

Calculus of Variations

Mock Exam

This is just an example of possible exam classwork. Try to do it in 3h
All kind of documents (notes, books...) will be authorized.

Exercice 1 (6 points). Consider the problem

$$\min \left\{ \int_0^1 \left(u'(t)^2 + 16e^t u(t) + 9u(t)^2 \right) dt + 3u(1)^2 : u \in H^1([0, 1]), u(0) = -1 \right\}.$$

Prove that it admits a minimizer, that it is unique, and find it.

Exercice 2 (6 points). Let Ω be an open connected and smooth subset of \mathbb{R}^d . Prove that the following minimization problem admits a solution

$$\min \left\{ \int \left(\frac{1}{2} |\nabla u|^2 - (1 + v^2) \sin \left(\frac{u}{1 + v^2} \right) + (2 + \arctan(u)) |\nabla v|^2 \right) dx : u, v \in H_0^1(\Omega) \right\}$$

and write the necessary optimality conditions as a system of elliptic PDEs in u, v .

Exercice 3 (4 points). Let $f \in L^1([0, 1])$ and $F \in W^{1,1}([0, 1])$ be such that $F' = f$ and $F(0) = F(1) = 0$. Let $1 < p < \infty$ be a given exponent, and q be its conjugate exponent. Prove

$$\min \left\{ \int_0^1 \frac{1}{p} |u'(t)|^p dt + \int_0^1 f(t) u(t) dt : u \in W^{1,p}([0, 1]) \right\} = -\frac{1}{q} \|F\|_{L^q([0,1])}^q.$$

Exercice 4 (6 points). Let Ω be an open connected and smooth subset of \mathbb{R}^d and $p \in]1, \infty[$. Prove that the following minimization problem admits a solution

$$\min \left\{ \frac{\int_{\Omega} |\nabla u|^p}{\int_{\Omega} |u|^p} : u \in W_0^{1,p}(\Omega) \setminus \{0\} \right\},$$

that this solution may be taken non-negative, and that it satisfies

$$\Delta_p u = c u^{p-1}$$

for a suitable constant $c < 0$. Suppose $p > 2$ and consider $G := |\nabla u|^{p-2} \nabla u$: prove $G \in H_{loc}^1(\Omega)$.

Exercice 5 (8 points). Let u_{ε} be solutions of the minimization problems P_{ε} given by

$$P_{\varepsilon} := \min \left\{ \int_0^{\pi} \left(\frac{\varepsilon}{2} |u'(t)|^2 + \frac{1}{2\varepsilon} \sin^2(u(t)) + 10^3 |u(t) - t| \right) dt : u \in H^1([0, \pi]) \right\}.$$

Prove that u_{ε} converges strongly in L^1 to a function u_0 as $\varepsilon \rightarrow 0$, find this function, and prove that the convergence is actually strong in all the L^p spaces with $p < \infty$. Is it a strong L^{∞} convergence?