Calculus of Variations and Elliptic PDEs

Mid-Term Examination

All kind of documents (notes, books...) are authorized. The total number of points is much larger than 20, which means that attacking only some exercises could be a reasonable option. The exercises are not necessarily ordered by difficulty.

Exercice 1 (6 points). Find the solution of the problem

$$\min\left\{\int_0^{\pi} e^{\cos(t)} \left(\frac{u'(t)^2}{2} + u(t)(1 - \cos(t) - \cos^2(t))\right) dt \quad : \quad u \in C^1([0,\pi]), \ u(0) = 0\right\},$$

properly justifying its minimality and its uniqueness.

Exercice 2 (4 points). Let Ω be a bounded open subset of \mathbb{R}^d . Consider the minimization problem

$$\min\left\{\int_{\Omega} \left(\sqrt{u(x)^4 + |\nabla u(x)|^4} + \cos(u(x) - g(x)) + \sqrt{1 + u(x)^2 |\nabla u(x)|^2}\right) dx : u \in H_0^1(\Omega)\right\}$$

where g is a given measurable function defined on Ω . Prove that the problem has a solution.

Exercice 3 (5 points). Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{x^2}{2} + \cos(x)$. Prove that f is strictly convex and that f^* is a C^1 function of the form $f^*(y) = \frac{y^2}{2} + h(y)$, where h satisfies $|h| \le 1$, h(0) = -1 and $h'(x - \sin(x)) = \sin(x)$. Find the value of f^* at all the points $y = k\pi$ for $k \in \mathbb{Z}$.

Exercice 4 (12 points). Let \mathbb{T}^d be the *d*-dimensional torus. Consider the following minimization problem

$$\inf \left\{ J_f(u) := \int_{\mathbb{T}^d} \left(\frac{1}{3} |\nabla u(x)|^3 + f(x)u(x)^2 \right) \right) dx \; : \; u \in W^{1,3}(\mathbb{T}^d) \right\}$$

where f is a given Lipschitz continuous function on \mathbb{T}^d .

- 1. Find all the solutions of the problem when f is the zero function.
- 2. Prove that when $\int f(x) dx < 0$ there is no solution.
- 3. Prove that when $\int f(x)dx = 0$ but f is not the zero function there is no solution.
- 4. Assume $\int f(x) dx > 0$: prove that there exists a minimizing sequence $(u_n)_n$ with $\int f(x) u_n(x) dx = 0$.
- 5. Assume $\int f(x)dx \neq 0$: prove the following Poincaré-type inequality: there exists a constant C such that $||u||_{L^3} \leq C||\nabla u||_{L^3}$ for all functions $u \in W^{1,3}(\mathbb{T}^d)$ such that $\int f(x)u(x)dx = 0$.
- 6. Assuming $\int f(x)dx > 0$, prove that the problem admits a solution.
- 7. Prove that the functional J_f is convex if and only if $f \ge 0$ and prove, when f is not everywhere nonnegative but $\int f(x)dx > 0$, that the solution is not unique.
- 8. Write the PDE satisfied by the solutions (Euler-Lagrange equation).
- 9. Prove that we have $|\nabla u|^{1/2} \nabla u \in H^1(\mathbb{T}^d)$. Can we weaken the assumption on f in order to obtain the same result (replacing $f \in \text{Lip}$ with $f \in W^{1,p}$, and for which p)?