
Calculus of Variations and Elliptic PDEs
–

Exercises

Exercise 1. Solve the problem

min{J(f) :=
∫ 1

0

[1
2f
′(t)2 + tf(t) + 1

2f(t)2
]
dt ; f ∈ A}, où A := {f ∈ C1([0, 1]) : f(0) = 0}.

Find the minimal value of J on A and the function(s) f which attain it, proving that they are actually
minimizers
Exercise 2. Consider the problem

min
{∫ T

0
e−t

(
u′(t)2 + 5u(t)2

)
dt : u ∈ C1([0, T ]), u(0) = 1

}
.

Prove that it admits a minimizer, that it is unique, find it, compute the value of the minimum, and the limit
of the minimizer (in which sense ?) and of the minimal value as T → +∞.
Exercise 3. Consider the problem

min{J(u) :=
∫ 1

0

[1
2u
′(t)2 + u(t)f(t)

]
dt ; u ∈W 1,2([0, 1])}.

Find a necessary and sufficient condition on f so that this problem admits a solution.
Exercise 4. Let L : R→ R be a strictly convex C1 function, and consider

min{
∫ 1

0
L(u′(t))dt ; u ∈ C1([0, 1]), u(0) = a, u(1) = b}.

Prove that the solution is u(t) = (1− t)a+ tb, whatever is L. What happens if L is not C1 ? and if L is convex
but not strictly convex ?
Exercise 5. Prove that we have

inf{
∫ 1

0
t|u′(t)|2dt ; u ∈ C1([0, 1]), u(0) = 1, u(1) = 0} = 0.

Is the infimum above attained ?
What about, instead

inf{
∫ 1

0

√
t|u′(t)|2dt ; u ∈ C1([0, 1]), u(0) = 1, u(1) = 0} ?

Exercise 6. Consider a minimization problem of the form

min{F (u) :=
∫ 1

0
L(t, u(t), u′(t))dt ; u ∈W 1,1([0, 1]), u(0) = a, u(1) = b},

where L ∈ C2([0, 1]× R× R). We denote as usual by (t, x, v) the variables of L. Suppose that ū is a solution
to the above problem. Prove that we have

∂2L

∂v2 (t, ū(t), ū′(t)) ≥ 0 a.e.

Exercise 7. Given f ∈ C2(R), consider the problem

min{F (u) :=
∫ 1

0

[
(u′(t)2 − 1)2 + f(u(t))

]
dt ; u ∈ C1([0, 1]), u(0) = a, u(1) = b}.

Prove that the problem does not admit any solution if |b− a| ≤ 1√
3 .
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Exercise 8. Consider the problem

min
{∫ 1

0

[
|u′(t)|2 + arctan(u(t))

]
dt : u ∈ C1([0, 1])

}
,

and prove that it has no solutions. Prove the existence of a solution if we add the boundary condition u(0) = 0,
write the optimality conditions and discuss the regularity of the solution.

Exercise 9. Consider the functional F : H1([0, T ])→ R defined through

F (u) =
∫ T

0

(
u′(t)2 + arctan(u(t)− t)

)
dt.

Prove that
a) the problem (P ) := min{F (u) : u ∈ H1([0, T ])} has no solution ;
b) the problem (Pa) := min{F (u) : u ∈ H1([0, T ]), u(0) = a} admits a solution for every a ∈ R ;
c) we have F (−|u|) ≤ F (u) ;
d) the solution of (Pa) is unique as soon as a ≤ 0 ;
e) there exists L0 < +∞ such that for every T ≤ L0 the solution of (Pa) is unique for every a ∈ R
f) the minimizers of (P ) and (Pa) are C∞ functions.

Exercise 10. Prove existence and uniqueness of the solution of

min
{∫

Ω

(
f(x)|u(x)|+ |∇u(x)|2

)
dx ; u ∈ H1(Ω),

∫
Ω
u = 1

}
,

when Ω is an open, connected and bounded subset of Rn and f ∈ L2(Ω), f ≥ 0 (the sign of f is not important
for existence). Where do we use connectedness ? Also prove that, if Ω is not connected (but has a finite
number of connected components and we keep the assumption f ≥ 0), then we have existence but maybe not
uniqueness, and that if we withdraw both connectedness and positivity of f , then maybe we don’t even have
existence.

