Calculus of Variations and Elliptic PDEs

Mid-Term Examination

All kind of documents (notes, books...) are authorized. The total number of points is much larger than 20, which means that attacking only some exercises could be a reasonable option. The exercises are not necessarily ordered by difficulty.

Exercice 1 (5 points). Consider the problem

$$
\min \left\{\int_{0}^{1}\left(e^{t} \frac{u^{\prime}(t)^{2}}{2}+e^{2 t} u(t)\right) d t \quad: \quad u \in C^{1}([0,1]), u(1)=0\right\} .
$$

Find its minimizer, proving that it is unique and justifying its minimality.
Exercice 2 (10 points). Let Ω be a bounded open subset of \mathbb{R}^{d}. Consider the minimization problem

$$
\min \left\{\int_{\Omega}\left(e^{|\nabla u(x)|}-|\nabla u(x)|-u(x)^{2}-f(x) u(x)\right) d x: u \in H_{0}^{1}(\Omega) \cap C^{0}(\Omega)\right\}
$$

where $f \in L^{1}(\Omega)$ is a given function.

1. Prove that the problem has a solution.
2. Find the Euler-Lagrange equation of the problem, and in which sense do solutions solve it.
3. If $d=1$, prove that minimizers are Lipschitz functions, and that they are C^{∞} if $f \in C^{\infty}$.
4. In case a minimizer \bar{u} is Lipschitz continuous, prove $\int_{\Omega}\left(e^{|\nabla \bar{u}|}-1\right)|\nabla \bar{u}| d x=\int_{\Omega}\left(2 \bar{u}^{2}+f \bar{u}\right) d x$.
5. (Much more difficult: the goal here is to prove a similar relation without assuming $\bar{u} \in W^{1, \infty}$).
(a) Prove that at least a minimizer \bar{u} satisfies $\int_{\Omega}\left(e^{|\nabla \bar{u}|}-1\right)|\nabla \bar{u}| d x \leq \int_{\Omega}\left(2 \bar{u}^{2}+f \bar{u}\right) d x$.
(b) Prove that the same inequality is satisfied by any minimizer \bar{u}.

Exercice 3 (5 points). Consider the two functions $f_{1}, f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f_{1}(x)=\left\{\begin{array}{ll}
x(\log x)^{2} & \text { if } x \geq 1, \\
0 & \text { if } x<1,
\end{array} \quad f_{2}(x)= \begin{cases}x(\log x)^{2} & \text { if } x \geq 1, \\
+\infty & \text { if } x<1\end{cases}\right.
$$

1. Prove that f_{1} and f_{2} are convex.
2. Find f_{1}^{*} and f_{2}^{*}.

Exercice 4 (8 points). Let Ω be a bounded open subset of \mathbb{R}^{d}. Consider the following minimization problem

$$
\inf \left\{\int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}-2 \sqrt{u}\right) d x: u \geq 0, u-1 \in H_{0}^{1}(\Omega)\right\}
$$

1. Prove that it admits a unique solution.
2. Prove that the solution \bar{u} satisfies $\bar{u} \geq 1$.
3. Prove that the solution is C^{∞} on the interior of Ω.
4. In the cases where Ω is a cube, prove that we have $\bar{u} \in W^{2, p}(\Omega)$ for every $p<\infty$.
5. In the cases where Ω is a ball, prove that the solution is radially decreasing and C^{∞} up to the boundary.
