative. The derivative
of x — xy — f1(x) is equal for x > 0 to y — (logx)? + 2logz. Setting z = logz > 0, this vanishes
whenever (z +1)2 =y +1 > 1, hence z = /y + 1 — 1. Since the choice of the negative sign would
give z < 0, the maximum is attained for a point z such that logz = /y+1—1>1—1 =0, so that
x > 1. We now compute this maximum:

fiy) =ay —a(ogz)? =a(y—22) =a((z+1)2 =1 —2%) =222 =2V -1y +1—1).

This same expression is also valid for y = 0, as it gives 0 as a value.

Summarizing, we have

. 2eVVHI-L(fy+T1—-1) ify >0,
fily) = .
+o00 it y <0.

The computations for f; are exactly the same for y > 0 since in this case it is obvious that the
maximum should be restricted to > 1 and the maximizer obtained by canceling the derivative
satisfies x > 1. For y = 0 we have again f5(0) = sup —fo = 0. For y < 0 the function z — zy — fao(x)
is decreasing, so that x = 1 is optimal, and we have f5(y) = y. In this case we have

2eVVHITL(y+T1—1) ify>0,

Exercice 4 (8 points). Let  be a bounded open subset of RY. Consider the following minimization
problem

1
inf{/ (§|Vu|2 - 2ﬁ> dr : u>0,u—1¢€ H&(Q)} .
Q
1. Prove that it admits a unique solution.
2. Prove that the solution u satisfies @ > 1.

Prove that the solution is C°° on the interior of 2.

- W

In the cases where ) is a cube, prove that we have u € W2P(Q) for every p < oc.

5. In the cases where () is a ball, prove that the solution is radially decreasing and C'*® up to the
boundary.

Solution:

1. Any minimizing sequence u, satisfies ||[Vu,|[2, < C(1 + [\/un) < C(1 + HunHlL/12) (the last
inequality comes from Jensen’s or Hélder’s inequalities). Using ||un||zr < |Jun — 1|10 + C
together with Poincaré’s inequality we see that this imples a bound on ||Vu,|| 2. We can then
extract a weakly converging subsequence in H'. The limit u is non-negative and is a minimizer
since the functional is l.s.c. as the integrand is convex in both u and Vu. The minimizer is
unique since the functional is even strictly convex.



. If the solution u does not satisfy u > 1 then @ := max{1,u} would provide a better value than
U.

. the Euler-Lagrange equation of the problem is Au = u~/2 and is solved by u = @ > 1. This
implies Au € L>® C LP for every p, so that u € I/Vlif The function s — s~ 1/2 is a O
diffeomorphism with bounded derivatives on [1,00), so that %~ /2 has the same regularity as u.
Iterating the regulairty argument we obtain u € Wi’i’p for every k, hence u € C* far from the
boundary.

. In the cases where 2 is a cube the standard reflection arguments allow to see u as the restriction
of a solution u to Au = f with f € L* (but no extra regularity since the reflection breaks the
continuity of f). this proves that the W?2P regularity is global.

. In the cases where €2 is a ball, the uniqueness of the solution implies that  is radial. We then
write u(z) = f(|z|) and look at the variational problem solved by f, which minimizes

/R 7nd—l <‘f/g)’2 _ f(?“)) dr
0

among functions with f(R) = 1. The correspondin Euler-Lagrange equation is (r?=1f/(r)) =
—r4=1f(r)=1/2. Since we know that 4 is smooth inside the ball, then we have f'(0) = 0, which
implies f/(r) < 0 for every r using the equation, and hence @ is radially decreasing. Moreover,
the above differential equation shows that, at least far from r = 0, the regularity of f’ is one
extra derivative better than that of f, which iteratively implies f € C**°. This can be applied on
(e, R), while the general result can be applied on [0, R — ¢) and, together, they imply u € C*
up to the boundary.