Exercise 11. Fully solve

min
{∫

Q

(
|∇u(x, y)|2 + u(x, y)2

)
dx dy : u ∈ C1(Q), u = φ sur ∂Q

}
,

where Q = [−1, 1]2 ⊂ R2 and φ : ∂Q→ R is given by

φ(x, y) =


0 si x = −1, y ∈ [−1, 1]
2(ey + e−y) if x = 1, y ∈ [−1, 1]
(x+ 1)(e+ e−1) if x ∈ [−1, 1], y = ±1.

Find the minimizer and the value of the minimum. Writing the Euler-Lagrange equation is not compulsory,
but could help.

Exercise 12. Show that for every function f : R→ R+ l.s.c. there exists a sequence of functions fk : R→ R+,
each k−Lipschitz, such that for every x ∈ R the sequence (fk(x))k increasingly converges to f(x).
Use this fact and the theorems we saw in class to prove semicontinuity, wrt to weak convergence in H1(Ω), of
the functional

J(u) =
∫

Ω
f(u(x))|∇u(x)|p dx,

where p ≥ 1 and f : R→ R+ is l.s.c.



Exercise 13. Find the Poincaré constant of the interval (−A,A), i.e. the smallest constant C such that∫ A

−A
u2(x)dx ≤ C

∫ A

−A
(u′)2(x)dx

for every function in H1
0 ((−A,A)).

What is the largest value of A such that H1
0 ((−A,A)) 3 u 7→

∫ A
−A[(u′)2(x)− u2(x)]dx is a convex functional ?

What about strict convexity ?

Exercise 14. Let Ω ⊂ Rn be bounded and open, and φ : ∂Ω → R be Lipschitz continuous. Prove that there
exists at least a function ū which is Lipschitz on Rn and such that ū = φ on ∂Ω.
Consider the problem

min
{∫

Ω

(
|∇u|2 − ε0u

2
)
dx : u ∈ H1(Ω), u− ū ∈ H1

0 (Ω)
}
,

where the condition u− ū ∈ H1
0 (Ω) is a way of saying u = φ on ∂Ω.

Prove that, at least for small ε0 > 0 the above problem admits a solution, and give an example with large ε0
where the solution does not exist. Also prove that, for small ε0 > 0, the solution is unique. What does the
smallness of ε0 depend on ? Write the PDE satisfied by the minimizer.

Exercise 15. Let Ω be an open connected subset in Rd, a ∈ L∞(Ω) be a function with a ≥ a0 where a0 > 0 is
a positive constant, and b ∈ L2(Ω) be another function, which is not identically zero. Prove that the following
minimization problem admits a solution

min
{∫

Ω a|∇u|2dx
|
∫
Ω bu dx|

2 : u ∈ H1
0 (Ω) :

∫
Ω
bu dx 6= 0

}
,

and write the PDE that such a solution satisfies. Finally, compute the value of the above minimum in the case
Ω = B(0, 1) ⊂ R2, a(x) = 1 and b(x) = |x|.

Exercise 16. If f : Rn → R is given by f(x) = |x| log |x|, compute f∗ and f∗∗.

Exercise 17. Let f : Rn → R be convex. Prove that f is strictly convex if and only if f∗ is C1 and that f is
C1,1 if and only if f∗ is elliptic (meaning that there exists c > 0 such that f(x)− c|x|2 is convex).

