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Calculus of Variations and Elliptic PDEs – Final Exam

Duration: 3h. All kind of documents (notes, books. . . ) are authorized. The total number of points is
much larger than 20, which means that attacking two or three exercises could be a reasonable option.

Exercice 1 (7 points). Consider the minimization problem

min
{∫ T

0

e−2t

2

(
|u′(t)|2 − |u(t)|2

)
dt : u ∈ H1([0,T ]), u(0) = 1

}
.

1. Prove that the minimization problem admits a solution at least if T is small enough.

2. Write and solve the Euler-Lagrange equation of this minimization problem with its boundary conditions.

3. Prove the inequality
∫ T

0 e−2t|h(t)|2dt ≤
∫ T

0 e−2t|h′(t)|2dt for any h ∈ H1([0,T ]) with h(0) = 0.

4. Prove that the minimization problem admits a unique solution for any T > 0.

Solution:

1. We know the inequality |u(t)| = |
∫ t

0 u′| ≤ (
∫ T

0 |u
′|2)1/2T 1/2 which is valid whenever u(0) = 0. Hence

we deduce
∫ T

0 |u|
2 ≤ T 2

∫ T
0 |u

′|2. As a consequence, it T is such that e−2T > T 2 we have
∫ T

0 e−2t|u′|2 ≥

c
∫ T

0 e−2t|u|2 for c > 1. This means that any minimizing sequence will be bounded in H1 and then standard
semicontinuity results (since the integrand is convex in u′ but not in u) allow to prove the existence of a
minimizer.

2. The Euler-Lagrange equation is (e−2tu′)′ = −e−2tu, which becomes u′′ − 2u′ = −u, and the boundary
conditions are u(0) = 1 and u′(T ) = 0. The family of general solutions of the equation is given by
the functions of the form u(t) = (A + Bt)et and we need A = 1 to satisfy u(0) = 1. If we compute
u′(t) = (A + B + Bt)et imposing u′(T ) = 0 means taking B(1 + T ) = −A = −1, so the solution si given by
u(t) = (1 − t

T+1 )et.

3. The easiest way to prove the inequality
∫ T

0 e−2t|h(t)|2dt ≤
∫ T

0 e−2t|h′(t)|2dt for h(0) = 0 is to write h(t) =

etv(t), with v(0) = 0. Then we have e−2t(|h′(t)|2 − |h(t)|2) = |v′(t)|2 + 2v(t)′(t), so that∫ T

0
e−2t|h′(t)|2dt −

∫ T

0
e−2t|h(t)|2dt =

∫ T

0
[|v′(t)|2 + 2v(t)v′(t)]dt =

∫ T

0
|v′(t)|2dt + v(T )2 ≥ 0.

Another possibility is to solve

M := min

∫ T
0 e−2t|h′(t)|2dt∫ T
0 e−2t|h′t)|2dt

and prove that the optimal h (which exists) satisfies (e−2th′)′ = −Me−2th together with h(0) = 0 and
h′(T ) = 0. Suppose then M < 1 and prove that it is not possible to find a solution.

4. There is a unique solution u(t) = (1 − t
T+1 )et to the Euler-Lagrange equation. Hence there can be at most

one minimizer. We then take an arbitrary competitor of the form u + h and observe that we have (if we
call J the functional we minimize)

J(u + ϕ) = J(u) +

∫ T

0
e−2t[u′(t)ϕ′(t) − u(t)ϕ(t)]dt + J(ϕ).

We then have
∫ T

0 e−2t[u′(t)ϕ′(t) − u(t)ϕ(t)]dt = 0 because of the condition on u, and J(ϕ) ≥ 0 because of
the previous estimate. This proves that the solution of the Euler-Lagrange equation is indeed a minimizer.



Exercice 2 (5 points). Consider a Lipschitz domain Ω ⊂ Rd, a measurable map τ : Ω→ Ω and a scalar function
u ∈ H1

loc(Ω) which is a weak solution in Ω of

∇ ·

(
2 + u(τ(x))2

1 + u(τ(x))2∇u
)

= 0.

1. If τ is the identity, prove that u + arctan u is a harmonic function.

2. If τ ∈ C∞, prove u ∈ C∞(Ω).

Solution:

1. In the case where τ is the identity, we use 2+u2

1+u2 = 1 + 1
1+u2 and (1 + 1

1+u2 )∇u = ∇(u + arctan u), so that the
equation is equivalent to ∆(u + arctan u) = 0.

