Calculus of Variations and Elliptic PDEs - Final Exam

Duration: 3h. All kind of documents (notes, books. . .) are authorized. The total number of points is much larger than 20, which means that attacking two or three exercises could be a reasonable option.

Exercice 1 (7 points). Consider the minimization problem

$$
\min \left\{\int_{0}^{T} \frac{e^{-2 t}}{2}\left(\left|u^{\prime}(t)\right|^{2}-|u(t)|^{2}\right) d t: u \in H^{1}([0, T]), u(0)=1\right\} .
$$

1. Prove that the minimization problem admits a solution at least if T is small enough.
2. Write and solve the Euler-Lagrange equation of this minimization problem, with its boundary conditions.
3. Prove the inequality $\int_{0}^{T} e^{-2 t}|h(t)|^{2} d t \leq \int_{0}^{T} e^{-2 t}\left|h^{\prime}(t)\right|^{2} d t$ for any $h \in H^{1}([0, T])$ with $h(0)=0$.
4. Prove that the minimization problem admits a unique solution for any $T>0$.

Exercice 2 (5 points). Consider a Lipschitz domain $\Omega \subset \mathbb{R}^{d}$, a measurable map $\tau: \Omega \rightarrow \Omega$ and a scalar function $u \in H_{l o c}^{1}(\Omega)$ which is a weak solution in Ω of

$$
\nabla \cdot\left(\frac{2+u(\tau(x))^{2}}{1+u(\tau(x))^{2}} \nabla u\right)=0
$$

1. If τ is the identity, prove that $u+\arctan u$ is a harmonic function.
2. If $\tau \in C^{\infty}$, prove $u \in C^{\infty}(\Omega)$.

Exercice 3 (7 points). Consider a smooth bounded and connected domain $\Omega \subset \mathbb{R}^{d}$, a function $f \in L^{2}(\Omega)$ with $f_{\Omega} f=0$, a number $\alpha \in \mathbb{R}$, and the minimization problem

$$
\min \left\{\int_{\Omega}(1+|\nabla u|)^{2}+\cos (\alpha u+|\nabla u|)+f u: u \in H^{1}(\Omega)\right\} .
$$

1. For $\alpha=0$ prove that the minimization can be restricted to the functions u with $f_{\Omega} u=0$ and for $\alpha \neq 0$ to the functions u with $\left|f_{\Omega} u\right| \leq \frac{\pi}{|\alpha|}$.
2. Prove that the problem admits a solution.
3. Prove that any solution satisfies $\alpha \int_{\Omega} \sin (\alpha u+|\nabla u|)=0$.
4. Prove that the solution is unique up to additive constants if $\alpha=0$.
5. Find all the minimizers in the case $f=0$ and $\alpha \neq 0$.

Exercice 4 (9 points). Given a curve $\omega \in C^{0}\left(\mathbb{R} ; \mathbb{R}^{n}\right)$ which is 2π-periodic, consider the minimization problem

$$
\min \left\{\int_{0}^{2 \pi}\left(\sqrt{\varepsilon^{2}+\left|u^{\prime}(t)\right|^{2}}+\frac{\varepsilon}{2}\left|u^{\prime}(t)\right|^{2}+\frac{1}{2}|u(t)-\omega(t)|^{2}\right) d t: u \in H_{p e r}^{1}\left(\mathbb{R} ; \mathbb{R}^{n}\right)\right\}
$$

where $H_{p e r}^{1}(\mathbb{R})$ denotes the set of functions $u \in H_{l o c}^{1}(\mathbb{R})$ which are 2π-periodic.

1. Prove that this minimization problem admits a unique solution u_{ε}.
2. Prove that the sequence of minimizers is bounded, when $\varepsilon \rightarrow 0$, in $B V(I)$ for any interval $I \subset \mathbb{R}$.
3. Prove that u_{ε} converges (in which sense?) to the unique solution \bar{u} of

$$
\min \left\{| u ^ { \prime } | \left(\left[0,2 \pi[)+\int_{0}^{2 \pi} \frac{1}{2}|u(t)-\omega(t)|^{2} d t: u \in B V_{p e r}\left(\mathbb{R} ; \mathbb{R}^{n}\right)\right\}\right.\right.
$$

where $B V_{p e r}(\mathbb{R})$ denotes the set of functions $u \in B V_{l o c}(\mathbb{R})$ which are 2π-periodic and u^{\prime} is their distributional derivative, which is a measure, and $\left|u^{\prime}\right|([0,2 \pi[)$ is its total variation on one period.
4. Find \bar{u} in the case $n=2$ and $\omega(t)=(R \cos t, R \sin t)$ for $R>1$.