Exercise 18. Given a bounded, smooth and connected domain Ω ⊂ Rd, and f ∈ L2(Ω), set X(Ω) = {v ∈
L2(Ω;Rd) : ∇ · v ∈ L2(Ω)} and consider the minimization problems

(P ) := min
{
F (u) :=

∫
Ω

(1
2 |∇u|

2 + 1
2 |u|

2 + f(x)u
)
dx : u ∈ H1(Ω)

}
(D) := min

{
G(v) :=

∫
Ω

(1
2 |v|

2 + 1
2 |∇ · v − f |

2
)
dx : v ∈ X(Ω)

}
,

a) Prove that (P ) admits a unique solution ;
b) Prove min(P ) + inf(D) ≥ 0 ;
c) Prove that there exist v ∈ X(Ω) and u ∈ H1(Ω) such that F (u) +G(v) = 0 ;
d) Deduce that min(D) is attained and min(P ) + inf(D) = 0 ;
e) Justify by a formal inf-sup exchange the duality minF (u) = sup−G(v) ;
f) Prove minF (u) = sup−G(v) via a duality proof based on convex analysis.



Exercise 19. Consider the problem

min
{∫

Ω

1
2 |v|

2dx+ 〈ū0, π0〉+ 〈ū1, π1〉 : ∇ · v = f + π0 − π1

}
,

where the minimization is done on the triplets (v, π0, π1) with v ∈ L2(Ω;Rd), πi ∈ (H1(Ω))′ satisfying 〈πi, φ〉 =
0 for every φ ∈ H1

0 (Ω) and 〈πi, φ〉 ≥ 0 for every φ ≥ 0. Here f ∈ (H1(Ω))′ and ūi ∈ H1(Ω) are given.
Find its dual, distinguishing the case ū0 + ū1 ≥ 0 or not.

Exercise 20. Let Ω be the d−dimensional flat torus (just to avoid boundary conditions, think at a cube),
p, q > 1 two given exponents, a > 0 and f : Ω → R a given Lipschitz continuous function. Consider the
following minimization problem

inf
{∫

Ω

(1
p
|∇u|p − a

q
|u|q + fu

)
dx : u ∈W 1,p(Ω) ∩ Lq(Ω),

∫
Ω
u = 0

}
.

a) Prove that, if q > p, the inf is −∞ and the minimization problem has no solution.
b) Prove that, if q < p, the infimum is attained.
c) Prove that, if q = p, the infimum is attained, provided a is small enough.
d) In the cases where the infimum is attained, write the Euler-Lagrange equation solved by the minimizers.
e) Recall the condition on f which guarantee that solutions of ∆pu = f , satisfy (∇u)p/2 ∈ H1 (remember

that, for a vector v, the expression vα is to be intended as equal to a vector w with |w| = |v|α and
w ∈ R+v).

f) For p ≥ 2 and 2 ≤ q ≤ p, prove that the solution ū satisfies (∇ū)p/2 ∈ H1.

Exercise 21. Let H : Rn → R be given by

H(v) = (4|v|+ 1)3/2 − 6|v| − 1
12 .

a) Prove that H is C1 and strictly convex. Is it C1,1? Is it elliptic ?
b) Compute H∗. Is it C1, strictly convex, C1,1 and/or elliptic ?
c) Consider the problem min{

∫
H(v) : ∇ · v = f} (on the d-dimensional torus, for simplicity) and find

its dual.
d) Supposing f ∈ L2, prove that the optimal u in the dual problem is H2.
e) Under the same assumption, prove that the optimal v in the primal problem belongs to W 1,p for every
p < 2 if d = 2, for p = d/(d− 1) if 3 ≤ d ≤ 5, and for p = 6/5 if d ≥ 3.

Exercise 22. Consider the problem

min{A(v) :=
∫
Td
H(v(x))dx : v ∈ L2,∇ · v = f}

for a function H which is elliptic. Prove that the problem has a solution, provided there exists at least an
admissible v with A(v) < +∞. Prove that, if f is an H1 function with zero mean, then the optimal v is also
H1.

Exercise 23. Given a function g ∈ L2([0, L]), consider the problem

min
{∫ L

0

1
2 |u(t)− g(t)|2dt : u(0) = u(L) = 0, u ∈ Lip([0, L]), |u′| ≤ 1 a.e.

