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Memo — Lusin’s theorem.

A well known theorem in measure theory states that every measurable
function f on a reasonable measure space X, is actually continuous on a set
K which fills almost all the measure of X. This set K can be taken compact.
Actually, there can be at least two statements: either we want f to be merely
continuous on K (which is easier), or we want f to coincide on K with a
continuous function defined on the whole X. This theorem is usually stated
for real-valued functions, but we happen to need it for functions valued in
more general spaces. Let us give some precise statements and proofs. Take
a topological space X endowed with a regular measure p (i.e. any Borel set
A C X satisfies u(A) = sup{u(K) : K C A, K compact}. The arrival space
Y will be supposed to be second-countable (i.e. to admit a countable family
(B;); of open sets such that any other open set B C Y may be expressed as a
union of B;).

Theorem (weak Lusin): If X is a topological measure space endowed with
a regular measure p, if Y is second-countable and f : X — Y is measurable,
then for every e > 0 there exists a compact set K C X such that u(X \ K) < ¢
and the restriction of f to K is continuous.

Proof: For every i € N, set Aj = f~1(B;) and A; = f~(B¢). Consider
compact sets K;© C Af such that p(A7 \ K) < 27" and K; C A; with
w(A; \K;) <e27% Set K; = K;" UK; and K =, K;. For each i we have
w(X \ K;) < 2627% By construction, K is compact and u(X \ K) < 4e. To
prove that f is continuous on K it is sufficient to check that f~!(B) N K is
relatively open in K for each open set B, and it is enough to check this for
B = B;. Equivalently, it is enough to prove that f~!(B¢) N K is closed, and
this is true since it coincides with Kf NnK.

Theorem (strong Lusin): If X is a metric space endowed with a regular
measure ¢ and f : X — R is measurable, then for every € > 0 there exists a
compact set K C X and a continuous function g : X — R such that pu(X\ K) <
eand f =g on K.

Proof: First apply weak Lusin’s theorem, since R is second countable.
Then we just need to extend fx to a continuous function g on the whole X.
This is possible since fjx is uniformly continuous (as a continuous function on
a compact set) and hence has a modulus of continuity w, such that |f(x) —
f(@")] < w(d(x,z')). Then define g(z) = inf{f(z') + w(d(z,2")) : 2’ € K}. Tt
can be easily checked that g is continuous and coincides with f on K.

Notice that this last proof strongly uses the fact that the arrival space is
R. It could be adapted to the case of R? just by extending componentwise. It
is also interesting to remark that if Y is a separable metric space, than it can
be embedded into £*°, and extend componentwise as well (but the extension
will not be valued in Y, but in £*°). On the other hand, it is clear that the
strong version of Lusin’s Theorem cannot hold (without extension to a bigger

CHAPTER 1. PRIMAL AND DUAL PROBLEMS




1.2. DUALITY 17

space) for any space Y, and the counter-example is easy to build : just take X
connected and Y disconnected. A measurable function f: X — Y taking two
different values in two different connected components on two sets of positive
measure cannot be approximated by continuous functions in the sense of the
strong Lusin’s Theorem.

First express the constraint II(u.v) in the following wav : notice
that, if v is a non-negative measure on X X Y, then we have
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gets +00 and this will be avoided by the minimization. Hence we mayv look
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