2. First note that a := 2+u2◦τ
1+u2◦τ

is bounded from below and above (it takes values in (1, 2]). Then, DeGiorgi-
Nash-Moser’s theorem implies u ∈ C0,α (locally) for some α. We now see that whenever we have some
regularity for u, then a has the same regularity since we compose with C∞ functions. Hence a ∈ C0,α and
u ∈ C1,α. But then, by induction, u ∈ Ck,α

loc provides u ∈ Ck+1,α
loc and finally u ∈ C∞.

Exercice 3 (7 points). Consider a smooth bounded and connected domain Ω ⊂ Rd, a function f ∈ L2(Ω) with>
f = 0, a number α ∈ R, and the minimization problem

min
{∫

Ω

(1 + |∇u|)2 + cos(αu + |∇u|) + f u : u ∈ H1(Ω)
}
.

1. For α = 0 prove that the minimization can be restricted to the functions u with
>

u = 0 and for α , 0 to
the functions u with |

>
u| ≤ π

|α| .

2. Prove that the problem admits a solution.

3. Prove that any solution satisfies α
∫

sin(αu + |∇u|) = 0.

4. Prove that the solution is unique up to additive constants if α = 0.

5. Find all the minimizers in the case f = 0 and α , 0.

Solution:

1. Thanks to the condition
>

f = 0, if α = 0 the functional is invariant when adding a constant to u, so we
can restrict to those functions which have zero-mean (or fix any other mean). When α , 0, the functional
is only invariant if adding a constant of the form 2kπα−1. So, we cannot change the mean of u into an
arbitrary mean, but we can bring it into any interval whose length is 2π/|α|, in paticular into [− π

|α| ,
π
|α| ].

2. We take a minimizing sequence un and, thanks to the previous considerations, we suppose that
>

un

is bounded. If we call J the functional to be minimized we have J(u) ≥
∫
|∇u|2 − |Ω| − || f ||L2 ||u||L2 .

We have ||u −
>

u||L2 ≤ C||∇u||L2 for any u, so that we have in our case ||un||L2 ≤ C(1 + ||∇un||L2) and
J(un) ≥ ||∇un||

2
L2 − C − C||∇un||L2 . This proves, using J(un) ≤ C, that||∇un||L2 is bounded, and hence un

is bounded in H1 and we can extract a weakly converging subsequence. We then note that the integrand
L(u, v) = (1+ |v|2)+cos(αu+ |v|) is continuous in (u, v) and convex in v (for this last property, we first look
at the function s 7→ (1 + s2) + cos(αu + s) which is increasing and convex on s ∈ R+ (just compute two
derivatives), and then compose with s = |v|, which is a convex function. This implies the semicontinuity
of the functional wrt the weak convergence in H1, and hence the existence of a minimizer.

3. We take u an optimizer and then consider d
ds J(u+ s), where s is a constant, and impose that this derivative

vanishes for s = 0.

4. The computation of the second derivative of L(u, v) = (1+ |v|2)+cos(αu+ |v|) wrt v shows that L is strictly
convex in v. If α =, then L does not depend on u, so that we have strict convexity in terms of the gradient
of u. The other term is linear, so it does not affect the convexity. The strict convexity in ∇u implies that
two different minimizers must have the same gradient, hence differ by a constant since Ω is connected.



5. For f = 0 and α , 0 take u =
(π+2kπ)

α . Since u is a constant, its gradient vanishes and we have J(u) =

|Ω|(1−1) = 0. On the other hand, we have for any u the inequalities (1+|∇u|)2 ≥ 1 and cos(αu+|∇u|) ≥ −1,
which show J(u) ≥ 0 for every u. If u realizes J(u) = 0 then we necessarily have |∇u| = 0 a.e. and
cos(αu) = −1, which shows that u =

(π+2kπ)
α covers all the possible solutions.

Exercice 4 (9 points). Given a curve ω ∈ C0(R;Rn) which is 2π-periodic, consider the minimization problem

min
{∫ 2π

0

(√
ε2 + |u′(t)|2 +

ε

2
|u′(t)|2 +

1
2
|u(t) − ω(t)|2

)
dt : u ∈ H1

per(R;Rn)
}
,

where H1
per(R) denotes the set of functions u ∈ H1

loc(R) which are 2π-periodic.

1. Prove that this minimization problem admits a unique solution uε.

2. Prove that the sequence of minimizers is bounded, when ε→ 0, in BV(I) for any interval I ⊂ R.

3. Prove that uε converges (in which sense?) to the unique solution ū of

min
{
|u′|([0, 2π[) +

∫ 2π

0

1
2
|u(t) − ω(t)|2dt : u ∈ BVper(R;Rn)

}
,

where BVper(R) denotes the set of functions u ∈ BVloc(R) which are 2π-periodic and u′ is their distribu-
tional derivative, which is a measure, and |u′|([0, 2π[) is its total variation on one period.