}
.

a) Prove that this problem admits a solution.
b) Prove that the solution is unique.



c) Find the optimal solution in the case where g is the constant function g = 1 in the terms of the value
of L, distinguishing L > 2 and L ≤ 2.

d) Computing the value of

sup
{
−
∫ L

0
(u(t)z′(t) + |z(t)|)dt : z ∈ H1([0, L])

}
find the dual of the previous problem by means of a formal inf-sup exchange.

e) Assuming that the equality inf sup = sup inf in the duality is satisfied, write the necessary and sufficient
optimality conditions for the solutions of the primal and dual problem. Check that these conditions are
satisfied by the solution found in the case g = 1.

f) Prove the the equality inf sup = sup inf (more difficult).
Exercise 24. Given u0 ∈ C1([0, 1]) consider the problem

min
{∫ 1

0

1
2 |u− u0|2dx : u′ ≥ 0

}
,

which consists in the projection of u0 onto the set of monotone increasing functions (where the condition u′ ≥ 0
is intended in the weak sense).

a) Prove that this problem admits a unique solution.
b) Write the dual problem
c) Prove that the solution is actually the following : define U0 through U ′0 = u0, set U1 := (U0)∗∗ to be the

largest convex and l.s.c. function smaller than U0, take u = U ′1.
Exercise 25. Write and prove a Caccioppoli-type inequality between the Lp(Br) norm of ∇u and the Lp(BR)
norm of u for solutions of ∇ · (|∇u|p−2∇u) = 0.
Exercise 26. Let u ∈ D′(Rn) be a distributional solution of ∆u = b(x) · ∇u+ f(x)u, where f : Rn → R and
b : Rn → Rn are given C∞ functions. Prove u ∈ C∞(Rn).
Exercise 27. Suppose that Ω = B(0, 1) ⊂ R2 represents a circular membrane, attached at its boundary ∂Ω
to a given profile φ. It must follow the profile on the boundary but is free inside. The shape of the membrane
inside will follow that of the graph of a harmonic function. A given initial profile φ0 on the boundary is given,
but we can act on it so as to change the shape of the membrane. The goal is to have it as flat as possible, in
the sense of minimizing the norm of the hessian matrix on a given region A = B(0, R) ⊂ Ω, but we pay a price
for the effort we do on the boundary.
Mathematically, we consider this problem : for every φ ∈ H1(∂Ω) (attention : ∂Ω is a circle, so when we say
H1 we mean H1 functions of one variable) we define uφ as the unique solution of ∆u = 0 in Ω, with u = φ on
∂Ω ; then, we solve

min ||φ− φ0||2H1(∂Ω) +
∫
A
|D2uφ|2dx.

Prove the existence of the minimum, both in the case A = B(0, R) with R < 1 and A = Ω = B(0, 1).
also prove existence of a solution to the problem

min ||φ− φ0||2H1(∂Ω) + |∇uφ(0)|,
where we want the membrane to be as horizontal as possible at the middle point.
Exercise 28. Let Ω be an open and bounded subset of Rd, and p > 1. Consider the following minimization
problem

min
{∫

Ω

(
1
p
|∇u(x)|p −

√
1 + 1

p
|u(x)|p

)
dx : u ∈W 1,p

0 (Ω)
}
.



a) Prove that it admits a solution.
b) Prove that there exists Ω such that 0 is not a solution, and hence that the solution is not always unique.
c) Write the PDE solved by any solution.
d) In the case p = 2, prove that any solution is C∞ in the interior of Ω.

Exercise 29. Let Ω be an open connected and smooth subset of Rd such that λ1(Ω) > 1 (we define λ1(Ω) :=
infv∈H1

0 (Ω)\{0} ||∇v||2L2/||v||2L2) and fix ū ∈ H1(Ω). Prove that the following minimization problem admits a
unique solution

min
{∫ (1

2 |∇u|
2 + sin(u)

)
dx : u− ū ∈ H1

0 (Ω)
}

and prove that u is a solution of the above problem if and only if it solves{
∆u = cos(u) weakly in Ω,
u = ū on ∂Ω.

Also prove that the optimal u is a C∞ function inside Ω.

Exercise 30. Which among the functions u which can be written in polar coordinates as u(ρ, θ) = ρα sin(kθ)
are harmonic on the unit ball ? (i.e., for which values of α, k ∈ R).

