
16 CHAPTER 1. PRIMAL AND DUAL PROBLEMS

Memo – Lusin’s theorem.
A well known theorem in measure theory states that every measurable

function f on a reasonable measure space X, is actually continuous on a set
K which fills almost all the measure of X. This set K can be taken compact.
Actually, there can be at least two statements: either we want f to be merely
continuous on K (which is easier), or we want f to coincide on K with a
continuous function defined on the whole X. This theorem is usually stated
for real-valued functions, but we happen to need it for functions valued in
more general spaces. Let us give some precise statements and proofs. Take
a topological space X endowed with a regular measure µ (i.e. any Borel set
A ⊂ X satisfies µ(A) = sup{µ(K) : K ⊂ A, K compact}. The arrival space
Y will be supposed to be second-countable (i.e. to admit a countable family
(Bi)i of open sets such that any other open set B ⊂ Y may be expressed as a
union of Bi).

Theorem (weak Lusin): If X is a topological measure space endowed with
a regular measure µ, if Y is second-countable and f : X → Y is measurable,
then for every ε > 0 there exists a compact set K ⊂ X such that µ(X \K) < ε
and the restriction of f to K is continuous.

Proof: For every i ∈ N, set A+
i = f−1(Bi) and A−

i = f−1(Bc
i ). Consider

compact sets K+
i ⊂ A+

i such that µ(A+
i \ K+

i ) < ε2−i and K−
i ⊂ A−

i with
µ(A−

i \K−
i ) < ε2−i. Set Ki = K+

i ∪K−
i and K =

�
i Ki. For each i we have

µ(X \ Ki) < 2ε2−i. By construction, K is compact and µ(X \ K) < 4ε. To
prove that f is continuous on K it is sufficient to check that f−1(B) ∩ K is
relatively open in K for each open set B, and it is enough to check this for
B = Bi. Equivalently, it is enough to prove that f−1(Bc

i ) ∩ K is closed, and
this is true since it coincides with K+

i ∩K.
Theorem (strong Lusin): If X is a metric space endowed with a regular

measure µ and f : X → R is measurable, then for every ε > 0 there exists a
compact set K ⊂ X and a continuous function g : X → R such that µ(X\K) <
ε and f = g on K.

Proof: First apply weak Lusin’s theorem, since R is second countable.
Then we just need to extend f|K to a continuous function g on the whole X.
This is possible since f|K is uniformly continuous (as a continuous function on
a compact set) and hence has a modulus of continuity ω, such that |f(x) −
f(x�)| ≤ ω(d(x, x�)). Then define g(x) = inf{f(x�) + ω(d(x, x�)) : x� ∈ K}. It
can be easily checked that g is continuous and coincides with f on K.

Notice that this last proof strongly uses the fact that the arrival space is

R. It could be adapted to the case of Rd just by extending componentwise. It

is also interesting to remark that if Y is a separable metric space, than it can

be embedded into �∞, and extend componentwise as well (but the extension

will not be valued in Y , but in �∞). On the other hand, it is clear that the

strong version of Lusin’s Theorem cannot hold (without extension to a bigger
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space) for any space Y , and the counter-example is easy to build : just take X

connected and Y disconnected. A measurable function f : X → Y taking two

different values in two different connected components on two sets of positive

measure cannot be approximated by continuous functions in the sense of the

strong Lusin’s Theorem.

The consequence of all these continuity, semi-continuity, and compact-
ness results is the existence, under very mild assumptions on the cost and
the space, of an optimal transport plan γ. Then, if one is interested in the
problem of Monge, the question may become “does this minimal γ come
from a transport map T?”. Actually, if the answer to this question is yes,
then it is evident that the problem of Monge has a solution, which also
solves a wider problem, that of minimizing among transport plans. This is
the object of the next two sections 1.2 and 1.3. On the other hand, in some
cases proving that the optimal transport plan comes from a transport map
(or proving that there exists at least one optimal plan coming from a map)
is equivalent to proving that the problem of Monge has a solution, since very
often the infimum among transport plans and among transport maps is the
same. This depends on the presence of atoms (see Sections 1.4 and 1.5).

1.2 Duality

Since the problem (PK) is a linear optimization under linear constraints,
an important tool will be duality theory, which is typically used for con-
vex problems. We will find a dual problem (PD) for (PK) and exploit the
relations between dual and primal.

The first thing we will do is finding a formal dual problem, by means of
an inf-sup exchange.

First express the constraint γ ∈ Π(µ, ν) in the following way : notice
that, if γ is a non-negative measure on X × Y , then we have

sup
φ,ψ

ˆ
φ dµ+

ˆ
ψ dν −

ˆ
(φ(x) + ψ(y)) dγ =

�
0 if γ ∈ Π(µ, ν)

+∞ otherwise
.

Hence, one can remove the constraints on γ if he adds the previous sup,
since if they are satisfied nothing has been added and if they are not one
gets +∞ and this will be avoided by the minimization. Hence we may look
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