4. Find ū in the case n = 2 and ω(t) = (R cos t,R sin t) for R > 1.

Solution: Let us set Jε := Lε+Hω, where Lε(u) :=
∫ 2π

0

√
ε2 + |u′(t)|2 + ε

2 |u
′(t)|2 and Hω(u) =

∫ 2π
0

1
2 |u(t)−ω(t)|2.

We also set L(u) := |u′|([0, 2π[) (which is equal to
∫ 2π

0 |u
′| for smooth functions u) and J = L + Hω.

1. For fixed ε > 0 the two terms Lε and Hω are bounded from below in terms of the L2 norm of u′ and of
u respectively (we use the fact that ω is bounded). Hence, any minimizing sequence is bounded in H1(I)
for any interval I (here we use periodicity) and we can extract a weakly converging subsequence. The
terms depending on u′ are convex in u′, so the functional is lsc for this convergence, which proves the
existence of a minimizer. Uniqueness comes from the strict convexity of Hω.

2. We have Lε(u) ≥ L(u) so that Jε(u) ≥ L(u) + ||u||2
L2([0,2π]) − C. Comparing the optimal uε to the zero

function we have Jε(uε) ≤ 2π(ε + ||ω||2
L2 which bounds both the L2 norm of uε and the norm of u′ε in the

space of measures when ε → 0. This can be done on a periodicity interval, or on any bounded interval,
of course.

3. We want to prove the Γ-convergence of Jε to J in the space of 2π-periodic L2 functions endowed with the
L2([0, 2π]) norm. The bound in BV on the minimizers together with the compact embedding BV ⊂ L2

which is true in dimension one allows to obtain the compactness assumption which is needed to guarantee
that Γ-convergence implies the convergence of the minimizers. We would obtain in this case strong
L2 convergence but actually the compact embedding BV ⊂ Lp for any p < +∞ also provides strong
convergence in all the Lp spaces. We can’t conclude about L∞ convergence, even if we have weak-* L∞

convergence of uε to ū and weak-* convergence of u′ε to ū′. Extra assumptions on ω could imply better
convergence of the minimizers.

The Γ-convergence is not difficult to establish in this case. First we observe that Hω is continuous for the
L2 convergence so that it is enough to prove the Γ-convergence of Lε to L. We have Lε ≥ L and L is lsc
for the L2 convergence (indeed, if we take a sequence uk → u with L(uk) ≤ C we automatically obtain a
BV nound and we can extract a subsequence such that u′k weakly-* converges as measures to u′, so that
the mass of u′ is smaller than the liminf of the masses of u′k). This provides the Γ-liminf inequality at no
cost.

The Γ-liminf inequality when ε → 0 is straightforward on smooth functions. We just need to prove that
this is a class dense in energy. Given any u with L(u) < +∞ we can define un := ηn ∗ u where ηn is a
standard smooth convolution kernel. We have un → u in L2 and |u′n|([0, 2π[) ≤ |u′|([0, 2π[) since the norm
of the derivative is a convex functional invariant by translations, and hence it decreases by convolution.
This shows that this sequence can be used to prove the density in energy of the class f smooth functions
and concludes the proof.



4. We look for a solution of the form ū(t) = (r cos t, r sin t). For this function we have |ū′| = r and ū′′ = −ū.
Let us take an arbitrary competitor u = ū + ϕ and suppose that it is smooth. We then write the inequality
which can be easily obtained by convexity of both terms:

J(ū + ϕ) ≥ J(u) +

∫ 2π

0

ū′

|ū′|
· ϕ′ + (ū − ω) · ϕ.

Integrating by parts and using |ū′| = r we have

J(ū + ϕ) ≥ J(u) +

∫ 2π

0

(
−

ū′′

r
+ (ū − ω)

)
· ϕ.

It is then enough to impose − ū′′
r + (ū − ω) = 0 to obtain that ū minimizes among smooth functions. Any

other competitor u can be approximated by convolution by smooth functions uk, with J(uk) → J(u) as
we saw in the previous question, so the optimality among smooth functions is equialent to the global
optimality. The desired differential condition (which is nothing but the Euler-Lagrange equation, but we
discuss this into detals because of the non-smoothness of both competitors and u′/|u′|) is equivalent to
ū(1 + 1

r ) = ω and hence r = R − 1 is sufficient for optimality. This optimizer is the unique one, because
of strict convexity of Hω.