Exercise 31. Consider the equation ∆u = f(u), where f : R → R is a given C∞ function. Suppose that
u ∈ H1(Ω) is a weak solution of this equation and f has polynomial growth of order m (i.e. |f(t)| ≤ C(1+ |t|)m.
In dimension d = 1, 2, prove u ∈ C∞. In higher dimension, prove it under the restriction m < (d+ 2)/(d− 2).

Exercise 32. Consider the equation ∆u = f(|∇u|2), where f : R → R is a given C∞ function. Prove that,
if u ∈ C1(Ω̄) ⊂ H1(Ω) is a weak solution of this equation, then we have u ∈ C∞. What is the difficulty in
removing the assumption u ∈ C1(Ω̄) ? Which assumption to add on f so as to prove the result for H1 weak
solutions ?

Exercise 33. Let Q = (a1, b1)× (a2, b2)× . . . (an, bn) ⊂ Rn be a rectangle and f ∈ C∞c (Q). Let u ∈ H1
0 (Q) be

the solution of ∆u = f with u = 0 on ∂Q. Prove u ∈ C∞(Q). Can we say u ∈ C∞c (Q) ? do functions f such
that u ∈ C∞c (Q) exist ?

Exercise 34. Let T ⊂ R2 be a triangle and f ∈ Lp(T ). Let u ∈ H1
0 (T ) be the solution of ∆u = f with u = 0

on ∂T . Prove u ∈W 2,p(T ).
If we assume

∫
T f = 0 (why ?) let v be the solution of the Neumann problem ∆v = f with ∂v/∂n = 0 on ∂T

(ain the weak sense :
∫
T ∇v · ∇φ = −

∫
T fφ for every φ ∈ H1(T )). Prove v ∈ W 2,p(T ) and v ∈ W 3,p(T ) if we

also have f ∈W 1,p(T ).

Exercise 35. Given u ∈W 1,p
loc (Rd), suppose that we have∫

B(x0,r)
|∇u|pdx ≤ Crdf(r),

where f : R+ → R+ is defined as f(r) = − log r for r ≤ e−1 and f(r) = 1 for r ≥ e−1. Prove that u is
continuous and that we have

|u(x)− u(y)| ≤ C|x− y|f(|x− y|)
(possibly for a different constant C).

Exercise 36. Let u ≥ 0 be a continuous function on a bounded domain Ω which is a weak solution of{
∆u =

√
u in Ω,

u = 1 on ∂Ω.



Prove that we have u ∈ C2,1/2
loc (Ω) and u ∈ C∞ if u > 0. Prove that we do have u > 0 if Ω is contained in a

ball of radius R sufficiently small (how much ?). Is it possible, for larger domains Ω, to have min u = 0 ?

Exercise 37. Given a function H : Rd → R which is both elliptic and C1,1 (i.e. threre are two positive
constants c0, c1 such that c0I ≤ D2H ≤ c1I, let u ∈ H1

loc(Ω) be a weak solution in Ω of ∇ ·
(
∇H(∇u)

)
= 0.

a) Prove that we have u ∈ H2
loc.

b) Prove the same result for solutions of ∇ ·
(
∇H(∇u)

)
= f , f ∈ L2

loc.
c) In case Ω is the torus, prove that the same result is global and only uses the lower bound on D2H.

Exercise 38. Let u ∈ H1
loc be a weak solution of ∇ ·

(
(3 + sin(|∇u|2))∇u

)
= 0. Prove that we have u ∈ C0,α

loc .
Also prove u ∈ C∞ on any open set where sup |∇u| < 1.

Exercise 39. Let u ∈ H1
loc ∩ L∞loc be a weak solution of ∇ ·

(
A(x, u)∇u

)
= 0, where

Aij(x, u) = (1 + u2|x|2)δij − u2xixj .

Prove that we have u ∈ C∞.

Exercise 40. Let pn be a sequence of C1 functions on a same bounded and smoothh domain Ω ⊂ Rd which
is bounded in L∞ ∩H1 and g a given C2 function on Ω. Let un ∈ H1(Ω) be the unique weak solution of{

∆un = ∇u · ∇pn in Ω,
un = g on ∂Ω.

a) Find a minimization problem solved by un.
b) Prove that we have ||un||L∞ ≤ ||g||L∞ .
c) Prove that un is bounded in H1(Ω).
d) Prove that un is locally Hölder continuous, with a modulus of continuity on each subdomain Ω′ com-

pactly contained in Ω which independent of n (but can depend on Ω′)
e) If pn weakly converges in H1 to a function p prove that we have un → u (the convergence being strong

in H1 and locally uniform), where u is the unique solution of the same problem where pn is replaced by
p.

Exercise 41. Let (Fn)n be a sequence of functionals defined on a common metric space X, such that Fn ≤
Fn+1. Suppose that each Fn is l.s.c. and set F := supn Fn. Prove Fn

Γ→ F .

Exercise 42. Let us define the following functionals on X = L2([−1, 1])

Fn(u) :=
{

1
2n
∫ 1
−1 |u′(t)|2dt+ 1

2
∫ 1
−1 |u(t)− t|2dt if u ∈ H1

0 ([−1, 1]),
+∞ otherwise ;

together with

H(u) =
{

1
2
∫ 1
−1 |u(t)− t|2dt if u ∈ H1

0 ([−1, 1]),
+∞ otherwise ;

and F (u) := 1
2
∫ 1
−1 |u(t)− t|2dt for every u ∈ X.

a) Prove that, for each n, the functional Fn is l.s.c. for the L2 (strong) convergence ;
b) Prove that also F is l.s.c. for the same convergence, but not H ;
c) Find the minimizer un of Fn over X ;
d) Find the limit as n→∞ of un. Is it a strong L2 limit ? is it a uniform limit ? a pointwise a.e. limit ?



e) Find the Γ-limit of Fn (which, without surprise, is one of the functionals F orH), proving Γ-convergence ;
f) Does the functional H admit a minimizer in X ?

Exercise 43. Given a function a : [0, 1]→ R+ consider the functional F [a] defined on L2([0, 1]) via

F [a](u) :=
{

1
2
∫ 1

0 a|u′|2 if u ∈ H1, u(1) = 0
+∞ if not.

Suppose that an, a : [0, 1] → R is a sequence such that a− ≤ an, a ≤ a+ (a± being two strictly positive
constants) and a−1

n ⇀ a−1, the convergence being a weak−∗ convergence in L∞. Prove that F [an] Γ-converge
in L2 to F [a].

Exercise 44. Consider the functions an : [0, 1] → R given by an(x) = a(nx) where a = 2
∑
k∈Z 1[2k,2k+1] +∑

k∈Z 1[2k−1,2k]. Given f ∈ L1([0, 1]) with
∫ 1
0 f(t)dt = 0 and p ∈]1,+∞[, compute

lim
n→∞

min
{∫ 1

0

(1
p
an|u′(t)|pdt+ f(t)u(t)

)
dt : u ∈W 1,p([0, 1])

}
.

Exercise 45. Prove the convergence in e) of Exercise 40 using Γ-convergence.

Exercise 46. Given a sequence of functions an : Ω → R which are bounded from below and above by two
same strictly positive constants a−, a+ and a function a bounded by the same constants, prove that we have{

an ⇀ a

a−1
n ⇀ a−1

(the weak convergence being weak−∗ in L∞) if and only if we have an → a in L2 (and hence in all Lp spaces
for p <∞).

Exercise 47. Let A ⊂ R2 be a bounded measurable set. Let π(A) ⊂ R be defined via π(A) = {x ∈ R :
L1({y ∈ R : (x, y) ∈ A} > 0}. Prove that we have Per(A) ≥ 2L1(π(A)). Appy this result to the isoperimetric
problem in R2, proving the existence of a solution to

min
{
Per(A) : A ⊂ R2, A bounded, |A| = 1

}
.

Exercise 48. Let Ω ⊂ Rd be the unit square Ω = (0, 1)2 and S = {0} × (0, 1) ⊂ ∂Ω. Consider the functions
an : Ω→ R defined via

an(x, y) =
{
A0 if x ∈ [ 2k

2n ,
2k+1

2n ) for k ∈ Z
A1 if x ∈ [2k+1

2n , 2k+2
2n ) for k ∈ Z,

where 0 < A0 < A1 are two given values. On the space L2(Ω) (endowed with the strong L2 convergence ; every
time that we write → here below we mean this kind of convergence), consider the sequence of functionals

Fn(u) =
{∫

Ω an|∇u|2 if u ∈ X,
+∞ if not,

where X ⊂ L2(Ω) is the space of functions u ∈ H1(Ω) satisfying u = 0 on S (which can be defined via the
condition uη ∈ H1

0 (Ω) for every cut-off function η ∈ C∞(R2) with spt(η) ∩ (∂Ω \ S) = ∅). The goal is to find
the Γ-limit of the sequence (Fn)n. Set

A∗ :=
( 1
A0

+ 1
A1

2

)−1

and A� := A0 +A1
2 .

a) Given a sequence (un)n with un → u and Fn(un) ≤ C, prove u ∈ X and lim infn
∫

Ω an|∂xun|2 ≥
A∗
∫

Ω |∂xu|2.



b) For the same sequence, also prove lim infn
∫

Ω an|∂yun|2 ≥ A�
∫

Ω |∂yu|2.
c) For any u ∈ X, find a sequence un such that un → u, an∂xun → A∗∂xu and ∂yun → ∂yu.
d) Conclude by finding the Γ-limit of Fn. Is it of the form F (u) =

∫
a|∇u|2 for u ∈ X ?

Exercise 49. Consider the following sequence of minimization problems, for n ≥ 0,

min
{∫ 1

0

(
|u′(t)|2

3
2 + sin2(nt)

+
(3

2 + sin2(nt)
)
u(t)

)
dt : u ∈ H1([0, 1]), u(0) = 0

}
,

calling un their unique minimizers and mn their minimal values.
Prove that we have un(t)→ t2 − 2t uniformly, and mn → −2/3.

Exercise 50. Let un, vn be two sequences of functions belonging to H1([0, 1]). Suppose
un ⇀ u0, vn ⇀ v0, En(un, vn, [0, 1]) ≤ C

where En is the energy defined for every interval J ⊂ [0, 1] through

En(u, v, J) :=
∫
J

(
v(t)|u′(t)|2 + 1

2n |v
′(t)|2 + n

2 |1− v(t)|2
)
dt,

C ∈ R is a given constant, the weak convergence of un and vn occurr in L2([0, 1]), and u0 is a function which
is piecewise C1 on [0, 1] (i.e. there exists a partition 0 = t0 < t1 < · · · < tN = 1 such that u0 ∈ C1(]ti, ti+1[),
and the limits of u0 exist finite at t = t±i but u0(t−i ) 6= u0(t+i ) for i = 1, . . . , N − 1).
Denote by J the family of all the intervals J compactly contained in one of the open intervals ]ti, ti+1[. Also
suppose, for simplicity, that un ⇀ u0 in H1(J) for every interval J ∈ J .
Prove that we necessarily have

a) v = 1 a.e. and vn → v strongly in L2.
b) lim infn→∞En(un, vn, J) ≥

∫
J |u′0(t)|2dt for every interval J ∈ J .

c) lim infn→∞En(un, vn, J) ≥ 1 for every interval J containing one of the points ti.
d) C ≥ lim infn→∞En(un, vn, [0, 1]) ≥

∫ 1
0 |u′0(t)|2dt+ (N − 1).

Exercise 51. Let uε be solutions of the minimization problems Pε given by

Pε := min
{∫ π

0

(
ε

2 |u
′(t)|2 + 1

2ε sin2(u(t)) + 103|u(t)− t|
)
dt : u ∈ H1([0, π])

}
.

Prove that uε converges strongly (the whole sequence, not up to subsequences ! !) in L1 to a function u0 as
ε → 0, find this function, and prove that the convergence is actually strong in all the Lp spaces with p < ∞.
Is it a strong L∞ convergence ?


